Effects of 4-Week Creatine Supplementation Combined with Complex Training on Muscle Damage and Sport Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Research Design
2.2. Subjects
2.3. Complex Training Protocol
2.4. Supplement Protocol
2.5. Optimal Individual Post-Activation Potentiation (PAP) Time and Jump Performance Tests
2.6. Sprint Tests
2.7. One Repetition Maximum (1-RM) Estimation
2.8. Anthropometric Measurements
2.9. Blood Creatine Kinase (CK) Analysis
2.10. Statistical Analysis
3. Results
3.1. Body Composition and Sport Performances
3.2. Muscle Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: An update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volek, J.S.; Ratamess, N.A.; Rubin, M.R.; Gomez, A.L.; French, D.N.; McGuigan, M.M.; Scheett, T.P.; Sharman, M.J.; Hakkinen, K.; Kraemer, W.J. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur. J. Appl. Physiol. 2004, 91, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.T.; Martinez-Rodriguez, A.; Calleja-Gonzalez, J.; Alcaraz, P.E. Short-term adaptations following complex training in team-sports: A meta-analysis. PLoS ONE 2017, 12, e0180223. [Google Scholar] [CrossRef] [PubMed]
- Docherty, D.; Robbins, D.; Hodgson, M. Complex training revisited: A review of its current status as a viable training approach. Strength Cond. J. 2004, 26, 52–57. [Google Scholar] [CrossRef]
- Lorenz, D. Postactivation potentiation: An introduction. Int. J. Sports Phys. Ther. 2011, 6, 234–240. [Google Scholar] [PubMed]
- Robbins, D.W. Postactivation potentiation and its practical applicability: A brief review. J. Strength Cond. Res. 2005, 19, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P. Complex training: A brief review. J. Sports. Sci. Med. 2002, 1, 42–46. [Google Scholar] [PubMed]
- Juárez, D.; González-Ravé, J.M.N.; Navarro, F. Effects of complex vs non complex training programs on lower body maximum strength and power. Isokinet. Exerc. Sci. 2009, 17, 233–241. [Google Scholar] [CrossRef]
- Mihalik, J.P.; Libby, J.J.; Battaglini, C.L.; McMurray, R.G. Comparing short-term complex and compound training programs on vertical jump height and power output. J. Strength Cond. Res. 2008, 22, 47–53. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, C.J.; Lamont, H.S.; Garner, J.C. A comparison of the effects of 6 weeks of traditional resistance training, plyometric training, and complex training on measures of strength and anthropometrics. J. Strength Cond. Res. 2012, 26, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-activation potentiation: Underlying physiology and implications for motor performance. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Lin, S.C.; Hsu, S.C.; Yang, M.T.; Chan, K.H. Effects of creatine supplementation on muscle strength and optimal individual post-activation potentiation time of the upper body in canoeists. Nutrients 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Yang, M.T.; Lu, K.H.; Chan, K.H. The effects of creatine supplementation on explosive performance and optimal individual postactivation potentiation time. Nutrients 2016, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Grande, B.M.; Graves, B.S. Creatine supplementation: Forms, function, and effects. Strength Cond. J. 2005, 27, 62–68. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.J.; Pereira, R.; Machado, M. The creatine kinase response to resistance exercise. J. Musculoskelet. Neuronal Interact. 2014, 14, 68–77. [Google Scholar] [PubMed]
- Saks, V.A.; Strumia, E. Phosphocreatine: Molecular and cellular aspects of the mechanism of cardioprotective action. Curr. Ther. Res. 1993, 53, 565–598. [Google Scholar] [CrossRef]
- Dolder, M.; Walzel, B.; Speer, O.; Schlattner, U.; Wallimann, T. Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J. Biol. Chem. 2003, 278, 17760–17766. [Google Scholar] [CrossRef] [PubMed]
- Rosene, J.; Matthews, T.; Ryan, C.; Belmore, K.; Bergsten, A.; Blaisdell, J.; Gaylord, J.; Love, R.; Marrone, M.; Ward, K.; et al. Short and longer-term effects of creatine supplementation on exercise induced muscle damage. J. Sports Sci. Med. 2009, 8, 89–96. [Google Scholar] [PubMed]
- Veggi, K.F.; Machado, M.; Koch, A.J.; Santana, S.C.; Oliveira, S.S.; Stec, M.J. Oral creatine supplementation augments the repeated bout effect. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 378–387. [Google Scholar] [CrossRef]
- Rawson, E.S.; Conti, M.P.; Miles, M.P. Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise. J. Strength Cond. Res. 2007, 21, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Rawson, E.S.; Gunn, B.; Clarkson, P.M. The effects of creatine supplementation on exercise-induced muscle damage. J. Strength Cond. Res. 2001, 15, 178–184. [Google Scholar] [PubMed]
- Warren, G.L.; Fennessy, J.M.; Millard-Stafford, M.L. Strength loss after eccentric contractions is unaffected by creatine supplementation. J. Appl. Physiol. 2000, 89, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Jakeman, P.M. Oral creatine supplementation and short-term dynamic power production in healthy young men. Int. Symp. Biomech. Sport 2006, 24 (Suppl. 3), 1–4. [Google Scholar]
- Crisafulli, D.L.; Buddhadev, H.H.; Brilla, L.R.; Chalmers, G.R.; Suprak, D.N.; San Juan, J.G. Creatine-electrolyte supplementation improves repeated sprint cycling performance: A double blind randomized control study. J. Int. Soc. Sports Nutr. 2018, 15, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comyns, T.M.; Harrison, A.J.; Hennessy, L.K.; Jensen, R.L. The optimal complex training rest interval for athletes from anaerobic sports. J. Strength Cond. Res. 2006, 20, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Cal Abad, C.C.; D’Angelo, R.A.; Fernandes, V.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. Vertical and horizontal jump tests are strongly associated with competitive performance in 100-m dash events. J. Strength Cond. Res. 2015, 29, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.J.; Sale, D.G. Enhancement of jump performance after a 5-RM squat is associated with postactivation potentiation. Eur. J. Appl. Physiol. 2011, 111, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Enoksen, E.; Tønnessen, E.; Shalfawi, S. Validity and reliability of the Newtest Powertimer 300-series testing system. J. Sports Sci. 2009, 27, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning, 3rd ed.; Human Kinetics Publishers: Champaign, IL, USA, 2008; pp. 406–413. [Google Scholar]
- Kotzamanidis, C.; Chatzopoulos, D.; Michailidis, C.; Papaiakovou, G.; Patikas, D. The effect of a combined high-intensity strength and speed training program on the running and jumping ability of soccer players. J. Strength Cond. Res. 2005, 19, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Tsimahidis, K.; Galazoulas, C.; Skoufas, D.; Papaiakovou, G.; Bassa, E.; Patikas, D.; Kotzamanidis, C. The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players. J. Strength Cond. Res. 2010, 24, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Becque, M.D.; Lochmann, J.D.; Melrose, D.R. Effects of oral creatine supplementation on muscular strength and body composition. Med. Sci. Sports Exerc. 2000, 32, 654–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bemben, M.G.; Bemben, D.A.; Loftiss, D.D.; Knehans, A.W. Creatine supplementation during resistance training in college football athletes. Med. Sci. Sports Exerc. 2001, 33, 1667–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenberghe, K.; Goris, M.; Van Hecke, P.; Van Leemputte, M.; Vangerven, L.; Hespel, P. Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 1997, 83, 2055–2063. [Google Scholar] [CrossRef] [PubMed]
- Arciero, P.J.; Hannibal, N.S.; Nindl, B.C.; Gentile, C.L.; Hamed, J.; Vukovich, M.D. Comparison of creatine ingestion and resistance training on energy expenditure and limb blood flow. Metabolism 2001, 50, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine supplementation and lower limb strength performance: A systematic review and meta-analyses. Sports Med. 2015, 45, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Rawson, E.S.; Volek, J.S. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J. Strength Cond. Res. 2003, 17, 822–831. [Google Scholar] [PubMed]
- Chilibeck, P.D.; Magnus, C.; Anderson, M. Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Appl. Physiol. Nutr. Metab. 2007, 32, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Ciccone, V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J. Int. Soc. Sports Nutr. 2013, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garazhian, Y.; Azimkhani, A. Combined effects of prolonged creatine supplementation and resistance training on musclar strength and body composition in collegiate athletes. Pamukkale J. Sport Sci. 2014, 5, 60–74. [Google Scholar]
- Arazi, H.; Rahmaninia, F.; Hoseini, K.; Asadi, A. Effects of three, five and seven days of creatine loading on muscle volume and functional performance. Serb. J. Sports Sci. 2011, 5, 99–105. [Google Scholar]
- Haff, G.G.; Kirksey, K.B.; Stone, M.H.; Warren, B.J.; Johnson, R.L.; Stone, M.; O’Bryant, H.; Proulx, C. The effect of 6 weeks of creatine monohydrate supplementation on dynamic rate of force development. J. Strength Cond. Res. 2000, 14, 426–433. [Google Scholar] [CrossRef]
- McHugh, M.P. Recent advances in the understanding of the repeated bout effect: The protective effect against muscle damage from a single bout of eccentric exercise. Scand. J. Med. Sci. Sports 2003, 13, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J. Strength Cond. Res. 2011, 25, 3448–3455. [Google Scholar] [CrossRef] [PubMed]
Variable | Creatine Group | Placebo Group |
---|---|---|
Height (cm) | 171.93 ± 4.86 | 175.93 ± 8.49 |
Weight (kg) | 67.86 ± 6.72 | 70.21 ± 11.16 |
Age (years) | 20 ± 2 | 20 ± 1 |
Set | Heavy Resistance Exercise | Recovery Time | Plyometric Training | ||
---|---|---|---|---|---|
Mode | Load | Rest Time | Mode | Repetitions | |
1 | Half squat | 5-RM | Optimal individual PAP time | Vertical jump | 8 |
4 min | |||||
2 | Half squat | 5-RM | Optimal individual PAP time | Squat jump | 8 |
4 min | |||||
3 | Half squat | 5-RM | Optimal individual PAP time | Vertical jump | 8 |
4 min | |||||
4 | Half squat | 5-RM | Optimal individual PAP time | Squat jump | 8 |
4 min | |||||
5 | Half Squat | 5-RM | Optimal individual PAP time | Vertical jump | 8 |
4 min | |||||
6 | Half squat | 5-RM | Optimal individual PAP time | Squat jump | 8 |
Variable | Creatine Group | Placebo Group | ||
---|---|---|---|---|
Pre-Training | Post-Training | Pre-Training | Post-Training | |
Body mass (kg) | 67.87 ± 6.72 (63.00–72.75) | 68.51 ± 6.50 (63.79–73.24) | 70.21 ± 11.16 (65.34–75.09) | 70.34 ± 10.82 (65.62–75.06) |
Body fat (%) a | 15.78 ± 4.18 (13.52–18.05) | 13.77 ± 4.01 (11.87–15.68) | 13.67 ± 4.37 (11.87–15.68) | 12.76 ± 3.13 (10.86–14.67) |
Fat-free mass (kg) | 57.07 ± 4.84 (53.06–61.08) | 58.97 ± 5.18 (55.03–62.91) | 60.47 ± 9.55 (56.46–64.48) | 61.58 ± 9.17 (57.64–65.52) |
30 m sprint (second) | 4.33 ± 0.20 (4.21–4.43) | 4.14 ± 0.18 # (4.05–4.23) | 4.27 ± 0.21 (4.16–4.38) | 4.19 ± 0.16 # (4.10–4.28) |
Half squat 1-RM (kg) | 133.67 ± 14.07 (125.76–141.573) | 178.33 ± 16.86 #,* (169.99–186.68) | 131.67 ± 15.77 (123.76–139.57) | 165.66 ± 14.62 # (157.32–174.02) |
Jump height (cm) a | 45.60 ± 5.18 (42.63–48.58) | 54.60 ± 5.95 (51.63–57.59) | 46.99 ± 6.04 (44.02–49.97) | 53.93 ± 5.29 (50.96–56.91) |
Jump peak power (W) a | 3729.40 ± 474.54 (3446.08–4012.72) | 4166.52 ± 466.87 (3868.38−4464.66) | 3903.41 ± 635.71 (3620.10–4186.73) | 4260.44 ± 646.17 (3962.30–4558.58) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Fang, C.-C.; Lee, Y.-H.; Yang, M.-T.; Chan, K.-H. Effects of 4-Week Creatine Supplementation Combined with Complex Training on Muscle Damage and Sport Performance. Nutrients 2018, 10, 1640. https://doi.org/10.3390/nu10111640
Wang C-C, Fang C-C, Lee Y-H, Yang M-T, Chan K-H. Effects of 4-Week Creatine Supplementation Combined with Complex Training on Muscle Damage and Sport Performance. Nutrients. 2018; 10(11):1640. https://doi.org/10.3390/nu10111640
Chicago/Turabian StyleWang, Chia-Chi, Chu-Chun Fang, Ying-Hsian Lee, Ming-Ta Yang, and Kuei-Hui Chan. 2018. "Effects of 4-Week Creatine Supplementation Combined with Complex Training on Muscle Damage and Sport Performance" Nutrients 10, no. 11: 1640. https://doi.org/10.3390/nu10111640
APA StyleWang, C.-C., Fang, C.-C., Lee, Y.-H., Yang, M.-T., & Chan, K.-H. (2018). Effects of 4-Week Creatine Supplementation Combined with Complex Training on Muscle Damage and Sport Performance. Nutrients, 10(11), 1640. https://doi.org/10.3390/nu10111640