Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and HPLC Analyses
2.2. Animal Model
2.3. Serum Biochemical Analysis
2.4. Insulin Sensitivity Indices (ISI)
2.5. Oral Glucose Tolerance Test (OGTT)
2.6. β-Cell Function and Mass
2.7. Enzyme-Linked Immunosorbent Assay
2.8. Antioxidants Activity and Oxidative Stress Levels
2.9. RNA Extraction and Quantitative RT-PCR
2.10. Statistical Analyses
3. Results
3.1. Chemical Composition of TGPE
3.2. BW Gain, Feed Conversion Efficiency (FCE), and Water Intake
3.3. Blood Glucose, Insulin, ISI, and OGTT
3.4. β-Cell Function and Mass
3.5. Serum Lipid Biochemical Parameters
3.6. Pro-Inflammatory Cytokines and Antioxidant Factors
3.7. Leptin and Adiponectin
3.8. mRNA Expressions of Lipid Metabolism Genes in the Liver
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ogurtsova, K.; Fernandes, J.D.D.R.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. Idf diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar]
- Davi, G.; Santilli, F.; Patrono, C. Nutraceuticals in diabetes and metabolic syndrome. Cardiovasc. Ther. 2010, 28, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.N.; Weng, M.S.; Wu, C.L.; Lin, J.K. Comparison of radical scavenging activity, cytotoxic effects and apoptosis induction in human melanoma cells by taiwanese propolis from different sources. J. Evid. Based Complement. Altern. Med. 2004, 1, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Vardar-Ünlü, G.; Silici, S.; Ünlü, M. Composition and in vitro antimicrobial activity of populus buds and poplar-type propolis. World J. Microbiol. Biotechnol. 2008, 24, 1011–1017. [Google Scholar] [CrossRef]
- Bastos, E.M.; Simone, M.; Jorge, D.M.; Soares, A.E.; Spivak, M. In vitro study of the antimicrobial activity of brazilian propolis against paenibacillus larvae. J. Invertebr. Pathol. 2008, 97, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Paulino, N.; Abreu, S.R.; Uto, Y.; Koyama, D.; Nagasawa, H.; Hori, H.; Dirsch, V.M.; Vollmar, A.M.; Scremin, A.; Bretz, W.A. Anti-inflammatory effects of a bioavailable compound, artepillin C, in brazilian propolis. Eur. J. Pharmacol. 2008, 587, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Arimatsu, K.; Minagawa, T.; Matsuda, Y.; Sato, K.; Takahashi, N.; Nakajima, T.; Yamazaki, K. Brazilian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice. BMC Complement. Altern. Med. 2016, 16, 329. [Google Scholar] [CrossRef] [PubMed]
- Su, K.Y.; Hsieh, C.Y.; Chen, Y.W.; Chuang, C.T.; Chen, C.T.; Chen, Y.L. Taiwanese green propolis and propolin G protect the liver from the pathogenesis of fibrosis via eliminating TGF-beta-induced smad2/3 phosphorylation. J. Agric. Food Chem. 2014, 62, 3129–3201. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.N.; Wu, C.L.; Shy, H.S.; Lin, J.K. Cytotoxic prenylflavanones from taiwanese propolis. J. Nat. Prod. 2003, 66, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Chen, C.N.; Chen, P.Y.; Huang, C.Y.; Bankova, V. A validated spectrophotometric method for quantification of prenylated flavanones in pacific propolis from Taiwan. Phytochem. Anal. 2010, 21, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Halban, P.A. Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of niddm. Diabetes 1997, 46, 1725–1732. [Google Scholar] [CrossRef] [PubMed]
- Tabak, A.G.; Jokela, M.; Akbaraly, T.N.; Brunner, E.J.; Kivimaki, M.; Witte, D.R. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: An analysis from the whitehall ii study. Lancet 2009, 373, 2215–2221. [Google Scholar] [CrossRef]
- Fernandez-Sanchez, A.; Madrigal-Santillan, E.; Bautista, M.; Esquivel-Soto, J.; Morales-Gonzalez, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sanchez-Rivera, G.; Valadez-Vega, C.; Morales-Gonzalez, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Wang, D.P.; Chiang, J.Y. Regulation of cholesterol 7 alpha-hydroxylase in the liver. Cloning, sequencing, and regulation of cholesterol 7 alpha-hydroxylase mrna. J. Biol. Chem. 1990, 265, 12012–12019. [Google Scholar] [PubMed]
- Li, T.; Matozel, M.; Boehme, S.; Kong, B.; Nilsson, L.M.; Guo, G.; Ellis, E.; Chiang, J.Y. Overexpression of cholesterol 7alpha-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 2011, 53, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003, 72, 137–174. [Google Scholar] [CrossRef] [PubMed]
- Rockville, M. Guidance for Industry: Estimating the Maximum Safe Starting Dose in Adult Healthy Volunteer; USFDA: Silver Spring, MD, USA, 2005.
- Huang, H.Y.; Korivi, M.; Chaing, Y.Y.; Chien, T.Y.; Tsai, Y.C. Pleurotus tuber-regium polysaccharides attenuate hyperglycemia and oxidative stress in experimental diabetic rats. Evid. Based Complement. Altern. Med. 2012, 2012, 856381. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Bong, H.Y.; Jeong, H.I.; Kim, Y.K.; Kim, J.Y.; Kwon, O. Postprandial hypoglycemic effect of mulberry leaf in goto-kakizaki rats and counterpart control wistar rats. Nutr. Res. Pract. 2009, 3, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Peth, J.A.; Kinnick, T.R.; Youngblood, E.B.; Tritschler, H.J.; Henriksen, E.J. Effects of a unique conjugate of alpha-lipoic acid and gamma-linolenic acid on insulin action in obese zucker rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R453–R459. [Google Scholar] [CrossRef] [PubMed]
- Panes, J.; Kurose, I.; Rodriguez-Vaca, D.; Anderson, D.C.; Miyasaka, M.; Tso, P.; Granger, D.N. Diabetes exacerbates inflammatory responses to ischemia-reperfusion. Circulation 1996, 93, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Tiganis, T. Reactive oxygen species and insulin resistance: The good, the bad and the ugly. Trends Pharmacol. Sci. 2011, 32, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.A.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [PubMed]
- Yakushijin, K.; Shibayama, K.; Murata, H.; Furukawa, H. New prenylflavanones from hernandia-nymphaefolia (presl) kubitzki. Heterocycles 1980, 14, 397–402. [Google Scholar]
- Kumazawa, S.; Goto, H.; Hamasaka, T.; Fukumoto, S.; Fujimoto, T.; Nakayama, T. A new prenylated flavonoid from propolis collected in Okinawa, Japan. Biosci. Biotechnol. Biochem. 2004, 68, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Huang, C.H.; Wu, C.L.; Lin, J.K.; Chen, Y.W.; Lin, C.L.; Chuang, S.E.; Huang, C.Y.; Chen, C.N. Propolin G, a prenylflavanone, isolated from taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells. J. Agric. Food Chem. 2007, 55, 7366–7376. [Google Scholar] [CrossRef] [PubMed]
- Weng, M.S.; Liao, C.H.; Chen, C.N.; Wu, C.L.; Lin, J.K. Propolin H from taiwanese propolis induces G1 arrest in human lung carcinoma cells. J. Agric. Food Chem. 2007, 55, 5289–5298. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Chen, M.L.; Xuan, H.Z.; Hu, F.L. Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats. J. Evid. Based Complement. Altern. Med. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.I.; Polonsky, K.S. Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 2001, 414, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.C.; Lee, C.L.; Chai, C.Y.; Chen, W.T.; Lu, Y.C.; Wu, C.S. Oral administration of lactobacillus reuteri gmnl-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr. Metab. 2013, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Chen, Y.H.; Cheng, K.C.; Chien, T.Y.; Chan, C.H.; Tsao, S.P.; Huang, H.Y. Antiobesity effect of lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy-diet-fed rats. J. Nutr. Biochem. 2017, 54, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Sabu, M.C.; Smitha, K.; Ramadasan, K. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 2002, 83, 109–116. [Google Scholar] [PubMed]
- Sathishsekar, D.; Subramanian, S. Antioxidant properties of momordica charantia (bitter gourd) seeds on streptozotocin induced diabetic rats. Asia Pac. J. Clin. Nutr. 2005, 14, 153–158. [Google Scholar] [PubMed]
- Kumazawa, S.; Ueda, R.; Hamasaka, T.; Fukumoto, S.; Fujimoto, T.; Nakayama, T. Antioxidant prenylated flavonoids from propolis collected in okinawa, Japan. J. Agric. Food Chem. 2007, 55, 7722–7725. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rehman, K.; Chen, S.Q. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Shulman, G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur. J. Clin. Investig. 2002, 32 (Suppl. S3), 14–23. [Google Scholar] [CrossRef]
- Kersten, S. Integrated physiology and systems biology of PPARalpha. Mol. Metab. 2014, 3, 354–371. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.E.; Marcucci, M.J.; Cline, G.W.; Bell, K.; Barucci, N.; Lee, D.; Goodyear, L.J.; Kraegen, E.W.; White, M.F.; Shulman, G.I. Free fatty acid-induced insulin resistance is associated with activation of protein kinase c theta and alterations in the insulin signaling cascade. Diabetes 1999, 48, 1270–1274. [Google Scholar] [CrossRef] [PubMed]
- Shiomi, Y.; Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Nakayama, R.; Orikawa, Y.; Yoshioka, Y.; Tanaka, K.; Ueki, K.; Kadowaki, T. A novel peroxisome proliferator-activated receptor (PPAR)alpha agonist and PPARgamma antagonist, Z-551, ameliorates high-fat diet-induced obesity and metabolic disorders in mice. J. Biol. Chem. 2015, 290, 14567–14581. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.Y.; He, H.; Nguyen, T.; Mennone, A.; Boyer, J.L. Retinoic acid represses CYP7A1 expression in human hepatocytes and hepg2 cells by FXR/RXR-dependent and independent mechanisms. J. Lipid Res. 2010, 51, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Quang, T.H.; Ngan, N.T.; Minh, C.V.; Kiem, P.V.; Tai, B.H.; Nhiem, N.X.; Thao, N.P.; Luyen, B.T.; Yang, S.Y.; Kim, Y.H. Anti-inflammatory and PPAR transactivational properties of flavonoids from the roots of sophora flavescens. Phytother. Res. 2013, 27, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Bei, W.; Hu, Y.; Tang, C.; He, W.; Liu, X.; Huang, L.; Cao, Y.; Hu, X.; Zhong, X.; et al. A new tcm formula ftz lowers serum cholesterol by regulating HMG-CoA reductase and CYP7A1 in hyperlipidemic rats. J. Ethnopharmacol. 2011, 135, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Q.; Ding, J.; Zhao, H.; Liu, C.M. Puerarin attenuates carbon tetrachloride-induced liver oxidative stress and hyperlipidaemia in mouse by JNK/c-jun/CYP7A1 pathway. Basic Clin. Pharmacol. Toxicol. 2014, 115, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Koya-Miyata, S.; Arai, N.; Mizote, A.; Taniguchi, Y.; Ushio, S.; Iwaki, K.; Fukuda, S. Propolis prevents diet-induced hyperlipidemia and mitigates weight gain in diet-induced obesity in mice. Biol. Pharm. Bull. 2009, 32, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Coppari, R.; Bjorbaek, C. Leptin revisited: Its mechanism of action and potential for treating diabetes. Nat. Rev. Drug Discov. 2012, 11, 692–708. [Google Scholar] [CrossRef] [PubMed]
- Hasler, C.M. Functional foods: Their role in disease prevention and health promotion. Food Technol. 1998, 52, 63–70. [Google Scholar]
Parameter | C | DM | 1X | 5X |
---|---|---|---|---|
BW gain (g)/rat | 195.5 ± 12.8 | 174.0 ± 12.1 *,a | 190.4 ± 11.6 b | 196.6 ± 8.5 b |
Food intake (Kcal)/day/rat | 98.3 ± 1.6 | 119.4 ± 1.8 *,a | 118.9 ± 1.8 a | 118.9 ± 1.7 a |
FCE (%) | 3.16 ± 0.06 | 2.22 ± 0.04 *,a | 2.45 ± 0.05 b | 2.53 ± 0.03 b |
Water intake w0 | 34.8 ± 1.1 | 32.8 ± 0.8 a | 33.6 ± 1.0 a | 34.2 ± 1.0 a |
Water intake w8 | 34.3 ± 0.7 | 146.2 ± 4.3 *,c | 104.3 ± 3.1 b | 65.4 ± 2.7 a |
Parameter | C | DM | 1X | 5X |
---|---|---|---|---|
FBG (mg/dL) | 89.2 ± 1.5 | 415.3 ± 50.3 *,c | 214.2 ± 19.0 b | 144.2 ± 8.1 a |
FBI (μg/L) | 1.02 ± 0.01 | 0.41 ± 0.11 *,a | 1.53 ± 0.22 b | 1.52 ± 0.09 b |
HbA1c (%) | 4.33 ± 0.07 | 8.51 ± 0.27 *,c | 6.91 ± 0.44 b | 5.49 ± 0.26 a |
TC | 62.4 ± 2.07 | 85.4 ± 3.91 *,b | 75.7 ± 3.90 b | 64.0 ± 4.43 a |
TG | 46.0 ± 2.36 | 132.1 ± 3.06 *,c | 72.9 ± 3.19 b | 51.2 ± 0.69 a |
HDL | 28.0 ± 0.34 | 15.3 ± 0.14 *,a | 17.2 ± 0.20 b | 22.2 ± 0.39 c |
LDL | 4.1 ± 0.15 | 8.4 ± 0.16 *,c | 7.8 ± 0.30 b | 5.3 ± 0.19 a |
ISI W5 | −4.4 ± 0.1 | −6.4 ± 0.2 *,a | −5.9 ± 0.2 b | −5.4 ± 0.1 c |
HOMA-IR W5 | 5.05 ± 0.28 | 37.59 ± 7.18 *,c | 21.66 ± 5.18 b | 13.36 ± 1.84 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-H.; Chien, Y.-W.; Chang, M.-L.; Hou, C.-C.; Chan, C.-H.; Tang, H.-W.; Huang, H.-Y. Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet. Nutrients 2018, 10, 503. https://doi.org/10.3390/nu10040503
Chen L-H, Chien Y-W, Chang M-L, Hou C-C, Chan C-H, Tang H-W, Huang H-Y. Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet. Nutrients. 2018; 10(4):503. https://doi.org/10.3390/nu10040503
Chicago/Turabian StyleChen, Li-Han, Yi-Wen Chien, Mei-Ling Chang, Chia-Chung Hou, Ching-Hung Chan, Hung-Wei Tang, and Hui-Yu Huang. 2018. "Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet" Nutrients 10, no. 4: 503. https://doi.org/10.3390/nu10040503
APA StyleChen, L. -H., Chien, Y. -W., Chang, M. -L., Hou, C. -C., Chan, C. -H., Tang, H. -W., & Huang, H. -Y. (2018). Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet. Nutrients, 10(4), 503. https://doi.org/10.3390/nu10040503