Effects of Chlorogenic Acid-Enriched and Hydroxyhydroquinone-Reduced Coffee on Postprandial Fat Oxidation and Antioxidative Capacity in Healthy Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Test Beverages
2.3. Experimental Design
2.4. Indirect Calorimetry
2.5. Dietary Records
2.6. Blood Analysis
2.7. Statistical Analysis
3. Results
3.1. Subjects
3.2. Postprandial Energy Metabolism
3.3. Blood Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CGA | chlorogenic acids |
HHQ | hydroxyhydroquinone |
O2 | oxygen consumption |
CO2 | carbon dioxide production |
EE | energy expenditure |
FOX | fat oxidation |
COX | carbohydrate oxidation |
RQ | respiratory quotient |
BAP | biological antioxidant potential |
d-ROMs | derivatives of reactive oxygen metabolites |
SREBP-1c | sterol regulatory element-binding protein 1c |
CPT-1 | carnitine palmitoyltransferase I |
NO | nitric oxide |
References
- Huxley, R.; Lee, C.M.Y.; Barzi, F.; Timmermeister, L.; Czernichow, S.; Perkovic, V.; Grobbee, D.E.; Batty, D.; Woodward, M. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: A systematic review with meta-analysis. Arch. Intern. Med. 2009, 169, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, E.; Rice, M.S.; Levitan, E.B.; Mittleman, M.A. Habitual coffee consumption and risk of heart failure: A dose-response meta-analysis. Circ. Heart Fail. 2012, 5, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Bosetti, C.; Tavani, A.; Bagnardi, V.; Gallus, S.; Negri, E.; Franceschi, S.; La Vecchia, C. Coffee drinking and hepatocellular carcinoma risk: A meta-analysis. Hepatology 2007, 46, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Saito, E.; Inoue, M.; Sawada, N.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Sasazuki, S.; Noda, M.; Iso, H.; Tsugane, S. Association of coffee intake with total and cause-specific mortality in a Japanese population: The Japan Public Health Center-based Prospective Study. Am. J. Clin. Nutr. 2015, 101, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, Y.; Ohie, T.; Yonekawa, Y.; Yonemoto, K.; Aizawa, H.; Mori, Y.; Watanabe, M.; Takeuchi, M.; Hasegawa, M.; Taguchi, C.; et al. Coffee and green tea as a large source of antioxidant polyphenols in the Japanese population. J. Agric. Food Chem. 2009, 57, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ruiz, J.A.; Leake, D.S.; Ames, J.M. In vitro antioxidant activity of coffee compounds and their metabolites. J. Agric. Food Chem. 2007, 55, 6962–6969. [Google Scholar] [CrossRef] [PubMed]
- Ota, N.; Soga, S.; Murase, T.; Shimotoyodome, A.; Hase, T. Consumption of coffee polyphenols increases fat utilization in humans. J. Health Sci. 2010, 56, 745–751. [Google Scholar] [CrossRef]
- Soga, S.; Ota, N.; Shimotoyodome, A. Stimulation of postprandial fat utilization in healthy humans by daily consumption of chlorogenic acids. Biosci. Biotechnol. Biochem. 2014, 77, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Ochiai, R.; Watanabe, T.; Kataoka, K.; Komikado, M.; Tokimitsu, I.; Tsuchida, T. Visceral fat-reducing effect of continuous coffee beverage consumption in obese subjects. Jpn. Pharmacol. Ther. 2009, 37, 333–344. [Google Scholar]
- Umeno, A.; Horie, M.; Murotomi, K.; Nakajima, Y.; Yoshida, Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016, 21, 708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bandy, B.; Davison, A.J. Effects of metals, ligands and antioxidants on the reaction of oxygen with 1, 2, 4-benzenetriol. Free Radic. Biol. Med. 1996, 20, 495–505. [Google Scholar] [CrossRef]
- Rhoads, R.P.; Baumgard, L.H.; Suagee, J.K.; Sanders, S.R. Nutritional interventions to alleviate the negative consequences of heat stress. Adv. Nutr. 2013, 4, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Fujii, A.; Yamamoto, N.; Yamamoto, M.; Ohminami, H.; Kameyama, A.; Shibuya, Y.; Nishizawa, Y.; Tokimitsu, I.; Saito, I. Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension. FEBS Lett. 2006, 580, 2317–2322. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Chikama, A.; Mori, K.; Watanabe, T.; Shioya, Y.; Katsuragi, Y.; Tokimitsu, I. Hydroxyhydroquinone-free coffee: A double-blind, randomized controlled dose–response study of blood pressure. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 408–414. [Google Scholar] [CrossRef] [PubMed]
- IUPAC Commission on the Nomenclature of Organic Chemistry (CNOC); IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Nomenclature of cyclitols. Recommendations, 1973. Biochem. J. 1976, 153, 23–31. [Google Scholar]
- Hirano, M.; Yamada, Y.; Hibi, M.; Katashima, M.; Higaki, Y.; Kiyonaga, A.; Tanaka, H. Simultaneous multiple-subject analysis of respiratory gas exchange in humans. J. Phys. Fit. Sports Med. 2014, 3, 269–279. [Google Scholar] [CrossRef]
- Weir, J.D.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jequier, E.; Acheson, K.; Schutz, Y. Assessment of energy expenditure and fuel utilization in man. Annu. Rev. Nutr. 1987, 7, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Soga, S.; Ota, N.; Shimotoyodome, A. Reduction in hydroxyhydroquinone from coffee increases postprandial fat utilization in healthy humans: A randomized double-blind, cross-over trial. Biosci. Biotechnol. Biochem. 2017, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Harrison, D.G. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ. Res. 2000, 87, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Liochev, S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 2013, 60, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, F.; Kudoh, H.; Kagawa, Y. Evaluation of oxidative stress and effectiveness of low-dose glucocorticoid therapy on exacerbation of chronic obstructive pulmonary disease. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, V.O.; Grattagliano, I.; Portincasa, P.; Palasciano, G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J. Nutr. 2006, 136, 3022–3026. [Google Scholar] [CrossRef] [PubMed]
- Fukui, T.; Yamauchi, K.; Maruyama, M.; Yasuda, T.; Kohno, M.; Abe, Y. Significance of measuring oxidative stress in lifestyle-related diseases from the viewpoint of correlation between d-ROMs and BAP in Japanese subjects. Hypertens. Res. 2011, 34, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Francavilla, R.; Goffredo, R.; Ventura, A.; Marzano, F.; Panzarino, G.; Marinelli, G.; Cavallo, L.; Di Bitonto, G. Oxidative stress in obesity and metabolic syndrome in children and adolescents. Horm. Res. Paediatr. 2012, 78, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Murase, T.; Misawa, K.; Minegishi, Y.; Aoki, M.; Ominami, H.; Suzuki, Y.; Shibuya, Y.; Hase, T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E122–E133. [Google Scholar] [CrossRef] [PubMed]
- McGarry, J.D.; Brown, N.F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Setoyama, D.; Fujimura, Y.; Miura, D. Metabolomics reveals that carnitine palmitoyltransferase-1 is a novel target for oxidative inactivation in human cells. Genes Cells 2013, 18, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, H.; Seki, E.; Aitani, M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement. Altern. Med. 2006, 6. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.-S.; Jeon, S.-M.; Kim, M.-J.; Yeo, J.; Seo, K.-I.; Choi, M.-S.; Lee, M.-K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Doulias, P.T.; Tenopoulou, M.; Greene, J.L.; Raju, K.; Ischiropoulos, H. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal. 2013, 6, rs1. [Google Scholar] [CrossRef] [PubMed]
- Acheson, K.J.; Gremaud, G.; Meirim, I.; Montigon, F.; Krebs, Y.; Fay, L.B.; Gay, L.J.; Schneiter, P.; Schindler, C.; Tappy, L. Metabolic effects of caffeine in humans: Lipid oxidation or futile cycling? Am. J. Clin. Nutr. 2004, 79, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Dulloo, A.G.; Geissler, C.A.; Horton, T.; Collins, A.; Miller, D.S. Normal caffeine consumption: Influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am. J. Clin. Nutr. 1989, 49, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Cornelli, U.; Terranova, R.; Luca, S.; Cornelli, M.; Alberti, A. Bioavailability and antioxidant activity of some food supplements in men and women using the D-Roms test as a marker of oxidative stress. J. Nutr. 2001, 131, 3208–3211. [Google Scholar] [CrossRef] [PubMed]
- Sanguigni, V.; Manco, M.; Sorge, R.; Gnessi, L.; Francomano, D. Natural antioxidant ice cream acutely reduces oxidative stress and improves vascular function and physical performance in healthy individuals. Nutrition 2017, 33, 225–233. [Google Scholar] [CrossRef] [PubMed]
CGA-HHQ(−) Beverage | CGA-HHQ(+) Beverage | |
---|---|---|
Brix (%) | 1.9 | 2.1 |
pH | 5.8 | 5.6 |
CGA (mg/185 mL) | 428 | 382 |
Caffeine (mg/185 mL) | 67 | 66 |
HHQ (mg/185 mL) | 0.08 | 0.57 |
CGA(+) | ||
---|---|---|
HHQ(−) | HHQ(+) | |
Energy intake (kcal/day) | 2014 ± 392 | 1948 ± 354 |
Protein intake (g/day) | 71.0 ± 15.5 | 70.5 ± 15.5 |
Fat intake (g/day) | 71.3 ± 19.5 | 66.4 ± 16.1 |
Carbohydrate intake (g/day) | 248.9 ± 49.9 | 237.8 ± 45.8 |
CGA(+) | ||
---|---|---|
HHQ(−) | HHQ(+) | |
Age (years) | 38 ± 8 | |
Height (cm) | 174.6 ± 4.5 | |
Weight (kg) | 68.2 ± 5.8 | 68.4 ± 5.6 |
BMI (kg/m2) | 22.4 ± 1.6 | 22.4 ± 1.5 |
Body fat (%) | 19.7 ± 3.7 | 19.8 ± 2.9 |
SBP (mmHg) | 127 ± 11 | 125 ± 9 |
DBP (mmHg) | 75 ± 9 | 72 ± 9 |
Glucose (mg/dL) | 94 ± 7 | 95 ± 8 |
LDL-C (mg/dL) | 109 ± 18 | 109 ± 21 |
HDL-C (mg/dL) | 57 ± 12 | 58 ± 12 |
Total-C (mg/dL) | 188 ± 22 | 189 ± 23 |
TG (mg/dL) | 95 ± 40 | 94 ± 28 |
NEFA (mEq/L) | 0.40 ± 0.13 | 0.35 ± 0.08 |
γ-GTP (U/L) | 28 ± 16 | 28 ± 18 |
BAP/d-ROMs | 6.8 ± 0.6 | 6.9 ± 0.8 |
Group | Time (min) | Mean | p Value | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | Group | Time | Group × Time | |||
EE, cal/min | CGA-HHQ(+) | 168 ± 94 | 248 ± 100 | 250 ± 73 | 234 ± 101 | 215 ± 79 | 179 ± 68 | 95 ± 63 | 88 ± 108 | 100 ± 67 | 52 ± 54 | 163 ± 57 | 0.536 | <0.001 | 0.728 |
CGA-HHQ(−) | 177 ± 65 | 207 ± 103 | 261 ± 84 | 244 ± 53 | 233 ± 90 | 141 ± 79 | 84 ± 83 | 97 ± 60 | 75 ± 75 | 59 ± 106 | 158 ± 58 | ||||
FOX mg/min | CGA-HHQ(+) | 17 ± 21 | 8 ± 21 | −4 ± 13 | 1 ± 24 | −5 ± 22 | −7 ± 22 | −3 ± 19 | 15 ± 20 | 22 ± 24 | 21 ± 22 | 7 ± 16 | 0.040 | <0.001 | 0.155 |
CGA-HHQ(−) | 15 ± 16 | −3 ± 20 | −2 ± 18 | 1 ± 18 | −4 ± 23 | 0 ± 24 | 12 ± 18 | 28 ± 19 | 26 ± 20 | 32 ± 28 | 11± 17 | ||||
RQ | CGA-HHQ(+) | −0.02 ± 0.05 | 0.01 ± 0.04 | 0.03 ± 0.03 | 0.02 ± 0.06 | 0.04 ± 0.06 | 0.04 ± 0.05 | 0.02 ± 0.05 | −0.03 ± 0.05 | −0.04 ± 0.06 | −0.04 ± 0.06 | 0.00 ± 0.04 | <0.001 | <0.001 | 0.201 |
CGA-HHQ(−) | −0.02 ± 0.04 | 0.02 ± 0.05 | 0.02 ± 0.04 | 0.01 ± 0.04 | 0.03 ± 0.06 | 0.01 ± 0.06 | −0.02 ± 0.05 | −0.06 ± 0.05 | −0.06 ± 0.05 | −0.07 ± 0.07 | −0.01 ± 0.04 |
Group | Time (min) | Mean | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
30 | 60 | 120 | 240 | Group | Time | Group × Time | |||
BAP/d-ROMs | CGA-HHQ(+) | −0.12 ± 0.83 | −0.07 ± 0.74 | −0.06 ± 0.68 | −0.23 ± 0.63 | −0.12 ± 0.64 | 0.007 | 0.311 | 0.806 |
CGA-HHQ(−) | 0.12 ± 0.55 | 0.36 ± 0.55 | 0.12 ± 0.55 | 0.00 ± 0.34 | 0.15 ± 0.38 |
CGA(+) | ||
---|---|---|
HHQ(−) | HHQ(+) | |
Glucose (mg/dL) | 94 ± 7 | 91 ± 7 |
Insulin (μU/mL) | 3.8 ± 1.6 | 4.0 ± 1.9 |
LDL-C (mg/dL) | 106 ± 17 | 106 ± 26 |
HDL-C (mg/dL) | 60 ± 14 | 56 ± 13 |
Total-C (mg/dL) | 187 ± 23 | 184 ± 35 |
TG (mg/dL) | 92 ± 30 | 101 ± 41 |
NEFA (mEq/L) | 0.37 ± 0.10 | 0.36 ± 0.09 |
γ-GTP (U/L) | 25 ± 14 | 28 ± 18 |
BAP/d-ROMs | 6.7 ± 0.9 | 6.7 ± 0.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katada, S.; Watanabe, T.; Mizuno, T.; Kobayashi, S.; Takeshita, M.; Osaki, N.; Kobayashi, S.; Katsuragi, Y. Effects of Chlorogenic Acid-Enriched and Hydroxyhydroquinone-Reduced Coffee on Postprandial Fat Oxidation and Antioxidative Capacity in Healthy Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. Nutrients 2018, 10, 525. https://doi.org/10.3390/nu10040525
Katada S, Watanabe T, Mizuno T, Kobayashi S, Takeshita M, Osaki N, Kobayashi S, Katsuragi Y. Effects of Chlorogenic Acid-Enriched and Hydroxyhydroquinone-Reduced Coffee on Postprandial Fat Oxidation and Antioxidative Capacity in Healthy Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. Nutrients. 2018; 10(4):525. https://doi.org/10.3390/nu10040525
Chicago/Turabian StyleKatada, Shun, Takuya Watanabe, Tomohito Mizuno, Shinichi Kobayashi, Masao Takeshita, Noriko Osaki, Shigeru Kobayashi, and Yoshihisa Katsuragi. 2018. "Effects of Chlorogenic Acid-Enriched and Hydroxyhydroquinone-Reduced Coffee on Postprandial Fat Oxidation and Antioxidative Capacity in Healthy Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial" Nutrients 10, no. 4: 525. https://doi.org/10.3390/nu10040525