Hairless Canaryseed: A Novel Cereal with Health Promoting Potential
Abstract
:1. Introduction
2. Canaryseed Development and Production
3. Canaryseed Proteins: A Novel Source of Plant Proteins
3.1. Protein Characteristics
3.2. Health Promoting Properties of Canaryseed Proteins
3.2.1. Antidiabetic Activity
3.2.2. Antihypertensive Activity
3.2.3. Antioxidant Activity
3.2.4. Other Bioactivities
3.3. Protein Digestibility
4. Other Health Promoting Canaryseed Components
4.1. Starch
4.2. Fiber
4.3. Lipids
4.4. Minerals
4.5. Phytochemicals
4.6. Anti-Nutritional Components
5. Potential as a Functional Food and Alternative to Major Allergens
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bhatt, T.; Coombs, M.; O’Neill, C. Biogenic silica fibre promotes carcinogenesis in mouse skin. Int. J. Cancer 1984, 34, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Cogliatti, M. Canaryseed crop. Sci. Agropecu. 2012, 3, 75–88. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P.; Patterson, C.A.; Gray, D. Fractionation of hairless canary seed (phalaris canariensis) into starch, protein, and oil. J. Agric. Food Chem. 2010, 58, 7046–7050. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.; Hucl, P.J.; Sosulski, F.W. Structural and compositional characteristics of canaryseed (Phalaris canariensis L.). J. Agric. Food Chem. 1997, 45, 3049–3055. [Google Scholar] [CrossRef]
- Estrada-Salas, P.A.; Montero-Moran, G.M.; Martinez-Cuevas, P.P.; Gonzalez, C.; Barba de la Rosa, A.P. Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides. J. Agric. Food Chem. 2014, 62, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Orona-Tamayo, D.; Nieto-Rendón, B.; Paredes-López, O. Antioxidant and antihypertensive potential of protein fractions from flour and milk substitutes from canary seeds (Phalaris canariensis L.). Plant Foods Hum. Nutr. 2017, 72, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Hucl, P.; Matus-Cadiz, M.; Vandenberg, A.; Sosulski, F.W.; Abdel-Aal, E.S.M.; Hughes, G.R.; Slinkard, A.E. Cdc maria annual canarygrass. Can. J. Plant Sci. 2001, 81, 115–116. [Google Scholar] [CrossRef]
- Canaryseed Development Commission of Saskatchewan. about Canaryseed. Available online: https://www.canaryseed.ca/about.html (accessed on 15 March 2017).
- Matus-Cádiz, M.A.; Hucl, P.; Vandenberg, A. Inheritance of hull pubescence and seed color in annual canarygrass. Can. J. Plant Sci. 2003, 83, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Health Canada. Novel food information—Glabrous canary seed (Phalaris canariensis L.). Available online: http://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/canary-seed-lang-graine-alpiste-decision-eng.php#share (accessed on 15 March 2017).
- Koehler, P.; Wieser, H. Chemistry of cereal grains. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer: Boston, MA, USA, 2013; pp. 11–45. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P.; Shea Miller, S.; Patterson, C.A.; Gray, D. Microstructure and nutrient composition of hairless canary seed and its potential as a blending flour for food use. Food Chem. 2011, 125, 410–416. [Google Scholar] [CrossRef]
- Belderok, B.; Mesdag, J.; Donner, D.A. The wheat grain. In Bread-Making Quality of Wheat: A Century of Breeding in Europe; Donner, D.A., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 15–20. [Google Scholar]
- Biel, W.; Bobko, K.; Maciorowski, R. Chemical composition and nutritive value of husked and naked oats grain. J. Cereal Sci. 2009, 49, 413–418. [Google Scholar] [CrossRef]
- Asare, E.K.; Jaiswal, S.; Maley, J.; Båga, M.; Sammynaiken, R.; Rossnagel, B.G.; Chibbar, R.N. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. J. Agric. Food Chem. 2011, 59, 4743–4754. [Google Scholar] [CrossRef] [PubMed]
- Nyström, L.; Lampi, A.-M.; Andersson, A.A.M.; Kamal-Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fra, A.; et al. Phytochemicals and dietary fiber components in rye varieties in the healthgrain diversity screen. J. Agric. Food Chem. 2008, 56, 9758. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.A.; El Tinay, A.H.; Mohamed, B.E.; Abdalla, A.H. Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chem. 1998, 63, 243–246. [Google Scholar] [CrossRef]
- Arendt, E.K.; Zannini, E. Wheat and other triticum grains. In Cereal Grains for the Food and Beverage Industries; Woodhead Publishing: Cambridge, UK, 2013; pp. 1–67. [Google Scholar]
- Tatham, A.S.; Shewry, P.R. Allergens to wheat and related cereals. Clin. Exp. Allergy 2008, 38, 1712–1726. [Google Scholar] [CrossRef] [PubMed]
- Comino, I.; Moreno Mde, L.; Real, A.; Rodríguez-Herrera, A.; Barro, F.; Sousa, C. The gluten-free diet: Testing alternative cereals tolerated by celiac patients. Nutrients 2013, 5, 4250–4268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boye, J.I.; Achouri, A.; Raymond, N.; Cleroux, C.; Weber, D.; Koerner, T.B.; Hucl, P.; Patterson, C.A. Analysis of glabrous canary seeds by elisa, mass spectrometry, and western blotting for the absence of cross-reactivity with major plant food allergens. J. Agric. Food Chem. 2013, 61, 6102–6112. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, H.B.; Chen, M.-H. Identification of an abundant 56 kda protein implicated in food allergy as granule-bound starch synthase. J. Agric. Food Chem. 2013, 61, 5404–5409. [Google Scholar] [CrossRef] [PubMed]
- Esposito, Z.; Belli, L.; Toniolo, S.; Sancesario, G.; Bianconi, C.; Martorana, A. Amyloid β, glutamate, excitotoxicity in alzheimer’s disease: Are we on the right track? CNS Neurosci. Ther. 2013, 19, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.; van der Werf, W.; Duan, L. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. J. Funct. Foods 2014, 10, 283–291. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Robbins, G.S.; Briggle, L.W. Amino acid composition of oat groats. J. Agric. Food Chem. 1971, 19, 536–539. [Google Scholar] [CrossRef]
- Ejeta, G.; Hassen, M.M.; Mertz, E.T. In vitro digestibility and amino acid composition of pearl millet (pennisetum typhoides) and other cereals. Proc. Natl. Acad. Sci. USA 1987, 84, 6016–6019. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Status Report on Noncommunicable Diseases; WHO: Geneva, Switzerland, 2014; Available online: http://www.who.int/nmh/publications/ncd-status-report-2014/en/ (accessed on 15 March 2017).
- Food and Agriculture Organization (FAO). Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation; FAO: Rome, Italy, 2013; p. 51. Available online: http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf (accessed on 15 March 2017).
- Patil, P.; Mandal, S.; Tomar, S.K.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 2015, 54, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G.M.; Díaz-Gois, A.; González de Mejia, E.; Barba de la Rosa, A.P. In vitro inhibition of dipeptidyl peptidase iv by peptides derived from the hydrolysis of amaranth (amaranthus hypochondriacus L.) proteins. Food Chem. 2013, 136, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef] [Green Version]
- David, D.K.; Katie, W. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef]
- Perez Gutierrez, R.M.; Madrigales Ahuatzi, D.; Cruz Victoria, T. Inhibition by seeds of Phalaris canariensis extracts of key enzymes linked to obesity. Altern. Ther. Health Med. 2016, 22, 8–14. [Google Scholar] [PubMed]
- Perez Gutierrez, R.M.; Mota-Flores, J.M.; Madrigales Ahuatzi, D.; Cruz Victoria, T.; Horcacitas, M.D.C.; Garcia Baez, E. Ameliorative effect of hexane extract of Phalaris canariensis on high fat diet-induced obese and streptozotocin-induced diabetic mice. Evid.-Based Complement. Altern. Med. 2014. [Google Scholar] [CrossRef] [PubMed]
- Power, O.; Nongonierma, A.B.; Jakeman, P.; FitzGerald, R.J. Food protein hydrolysates as a source of dipeptidyl peptidase iv inhibitory peptides for the management of type 2 diabetes. Proc. Nutr. Soc. 2014, 73, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Zhong, Q.; Wu, Y.; Xia, W. Purification and characterization of a novel angiotensin-i converting enzyme (ace) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides 2012, 33, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Food-originating ace inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. Food Sci. Food Saf. 2014, 13, 114–134. [Google Scholar] [CrossRef]
- Passos, C.S.; Carvalho, L.N.; Pontes, R.B., Jr.; Campos, R.R.; Ikuta, O.; Boim, M.A. Blood pressure reducing effects of Phalaris canariensis in normotensive and spontaneously hypertensive rats. Can. J. Physiol. Pharmacol. 2012, 90, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Chanput, W.; Theerakulkait, C.; Nakai, S. Antioxidative properties of partially purified barley hordein, rice bran protein fractions and their hydrolysates. J. Cereal Sci. 2009, 49, 422–428. [Google Scholar] [CrossRef]
- Malomo, S.A.; Aluko, R.E. In vitro acetylcholinesterase-inhibitory properties of enzymatic hemp seed protein hydrolysates. J. Am. Oil Chem. Soc. 2016, 93, 411–420. [Google Scholar] [CrossRef]
- Kchaou, M.; Ben Jannet, H.; Ben Salah, H.; Walha, A.; Allouche, N.; Salah, B.; Abdennabi, R. Antioxidant, antibacterial and antiacetylcholinesterase activities of Phalaris canariensis from tunisia. J. Pharmacogn. Phytochem. 2015, 4, 242–249. [Google Scholar]
- Cavazos, A.; Gonzalez de Mejia, E. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf. 2013, 12, 364–380. [Google Scholar] [CrossRef]
- Sabbione, A.C.; Nardo, A.E.; Añón, M.C.; Scilingo, A. Amaranth peptides with antithrombotic activity released by simulated gastrointestinal digestion. J. Funct. Foods 2016, 20, 204–214. [Google Scholar] [CrossRef]
- Yu, G.; Wang, F.; Zhang, B.; Fan, J. In vitro inhibition of platelet aggregation by peptides derived from oat (avena sativa L.), highland barley (Hordeum vulgare linn. Var. Nudum hook. F.), and buckwheat (fagopyrum esculentum moench) proteins. Food Chem. 2016, 194, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Dia, V.P.; Bringe, N.A.; de Mejia, E.G. Peptides in pepsin-pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem. 2014, 152, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Nakurte, I.; Kirhnere, I.; Namniece, J.; Saleniece, K.; Krigere, L.; Mekss, P.; Vicupe, Z.; Bleidere, M.; Legzdina, L.; Muceniece, R. Detection of the lunasin peptide in oats (Avena sativa L.). J. Cereal Sci. 2013, 57, 319–324. [Google Scholar] [CrossRef]
- Jeong, H.J.; Jeong, J.B.; Hsieh, C.C.; Hernández-Ledesma, B.; de Lumen, B.O. Lunasin is prevalent in barley and is bioavailable and bioactive in in vivo and in vitro studies. Nutr. Cancer 2010, 62, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Cervantes, E.; Jeong, H.J.; León-Galván, F.; Barrera-Pacheco, A.; De León-Rodríguez, A.; González de Mejia, E.; de Lumen, B.O.; Barba de la Rosa, A.P. Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of nih-3t3 cells. Peptides 2010, 31, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Jeong, J.B.; Kim, D.S.; Park, J.H.; Lee, J.B.; Kweon, D.-H.; Chung, G.Y.; Seo, E.W.; de Lumen, B.O. The cancer preventive peptide lunasin from wheat inhibits core histone acetylation. Cancer Lett. 2007, 255, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Lee, J.R.; Jeong, J.B.; Park, J.H.; Cheong, Y.-k.; de Lumen, B.O. The cancer preventive seed peptide lunasin from rye is bioavailable and bioactive. Nutr. Cancer 2009, 61, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Nakurte, I.; Klavins, K.; Kirhnere, I.; Namniece, J.; Adlere, L.; Matvejevs, J.; Kronberga, A.; Kokare, A.; Strazdina, V.; Legzdina, L.; et al. Discovery of lunasin peptide in triticale (x triticosecale wittmack). J. Cereal Sci. 2012, 56, 510–514. [Google Scholar] [CrossRef]
- Tapal, A.; Vegarud, G.E.; Sreedhara, A.; Hegde, P.; Inamdar, S.; Tiku, P.K. In vitro human gastro-intestinal enzyme digestibility of globulin isolate from oil palm (Elaeis guineensis var. Tenera) kernel meal and the bioactivity of the digest. RSC Adv. 2016, 6, 20219–20229. [Google Scholar] [CrossRef]
- Sarwar Gilani, G.; Wu Xiao, C.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef] [PubMed]
- Newkirk, R.W.; Ram, J.I.; Hucl, P.; Patterson, C.A.; Classen, H.L. A study of nutrient digestibility and growth performance of broiler chicks fed hairy and hairless canary seed (Phalaris canariensis L.) products. Poult. Sci. 2011, 90, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Classen, H.; Cho, M.; Hucl, P.; Gomis, S.; Patterson, C.A. Performance, health and tissue weights of broiler chickens fed graded levels of hairless hulled yellow and brown canary seed (Phalaris canariensis L.). Can. J. Anim. Sci. 2014, 94, 669–678. [Google Scholar] [CrossRef]
- Magnuson, B.A.; Patterson, C.A.; Hucl, P.; Newkirk, R.W.; Ram, J.I.; Classen, H.L. Safety assessment of consumption of glabrous canary seed (Phalaris canariensis L.) in rats. Food Chem. Toxicol. 2014, 63, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Thacker, P.A. Performance and carcass characteristics of growing-finishing pigs fed diets containing graded levels of canaryseed. Can. J. Anim. Sci. 2003, 83, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Rajamohamed, S.H.; Aryee, A.N.; Hucl, P.; Patterson, C.A.; Boye, J.I. In vitro gastrointestinal digestion of glabrous canaryseed proteins as affected by variety and thermal treatment. Plant Foods Hum. Nutr. 2013, 68, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Luallen, T. Utilizing starches in product development. In Starch in Food; Woodhead Publishing: Cambridge, UK, 2004; pp. 393–424. [Google Scholar]
- Goering, K.J.; Schuh, M. New starches. Iii. The properties of the starch from Phalaris canariensis. Cereal Chem. 1967, 44, 532–538. [Google Scholar]
- Irani, M.; Abdel-Aal, E.-S.M.; Razavi, S.M.A.; Hucl, P.; Patterson, C.A. Thermal and functional properties of hairless canary seed (Phalaris canariensis L.) starch in comparison with wheat starch. Cereal Chem. 2017, 94, 341–348. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P.; Sosulski, F.W. Characteristics of canaryseed (Phalaris canariensis L.) starch. Starch/Stärke 1997, 49, 475–480. [Google Scholar] [CrossRef]
- Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U.; Robin, F. Slowly digestible starch—Its structure and health implications: A review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Irani, M.; Razavi, S.M.; Abdel-Aal el, S.M.; Hucl, P.; Patterson, C.A. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch. Int. J. Biol. Macromol. 2016, 87, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Irani, M.; Razavi, S.M.A.; Abdel-Aal, E.-S.M.; Taghizadeh, M. Influence of variety, concentration, and temperature on the steady shear flow behavior and thixotropy of canary seed (Phalaris canariensis) starch gels. Starch/Stärke 2016, 68, 1203–1214. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Masatcioglu, T.M.; Sumer, Z.; Koksel, H. An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion cooking. J. Cereal Sci. 2017, 74, 95–102. [Google Scholar] [CrossRef]
- Raigond, P.; Ezekiel, R.; Raigond, B. Resistant starch in food: A review. J. Sci. Food Agric. 2015, 95, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.G. Chemical composition and potential uses of annual canarygrass. Agron J. 1978, 70, 797–800. [Google Scholar] [CrossRef]
- American Dietetic Association and Dietitians of Canada. Position of the american dietetic association and dietitians of canada: Dietary fatty acids. J. Am. Diet. Assoc. 2007, 107, 1599–1611. [Google Scholar] [CrossRef]
- Takagi, T.; Iida, T. Antioxidant for fats and oils from canary seed: Sterol and triterpene alcohol esters of caffeic acid. J. Am. Oil. Chem. Soc. 1980, 57, 326–330. [Google Scholar] [CrossRef]
- Ben Salah, H.; Kchaou, M.; Ben Abdallah Kolsi, R.; Abdennabi, R.; Ayedi, M.; Gharsallah, N.; Allouche, N. Chemical composition, characteristics profiles and bioactivities of tunisian Phalaris canariensis seeds: A potential source of omega-6 and omega-9 fatty acids. J. Oleo Sci. 2018, 67, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Haard, N.F. Fermented Cereals: A Global Perspective; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999; Available online: http://www.fao.org/docrep/x2184e/x2184e00.htm#con (accessed on 15 March 2017).
- Welch, R.W. Fatty acid composition of grain from winter and spring sown oats, barley and wheat. J. Sci. Food Agric. 1975, 26, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Liu, X.; Wang, G.; Wang, H.; Liu, J.; Zhao, W.; Zhang, Y. Crude fat content and fatty acid profile and their correlations in foxtail millet. Cereal Chem. 2015, 92, 455–459. [Google Scholar] [CrossRef]
- Frølich, W.; Nyman, M. Minerals, phytate and dietary fibre in different fractions of oat-grain. J. Cereal Sci. 1988, 7, 73–82. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P.; Patterson, C.A.; Gray, D. Phytochemicals and heavy metals content of hairless canary seed: A variety developed for food use. J. Food Sci. Technol. 2011, 44, 904–910. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Wang, X.; Gu, Z.; Beta, T. Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination. Food Chem. 2016, 194, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qiu, Y.; Patterson, C.A.; Beta, T. The analysis of phenolic constituents in glabrous canaryseed groats. Food Chem. 2011, 127, 10–20. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Mellado-Ortega, E.; Hornero-MÈndez, D.M. Carotenoids in cereals: An ancient resource with present and future applications. Phytochem. Rev. 2015, 14, 873–890. [Google Scholar] [CrossRef]
- Li, W.; Beta, T. An evaluation of carotenoid levels and composition of glabrous canaryseed. Food Chem. 2012, 133, 782–786. [Google Scholar] [CrossRef]
- Thompson, L.U. Potential health benefits and problems associated with antinutrients in foods. Food Res. Int. 1993, 26, 131–149. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Umme Salma, V. Hemp seed and hemp milk: The new super foods? Infant Child Adolesc. Nutr. 2009, 1, 232–234. [Google Scholar] [CrossRef]
- Sãmec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit. Rev. Food Sci. Nutr. 2018, 1–37. [Google Scholar] [CrossRef]
- van den Driessche, J.J.; Plat, J.; Mensink, R.P. Effects of superfoods on risk factors of metabolic syndrome: A systematic review of human intervention trials. Food Funct. 2018. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Hu, X. Nutraceutical properties and health benefits of oats. In Cereals and Pulses; Wiley-Blackwell: Oxford, UK, 2012; pp. 21–36. [Google Scholar]
Cereal Variety | % Protein (Dry Basis) | Reference |
---|---|---|
Canaryseed | 20–23% | [4,12] |
Wheat | 13% | [13] |
Oat | 10–13% | [14] |
Barley | 13–16% | [15] |
Rye | 11–16% | [16] |
Millet | 8.5–15% | [17] |
Amino Acid | Canaryseed (g/100 g Protein) | Wheat (g/100 g Protein) | Oat (g/16 g N or g/100 g Protein) | Barley (g/100 g Protein) | Millet (g/100 g Protein) |
---|---|---|---|---|---|
Histidine | 1.6 | 2.1 | 1.74 | 2.4 | 2.4 |
Isoleucine | 3.9 | 2.8 | 2.32 | 3.5 | 4.4 |
leucine | 7.6 | 5.3 | 5.26 | 7.7 | 11.5 |
lysine | 2.6 | 1.9 | 2.73 | 3.9 | 2.8 |
Methionine | 1.9 | 1.4 | 2.5 | 2.1 | 2.3 |
Phenylalanine | 6.5 | 5.4 | 5.3 | 5.7 | 5.6 |
Threonine | 2.7 | 2.8 | 2.46 | 3.9 | 4.2 |
Tryptophan | 2.8 | 1.2 | 1.15 | N/A | N/A |
Valine | 4.8 | 3.8 | 3.2 | 5.4 | 6.0 |
Alanine | 4.5 | 3 | 3.59 | 4.4 | 8.8 |
Arginine | 6.4 | 5.1 | 5.79 | 4.6 | 3.9 |
Aspartic acid | 4.4 | 4.4 | 7.37 | 6.3 | 8.7 |
Cystine | 2.5 | 2.3 | 2.74 | 1.4 | 1.2 |
Glutamic acid | 26 | 33 | 19.12 | 28.1 | 22 |
Glycine | 3.1 | 3.8 | 3.81 | 4.7 | 3.2 |
Proline | 6.2 | 8.6 | 4.54 | 12.7 | 6.8 |
Serine | 4.5 | 4.3 | 3.86 | 4.9 | 5.3 |
Tyrosine | 3.6 | 3.5 | 1.82 | 2.8 | 2.4 |
Reference | [8] | [4] | [14,25] | [26] | [26] |
Canaryseed | Wheat | Oat | Barley | Millet | |
---|---|---|---|---|---|
Crude Fat (% dry basis) | 6.7 | 4.4 | 4.79 | 3.4 | 4.7 |
Reference | [8] | [4] | [14] | [74] | [74] |
FA (% total lipids) | |||||
Palmitic (C16) | 11.38 | 16.6 | 19.2 | 23.0 | 7.42 |
Stearic (C18) | 1.22 | 0.8 | 1.46 | 1.12 | 6.84 |
Oleic (C18:1) | 29.1 | 16.2 | 30.8 | 11.4 | 16.11 |
Linoleic (C18:2) | 53.39 | 62.1 | 46.4 | 58.8 | 66.68 |
Linolenic (C18:3) | 2.42 | 4.0 | 2.13 | 7.78 | 2.48 |
Reference | [8] | [4] | [75] | [75] | [76] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mason, E.; L’Hocine, L.; Achouri, A.; Karboune, S. Hairless Canaryseed: A Novel Cereal with Health Promoting Potential. Nutrients 2018, 10, 1327. https://doi.org/10.3390/nu10091327
Mason E, L’Hocine L, Achouri A, Karboune S. Hairless Canaryseed: A Novel Cereal with Health Promoting Potential. Nutrients. 2018; 10(9):1327. https://doi.org/10.3390/nu10091327
Chicago/Turabian StyleMason, Emily, Lamia L’Hocine, Allaoua Achouri, and Salwa Karboune. 2018. "Hairless Canaryseed: A Novel Cereal with Health Promoting Potential" Nutrients 10, no. 9: 1327. https://doi.org/10.3390/nu10091327
APA StyleMason, E., L’Hocine, L., Achouri, A., & Karboune, S. (2018). Hairless Canaryseed: A Novel Cereal with Health Promoting Potential. Nutrients, 10(9), 1327. https://doi.org/10.3390/nu10091327