Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment and Food Grouping
2.3. Anthropometric Measurements
2.4. Biochemical Parameters
2.5. Metabolite Profiling
2.6. Statistical Analyses
3. Results
3.1. Study Population
3.2. Dietary Intakes
3.3. Plasma BCAAs and Protein Intakes
3.4. Acylcarnitines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gannon Nicholas, P.; Schnuck Jamie, K.; Vaughan Roger, A. BCAA Metabolism and Insulin Sensitivity—Dysregulated by Metabolic Status? Mol. Nutr. Food Res. 2018, 62, 1700756. [Google Scholar] [CrossRef] [PubMed]
- Gar, C.; Rottenkolber, M.; Prehn, C.; Adamski, J.; Seissler, J.; Lechner, A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit. Rev. Clin. Lab. Sci. 2018, 55, 21–32. [Google Scholar] [CrossRef]
- Labonte, C.C.; Farsijani, S.; Marliss, E.B.; Gougeon, R.; Morais, J.A.; Pereira, S.; Bassil, M.; Winter, A.; Murphy, J.; Combs, T.P.; et al. Plasma Amino Acids vs Conventional Predictors of Insulin Resistance Measured by the Hyperinsulinemic Clamp. J. Endocr. Soc. 2017, 1, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Farhadnejad, H.; Teymoori, F.; Mirmiran, P.; Tohidi, M.; Azizi, F. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults. J. Diabetes 2018, 10, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvadó, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin. Chem. 2016, 62, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.; Chan, A.T.; Giovannucci, E.L. Animal and plant protein intake and all-cause and cause-specific mortality: Results from two prospective US cohort studies. JAMA Intern. Med. 2016, 176, 1453. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Li, Y.; Qi, Q.; Hruby, A.; Manson, J.E.; Willett, W.C.; Wolpin, B.M.; Hu, F.B.; Qi, L. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int. J. Epidemiol. 2016, 45, 1482–1492. [Google Scholar] [CrossRef] [Green Version]
- Mahendran, Y.; Jonsson, A.; Have, C.T.; Allin, K.H.; Witte, D.R.; Jørgensen, M.E.; Grarup, N.; Pedersen, O.; Kilpeläinen, T.O.; Hansen, T. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia 2017, 60, 873–878. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Holmes, M.V.; Davey Smith, G.; Ala-Korpela, M. Genetic Support for a Causal Role of Insulin Resistance on Circulating Branched-Chain Amino Acids and Inflammation. Diabetes Care 2017, 40, 1779–1786. [Google Scholar] [CrossRef] [Green Version]
- Shin, A.C.; Fasshauer, M.; Filatova, N.; Grundell, L.A.; Zielinski, E.; Zhou, J.-Y.; Scherer, T.; Lindtner, C.; White, P.J.; Lapworth, A.L.; et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 2014, 20, 898. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Branched-Chain Amino Acids and Brain Function. J. Nutr. 2005, 135, 1539S–1546S. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. Branched-Chain Amino Acids: Enzyme and Substrate Regulation. J. Nutr. 2006, 136, 207S–211S. [Google Scholar] [CrossRef] [Green Version]
- Platell, C.; Kong, S.E.; McCauley, R.; Hall, J.C. Branched-chain amino acids. J. Gastroenterol. Hepatol. 2001, 15, 706–717. [Google Scholar] [CrossRef]
- López, A.M.; Noriega, L.G.; Diaz, M.; Torres, N.; Tovar, A.R. Plasma branched-chain and aromatic amino acid concentration after ingestion of an urban or rural diet in rural Mexican women. BMC Obes. 2015, 2, 8. [Google Scholar] [CrossRef]
- Merz, B.; Frommherz, L.; Rist, M.J.; Kulling, S.E.; Bub, A.; Watzl, B. Dietary Pattern and Plasma BCAA-Variations in Healthy Men and Women—Results from the KarMeN Study. Nutrients 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1088–1096. [Google Scholar] [CrossRef] [Green Version]
- Isanejad, M.; LaCroix, A.Z.; Thomson, C.A.; Tinker, L.; Larson, J.C.; Qi, Q.; Qi, L.; Cooper-DeHoff, R.M.; Phillips, L.S.; Prentice, R.L.; et al. Branched-Chain Amino Acid, Meat Intake and Risk of Type 2 Diabetes in the Women’s Health Initiative. Available online: /core/journals/british-journal-of-nutrition/article/branchedchain-amino-acid-meat-intake-and-risk-of-type-2-diabetes-in-the-womens-health-initiative/2706233DCEB0422B3DCCA9D9925CCB3F (accessed on 10 April 2018).
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schooneman, M.G.; Vaz, F.M.; Houten, S.M.; Soeters, M.R. Acylcarnitines. Diabetes 2013, 62, 1–8. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Roe, D.S.; Roe, C.R.; Brivet, M.; Sweetman, L. Evidence for a short-chain carnitine-acylcarnitine translocase in mitochondria specifically related to the metabolism of branched-chain amino acids. Mol. Genet. Metab. 2000, 69, 69–75. [Google Scholar] [CrossRef]
- Bouchard-Mercier, A.; Rudkowska, I.; Lemieux, S.; Couture, P.; Vohl, M.-C. The metabolic signature associated with the Western dietary pattern: A cross-sectional study. Nutr. J. 2013, 12, 158. [Google Scholar] [CrossRef]
- Cheung, W.; Keski-Rahkonen, P.; Assi, N.; Ferrari, P.; Freisling, H.; Rinaldi, S.; Slimani, N.; Zamora-Ros, R.; Rundle, M.; Frost, G.; et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 2017, 105, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Gojda, J.; Rossmeislová, L.; Straková, R.; Tůmová, J.; Elkalaf, M.; Jaček, M.; Tůma, P.; Potočková, J.; Krauzová, E.; Waldauf, P.; et al. Chronic dietary exposure to branched chain amino acids impairs glucose disposal in vegans but not in omnivores. Eur. J. Clin. Nutr. 2017, 71, 594–601. [Google Scholar] [CrossRef]
- Iwasaki, M. Validity of a Self-Administered Food-Frequency Questionnaire for Assessing Amino Acid Intake in Japan: Comparison with Intake From 4-Day Weighed Dietary Records and Plasma Levels. J. Epidemiol. 2016, 26, 36–44. [Google Scholar] [CrossRef]
- Jennings, A.; MacGregor, A.; Pallister, T.; Spector, T.; Cassidy, A. Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study. Int. J. Cardiol. 2016, 223, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Nagata, C.; Nakamura, K.; Wada, K.; Tsuji, M.; Tamai, Y.; Kawachi, T. Branched-chain Amino Acid Intake and the Risk of Diabetes in a Japanese CommunityThe Takayama Study. Am. J. Epidemiol. 2013, 178, 1226–1232. [Google Scholar] [CrossRef]
- Pallottini, A.C.; Sales, C.H.; Vieira, D.A.D.S.; Marchioni, D.M.; Fisberg, R.M. Dietary BCAA Intake Is Associated with Demographic, Socioeconomic and Lifestyle Factors in Residents of São Paulo, Brazil. Nutrients 2017, 9, 449. [Google Scholar] [CrossRef]
- Paradis, A.-M.; Pérusse, L.; Godin, G.; Vohl, M.-C. Validity of a self-reported measure of familial history of obesity. Nutr. J. 2008, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Paradis, A.-M.; Godin, G.; Pérusse, L.; Vohl, M.-C. Associations between dietary patterns and obesity phenotypes. Int. J. Obes. 2009, 33, 1419–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paradis, A.-M.; Godin, G.; Pérusse, L.; Vohl, M.-C. Interaction between Familial History of Obesity and Fat Intakes on Obesity Phenotypes. Lifestyle Genom. 2009, 2, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Cormier, H.; Thifault, É.; Garneau, V.; Tremblay, A.; Drapeau, V.; Pérusse, L.; Vohl, M.-C. Association between yogurt consumption, dietary patterns, and cardio-metabolic risk factors. Eur. J. Nutr. 2016, 55, 577–587. [Google Scholar] [CrossRef]
- Allam-Ndoul, B.; Guénard, F.; Garneau, V.; Cormier, H.; Barbier, O.; Pérusse, L.; Vohl, M.-C. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status. Nutrients 2016, 8, 324. [Google Scholar] [CrossRef]
- Goulet, J.; Nadeau, G.; Lapointe, A.; Lamarche, B.; Lemieux, S. Validity and reproducibility of an interviewer-administered food frequency questionnaire for healthy French-Canadian men and women. Nutr. J. 2004, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Down, L.; Ritter, H.; Starkey, L.J.; Gray-Donald, K. Primary Food Sources of Nutrients In the Diet of Canadian Adults. Can. J. Diet. Pract. Res. 2006, 67, 7–13. [Google Scholar] [CrossRef]
- Callaway, C.W.; Chumlea, W.C.; Bouchard, C.; Himes, J.H.; Lohman, T.G.; Martin, A.D.; Mitchell, C.D.; Mueller, W.H.; Roche, A.F.; Seefeldt, V.D. Standardization of Anthropometric Measurements. In The Airlie (VA) Consensus Conference; Human Kinetics Publisher: Champaign, IR, USA, 1988; pp. 29–80. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Guevara-Cruz, M.; Vargas-Morales, J.M.; Méndez-García, A.L.; López-Barradas, A.M.; Granados-Portillo, O.; Ordaz-Nava, G.; Rocha-Viggiano, A.K.; Gutierrez-Leyte, C.A.; Medina-Cerda, E.; Rosado, J.L.; et al. Amino acid profiles of young adults differ by sex, body mass index and insulin resistance. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Takashina, C.; Tsujino, I.; Watanabe, T.; Sakaue, S.; Ikeda, D.; Yamada, A.; Sato, T.; Ohira, H.; Otsuka, Y.; Oyama-Manabe, N.; et al. Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japanese adults with normal glucose tolerance. Nutr. Metab. 2016, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Würtz, P.; Mäkinen, V.-P.; Soininen, P.; Kangas, A.J.; Tukiainen, T.; Kettunen, J.; Savolainen, M.J.; Tammelin, T.; Viikari, J.S.; Rönnemaa, T.; et al. Metabolic Signatures of Insulin Resistance in 7098 Young Adults. Diabetes 2012, 61, 1372. [Google Scholar]
- Boulet, M.M.; Chevrier, G.; Grenier-Larouche, T.; Pelletier, M.; Nadeau, M.; Scarpa, J.; Prehn, C.; Marette, A.; Adamski, J.; Tchernof, A. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am. J. Physiol.-Endocrinol. Metab. 2015, 309, E736–E746. [Google Scholar] [CrossRef]
- Floegel, A.; von Ruesten, A.; Drogan, D.; Schulze, M.B.; Prehn, C.; Adamski, J.; Pischon, T.; Boeing, H. Variation of serum metabolites related to habitual diet: A targeted metabolomic approach in EPIC-Potsdam. Eur. J. Clin. Nutr. 2013, 67, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Mihalik, S.J.; Goodpaster, B.H.; Kelley, D.E.; Chace, D.H.; Vockley, J.; Toledo, F.G.S.; DeLany, J.P. Increased Levels of Plasma Acylcarnitines in Obesity and Type 2 Diabetes and Identification of a Marker of Glucolipotoxicity. Obes. Silver Spring Md 2010, 18, 1695. [Google Scholar] [CrossRef] [PubMed]
- Strand, E.; Pedersen, E.R.; Svingen, G.F.T.; Olsen, T.; Bjørndal, B.; Karlsson, T.; Dierkes, J.; Njølstad, P.R.; Mellgren, G.; Tell, G.S.; et al. Serum Acylcarnitines and Risk of Cardiovascular Death and Acute Myocardial Infarction in Patients with Stable Angina Pectoris. J. Am. Heart Assoc. 2017, 6, e003620. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Guasch-Ferré, M.; Gadgil, M.D.; Newgard, C.B.; Bain, J.R.; Muehlbauer, M.J.; Ilkayeva, O.R.; Scholtens, D.M.; Hu, F.B.; Kanaya, A.M.; et al. Dietary Patterns among Asian Indians Living in the United States Have Distinct Metabolomic Profiles That Are Associated with Cardiometabolic Risk. J. Nutr. 2018, 148, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- van Nielen, M.; Feskens, E.J.M.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.J.; Boeing, H.; et al. Dietary Protein Intake and Incidence of Type 2 Diabetes in Europe: The EPIC-InterAct Case-Cohort Study. Diabetes Care 2014, 37, 1854–1862. [Google Scholar] [CrossRef] [Green Version]
- Okekunle, A.P. Dietary Intakes of Branched-Chained Amino Acid and Risk for Type 2 Diabetes in Adults: The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases Study. Can. J. Diabetes 2018, 42, 484–492.e7. [Google Scholar] [CrossRef] [PubMed]
- White, D.L.; Collinson, A. Red Meat, Dietary Heme Iron, and Risk of Type 2 Diabetes: The Involvement of Advanced Lipoxidation Endproducts. Adv. Nutr. 2013, 4, 403. [Google Scholar] [CrossRef]
- Kunutsor Setor, K.; Apekey Tanefa, A.; Walley, J.; Kain, K. Ferritin levels and risk of type 2 diabetes mellitus: An updated systematic review and meta-analysis of prospective evidence. Diabetes Metab. Res. Rev. 2013, 29, 308–318. [Google Scholar] [CrossRef]
- Bao, W.; Rong, Y.; Rong, S.; Liu, L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: A systematic review and meta-analysis. BMC Med. 2012, 10, 119. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, S.; Liu, G.; Yan, F.; Ma, X.; Huang, Z.; Tian, H. Body Iron Stores and Heme-Iron Intake in Relation to Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7, e41641. [Google Scholar] [CrossRef] [PubMed]
- Talaei, M.; Wang, Y.-L.; Yuan, J.-M.; Pan, A.; Koh, W.-P. Meat, Dietary Heme Iron, and Risk of Type 2 Diabetes MellitusThe Singapore Chinese Health Study. Am. J. Epidemiol. 2017, 186, 824–833. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Morrissey, P.A.; Ames, J.M. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr. 1989, 28, 211–248. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106, S1–S78. [Google Scholar] [CrossRef] [PubMed]
- Neis, E.P.J.G.; Dejong, C.H.C.; Rensen, S.S. The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients 2015, 7, 2930–2946. [Google Scholar] [CrossRef] [Green Version]
- Elshorbagy, A.; Jernerén, F.; Basta, M.; Basta, C.; Turner, C.; Khaled, M.; Refsum, H. Amino acid changes during transition to a vegan diet supplemented with fish in healthy humans. Eur. J. Nutr. 2017, 56, 1953–1962. [Google Scholar] [CrossRef]
- Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12, 21–35. [Google Scholar] [CrossRef]
- Jewell, J.L.; Russell, R.C.; Guan, K.-L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.-S. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients 2016, 8, 405. [Google Scholar] [CrossRef]
- Krebs, M.; Krssak, M.; Bernroider, E.; Anderwald, C.; Brehm, A.; Meyerspeer, M.; Nowotny, P.; Roth, E.; Waldhäusl, W.; Roden, M. Mechanism of Amino Acid-Induced Skeletal Muscle Insulin Resistance in Humans. Diabetes 2002, 51, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, F.; Krebs, M.; Dombrowski, L.; Brehm, A.; Bernroider, E.; Roth, E.; Nowotny, P.; Waldhäusl, W.; Marette, A.; Roden, M. Overactivation of S6 Kinase 1 as a Cause of Human Insulin Resistance During Increased Amino Acid Availability. Diabetes 2005, 54, 2674–2684. [Google Scholar] [CrossRef] [Green Version]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Zick, Y. Insulin resistance: A phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol. 2001, 11, 437–441. [Google Scholar] [CrossRef]
- Um, S.H.; D’Alessio, D.; Thomas, G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006, 3, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Zhenyukh, O.; Civantos, E.; Ruiz-Ortega, M.; Sanchez, M.S.; Vazquez, C.; Peiro, C.; Egido, J.; Mas, S. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic. Biol. Med. 2017, 104, 165–177. [Google Scholar] [CrossRef]
- Adeva, M.M.; Calviño, J.; Souto, G.; Donapetry, C. Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 2012, 43, 171–181. [Google Scholar] [CrossRef]
Characteristics | Total Subjects (n = 199) | NW/MS− (n = 65) | NW/MS+ (n = 2) | OW/MS− (n = 84) | OW/MS+ (n = 48) | p-Value |
---|---|---|---|---|---|---|
Women (%) | 49.7 | 58.5 | 50.0 | 51.1 | 35.4 | 0.1130 |
Age (years) | 34.2 ± 10.2 | 28.9 ± 7.4 a | 39.1 ± 17.8 a | 35.7 ± 10.4 b | 38.4 ± 10.1 b,c | <0.0001 |
BMI (kg/m2) | 29.0 ± 6.2 | 22.2 ± 1.8 a | 24.5 ± 0.66 a | 31.4 ± 4.2 b | 34.3 ± 4.8 c | <0.0001 |
WC (cm) | 92.7 ± 16.5 | 74.7 ± 5.7 a | 83.1 ± 0.64 a | 97.7 ± 10.7 b | 109.0 ± 11.8 c | <0.0001 |
Total-C (mmol) | 4.49 ± 1.00 | 4.13 ± 0.67 a | 3.58 ± 0.76 a,b | 4.57 ± 1.0 b | 4.88 ± 1.19 b | 0.0003 |
TG (mmol) | 1.29 ± 0.91 | 0.77 ± 0.31 a | 0.88 ± 0.03 a,b | 1.15 ± 0.56 b,c | 2.23 ± 1.22 d | <0.0001 * |
HDL-C (mmol) | 1.33 ± 0.41 | 1.60 ± 0.45c | 1.07 ± 0.21 a,b | 1.32 ± 0.30 b | 0.99 ± 0.24 a | <0.0001 * |
LDL-C (mmol) | 2.76 ± 0.94 | 2.52 ± 0.70 | 2.51 ± 0.55 | 2.81 ± 0.91 | 3.00 ± 1.21 | 0.0545 |
Fasting glycemia (mmol/L) | 5.65 ± 0.74 | 5.68 ± 0.74 a | 6.90 ± 1.13 b | 5.43 ± 0.52 c | 5.94 ± 1.92 a,b | 0.0001 |
Insulin (pM) | 85.1 ± 60.6 | 48.7 ± 17.1 a | 68.5 ± 21.9 a,b,c | 86.1 ± 56.3 b | 134.5 ± 72.2 c | <0.0001 * |
SBP (mmHg) | 121.3 ± 11.1 | 115.9 ± 9.8 a | 130.5 ± 4.9 b,c,d | 119.9 ± 8.9 c | 130.5 ± 10.6 d | <0.0001 |
DBP (mmHg) | 77.9 ± 9.5 | 74.0 ± 9.9 a | 74.0 ± 5.7 a,b,c | 77.7 ± 7.7 b | 83.6 ± 9.4 c | <0.0001 |
BCAAs (µM) | 455.6 ± 92.3 | 413.8 ± 83.5 a | 378.8 ± 83.3 a,b | 460.0 ± 83.2 a,b | 507.7 ± 92.3 b | <0.0001 |
C3 ACs (µM) | 0.325 ± 0.115 | 0.281 ± 0.104 a | 0.181 ± 0.011 a,b | 0.327 ± 0.100 b | 0.387 ± 0.125 c | <0.0001 |
C5 ACs (µM) | 0.137 ±0.048 | 0.118±0.036 a | 0.094± 0.005 a,b | 0.137 ± 0.045 b | 0.163 ± 0.056 c | <0.0001 |
Nutrients | Total Subjects (n = 197) | NW/MS− (n = 65) | OW/MS− (n = 84) | OW/MS+ (n = 48) | p-Value 1 | p-Value 2 |
---|---|---|---|---|---|---|
Total energy (kcal) | 2474 ± 790 | 2412 ± 853 a | 2364 ± 695 a | 2754 ± 809 b | 0.0172 | |
Total carbohydrates (g) | 297.5 ± 92.5 | 298.8 ± 95.7 a,c | 281.7 ± 87.0 a,b | 323.3 ± 93.5 c | 0.0446 | 0.5447 |
Carbohydrates (%kcal) | 46.7 ± 6.0 | 48.23 ± 6.54 a | 45.9 ± 5.3 b | 45.8 ± 6.1 b | 0.0340 | 0.2229 |
Total dietary fiber (g) | 23.5 ± 7.9 | 23.6 ± 8.7 | 22.8 ± 7.3 | 24.6 ± 7.7 | 0.4495 | 0.7690 |
Soluble dietary fibers (g) | 7.8 ± 2.5 | 7.6 ± 2.6 | 7.5 ± 2.3 | 8.5 ± 2.7 | 0.0745 | 0.7736 |
Insoluble dietary fibers (g) | 15.5 ± 5.5 | 15.7 ± 6.2 | 15.2 ± 5.2 | 15.9 ± 5.1 | 0.7463 | 0.5677 |
Total protein (g) | 104.2 ± 37.1 | 99.9 ± 43.2 a | 100.4 ± 29.9 a | 116.4 ± 37.7 b | 0.0303 | 0.6209 |
Protein (%kcal) | 16.8 ± 2.4 | 16.4 ± 2.6 | 17.1 ± 2.0 | 17.0 ± 2.5 | 0.2580 | 0.3762 |
Vegetal protein (g) | 32.0 ± 11.8 | 31.9 ± 12.5 | 31.0 ± 11.6 | 34.1 ± 11.1 | 0.3459 | 0.6093 |
Animal protein (g) | 70.5 ± 30.3 | 66.2 ± 35.9 a | 68.0 ± 23.7 a | 80.7 ± 30.9 b | 0.0086 * | 0.0388 * |
BCAA intakes (g) | 18.5 ± 6.8 | 17.6 ± 7.8 a | 17.9 ± 5.5 a | 20.7 ± 7.0 b | 0.0310 | 0.3789 |
Total fat (g) | 93.4 ± 37.3 | 88.4 ± 39.9 a | 89.2 ± 30.6 a | 107.4 ± 41.3 b | 0.0102 | 0.8410 |
Fat (%kcal) | 33.6 ± 5.3 | 32.4 ± 5.7 | 33.8 ± 4.7 | 34.7 ± 5.6 | 0.0649 | 0.5095 |
Total SFA (g) | 32.6 ± 14.7 | 30.6 ± 15.9 a | 31.1 ± 12.3 a | 37.8 ± 16.0 b | 0.0173 | 0.8734 |
SFA (%kcal) | 11.6 ± 2.6 | 11.1 ± 2.7 | 11.8 ± 2.6 | 12.1 ± 2.6 | 0.0902 | 0.4312 |
Total MUFA (g) | 38.3 ± 15.7 | 36.3 ± 16.7 a | 36.5 ± 12.5 a | 44.0 ± 18.1 b | 0.0131 | 0.9269 |
MUFA (%kcal) | 13.8 ± 2.6 | 13.3 ± 2.9 | 13.9 ± 2.2 | 14.2 ± 2.8 | 0.2203 | 0.7753 |
Total PUFA (g) | 15.2 ± 6.2 | 14.5 ± 6.3 a | 14.7 ± 5.6 a | 17.3 ± 6.9 b | 0.0347 | 0.9148 |
PUFA (%kcal) | 5.5 ± 1.4 | 5.4 ± 1.3 | 5.6 ± 1.3 | 5.6 ± 1.5 | 0.6765 | 0.9631 |
Total alcohol (g) | 10.5 ± 12.1 | 9.8 ± 9.0 | 11.1 ± 13.0 | 10.5 ± 14.0 | 0.2968 * | 0.1406 * |
Alcohol (%kcal) | 3.0 ± 2.9 | 2.9 ± 2.5 | 3.2 ± 3.2 | 2.5 ± 2.9 | 0.4770 | 0.3919 |
Food Groups | Total Subjects (n = 197) | NW/MS− (n = 65) | OW/MS− (n = 84) | OW/MS+ (n = 48) | p-Value 1 | p-Value 2 |
---|---|---|---|---|---|---|
Red meat | 2.25 ± 1.78 | 1.93 ± 1.95 a | 2.07 ± 1.40 a | 3.01 ± 1.94 b | 0.0027 | 0.0899 |
Processed meat | 0.85 ± 0.95 | 0.78 ± 0.83 | 0.72 ± 0.60 | 1.16 ± 1.44 | 0.0660 * | 0.4325 * |
Organ meat | 0.02 ± 0.09 | 0.01 ± 0.04 | 0.03 ± 0.10 | 0.04 ± 0.11 | 0.1009 * | 0.2641 * |
Fish | 1.21 ± 1.19 | 1.56 ± 1.56 b | 1.11 ± 0.97 a | 0.92 ± 0.81 a | 0.0106 | 0.0119 |
Poultry | 1.17 ± 0.91 | 1.13 ± 0.94 | 1.23 ± 0.89 | 1.12 ± 0.90 | 0.7332 | 0.1337 |
Eggs | 0.36 ± 0.30 | 0.28 ± 0.23 a | 0.38 ± 0.29 b | 0.43 ± 0.37 b | 0.0166 | 0.1431 |
Low fat dairy | 1.60 ± 1.34 | 1.42 ± 1.08 | 1.59 ± 1.24 | 1.86 ± 1.77 | 0.5081 * | 0.5713 * |
High fat dairy | 1.80 ± 1.29 | 1.73 ± 1.27 | 1.77 ± 1.17 | 1.95 ± 1.51 | 0.6389 | 0.7883 |
Legumes | 0.28 ± 0.49 | 0.28 ± 0.41 | 0.31 ± 0.62 | 0.21 ± 0.32 | 0.4132 * | 0.2473 * |
Nuts | 0.97 ± 2.99 | 0.75 ± 0.81 | 0.80 ± 1.00 | 1.58 ± 5.84 | 0.9254 * | 0.9691 * |
Refined grain products | 2.78 ± 1.95 | 2.72 ± 1.65 | 2.54 ± 1.83 | 3.28 ± 2.41 | 0.1028 | 0.7890 |
Whole grain products | 2.43 ± 1.85 | 2.64 ± 2.13 | 2.34 ± 1.63 | 2.29 ± 1.82 | 0.5212 | 0.1007 |
Group | NW/MS− (n = 65) | OW/MS− (n = 84) | OW/MS+ (n = 48) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Unadjusted | Adjusted 2 | Unadjusted | Adjusted 2 | Unadjusted | Adjusted 2 | ||||||
Parameters | R2 | p-value | R2 | p-value | R2 | p-value | R2 | p-value | R2 | p-value | R2 | p-value |
Red meat | 0.0087 | 0.3910 | 0.0964 | 0.0013 | 0.0113 | 0.3408 | 0.0072 | 0.4330 | 0.0771 | 0.0713 | 0.0602 | 0.0548 |
Processed meat * | 0.0088 | 0.3892 | 0.0047 | 0.4571 | 0.0004 | 0.8625 | 0.0005 | 0.8336 | 0.0025 | 0.7380 | 0.0002 | 0.9061 |
Organ meat * | 0.0007 | 0.8112 | 0.0006 | 0.7977 | 0.0028 | 0.6313 | 0.0002 | 0.8871 | 0.0293 | 0.2591 | 0.0449 | 0.0948 |
Fish | 0.0258 | 0.1429 | 0.0306 | 0.0607 | 0.0105 | 0.3589 | 0.0037 | 0.5756 | 0.0151 | 0.4160 | 0.0149 | 0.3288 |
Poultry | 0.0197 | 0.1999 | 0.0219 | 0.1108 | 0.0046 | 0.5410 | 0.0004 | 0.8479 | 0.0397 | 0.1902 | 0.0429 | 0.1022 |
Eggs * | 0.0203 | 0.1936 | 0.0214 | 0.1153 | 0.0076 | 0.4324 | 0.0074 | 0.4275 | 0.0578 | 0.1161 | 0.0812 | 0.0272 |
Legumes * | 0.0140 | 0.2787 | 0.0003 | 0.8594 | 0.0072 | 0.4453 | 0.0066 | 0.4543 | 0.0047 | 0.6496 | 0.0424 | 0.1039 |
Nuts * | 0.0164 | 0.2418 | 0.0065 | 0.3820 | 0.0045 | 0.5485 | 0.0032 | 0.6039 | 0.0049 | 0.6432 | 0.0001 | 0.9438 |
Hf dairy | 0.0071 | 0.4395 | 0.0058 | 0.4077 | 0.0296 | 0.1248 | 0.0344 | 0.0904 | 0.0105 | 0.4973 | 0.0099 | 0.4244 |
Lf dairy * | 0.0010 | 0.7721 | 0.0006 | 0.7817 | 0.0013 | 0.7469 | 0.0088 | 0.3890 | 0.0001 | 0.9434 | 0.0054 | 0.5539 |
Refined gp | 0.0555 | 0.0338 | 0.0016 | 0.6596 | 0.0146 | 0.2785 | 0.0000 | 0.9857 | 0.0207 | 0.3415 | 0.0108 | 0.4047 |
Whole gp | 0.0597 | 0.0279 | 0.0002 | 0.8773 | 0.0161 | 0.2552 | 0.0020 | 0.6791 | 0.0250 | 0.2963 | 0.0053 | 0.5576 |
Total cohort (n = 197) | NW/MS− (n = 65) | OW/MS− (n = 84) | OW/MS+ (n = 48) | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Model | R2 | p-value | R2 | p-value | R2 | p-value | R2 | p-value |
C3 ACs | Unadjusted | 0.3804 | <0.0001 | 0.3529 | <0.0001 | 0.3069 | <0.0001 | 0.2812 | 0.0001 |
Adjusted 2 | 0.2080 | <0.0001 | 0.0909 | 0.0020 | 0.2356 | <0.0001 | 0.2181 | 0.0002 | |
Adjusted 3 | 0.1932 | <0.0001 | 0.0775 | 0.0047 | 0.2140 | <0.0001 | 0.1488 | 0.0019 | |
C5 ACs | Unadjusted | 0.3817 | <0.0001 | 0.3608 | <0.0001 | 0.3822 | <0.0001 | 0.2159 | 0.0009 |
Adjusted 2 | 0.1614 | <0.0001 | 0.0866 | 0.0017 | 0.2212 | <0.0001 | 0.2181 | 0.0002 | |
Adjusted 3 | 0.1504 | <0.0001 | 0.0901 | 0.0010 | 0.2026 | <0.0001 | 0.0466 | 0.0847 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousseau, M.; Guénard, F.; Garneau, V.; Allam-Ndoul, B.; Lemieux, S.; Pérusse, L.; Vohl, M.-C. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients 2019, 11, 173. https://doi.org/10.3390/nu11010173
Rousseau M, Guénard F, Garneau V, Allam-Ndoul B, Lemieux S, Pérusse L, Vohl M-C. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients. 2019; 11(1):173. https://doi.org/10.3390/nu11010173
Chicago/Turabian StyleRousseau, Michèle, Frédéric Guénard, Véronique Garneau, Bénédicte Allam-Ndoul, Simone Lemieux, Louis Pérusse, and Marie-Claude Vohl. 2019. "Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults" Nutrients 11, no. 1: 173. https://doi.org/10.3390/nu11010173
APA StyleRousseau, M., Guénard, F., Garneau, V., Allam-Ndoul, B., Lemieux, S., Pérusse, L., & Vohl, M. -C. (2019). Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients, 11(1), 173. https://doi.org/10.3390/nu11010173