The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Lactose
3.2. Lactase (LCT)
3.3. Development of Lactase Persistence (LP)
3.4. Regulation of Lactase Expression
3.5. Lactose Maldigestion and Intolerance, and Lactose Replacements
3.6. Diagnosis of Lactose Intolerance
3.7. Possible Consequences of Lactose Restriction
3.8. Lactose Maldigestion and Functional Gastrointestinal Disorders (FGIDs)
3.9. Lactose Replacements: Metabolic Consequences of Glucose Polymers
3.10. Lactose Replacements: Taste Preference and Obesity Risk Later in Life
3.11. Potential Health Benefits of Lactose as a Supplier of Galactose and via Microbiota Shaping Effects
3.12. Lactose, Bifidobacteria, and the Microbiota: Potential Health Benefits?
3.13. Potential Health Benefits of Galactose
3.14. Consensus Statements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meurant, G. Handbook of Milk Composition, Chapter 4. Carbohydrates in Milks: Analysis, Quantities, and Significance. Food Sci. Technol. 1995, 6, 273–338. [Google Scholar]
- Paques, M.; Lindner, C. Lactose. Evolutionary Role, Health Effects, and Applications; Academic Press: Cambridge, MA, USA, 2019; ISBN 978-0-12-811720-0. [Google Scholar]
- Campbell, A.K.; Waud, J.P.; Matthews, S.B. The molecular basis of lactose intolerance. Sci. Prog. 2005, 88, 157–202. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y. Lactose intolerance. Asia Pac. J. Clin. Nutr. 2015, 24, S9–S13. [Google Scholar] [PubMed]
- Canani, R.B.; Pezzella, V.; Amoroso, A.; Cozzolino, T.; Di Scala, C.; Passariello, A. Diagnosing and treating intolerance to carbohydrates in children. Nutrients 2016, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Bersaglieri, T.; Sabeti, P.C.; Patterson, N.; Vanderploeg, T.; Schaffner, S.F.; Drake, J.A.; Rhodes, M.; Reich, D.E.; Hirschhorn, J.N. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 2004, 74, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Curry, A. The milk revolution. Nature 2013, 500, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, A. Lactose-a potential prebiotic. Aliment. Pharmacol. Ther. 2002, 16, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, A. Redefining lactose as a conditional prebiotic. Can. J. Gastroenterol. 2004, 18, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, G. Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int. Dairy J. 2008, 18, 458–465. [Google Scholar] [CrossRef]
- Delaveau, P. Le lactose dans le lait; hypothese sur son importance biologique. Ann. Pharm. Fr. 2002, 61, 340–342. [Google Scholar]
- Salzman, N.H.; Underwood, M.A.; Bevins, C.L. Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Semin. Immunol. 2007, 19, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Abrams, S.A.; Griffin, I.J.; Davila, P.M. Calcium and zinc absorption from lactose-containing and lactose-free infant formulas. Am. J. Clin. Nutr. 2002, 76, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Gaffey, M.F.; Wazny, K.; Bassani, D.G.; Bhutta, Z.A. Dietary management of childhood diarrhea in low- and middle-income countries: A systematic review. BMC Public Health 2013, 13, S17. [Google Scholar]
- Sherman, A.L.; Anderson, J.; Rudolph, C.D.; Walker, L.S. Lactose-Free milk or soy-based formulas do not improve caregivers’ distress or perceptions of difficult infant behavior. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Zunft, H.J.; Schulze, J. Does mutarotation influence lactose digestion? Experimental investigations and a mathematical model. Comput. Methods Programs Biomed. 1990, 32, 287–295. [Google Scholar] [CrossRef]
- Holt, C. Swelling of golgi vesicles in mammary secretory cells and its relation to the yield and quantitative composition of milk. J. Theor. Biol. 1983, 101, 247–261. [Google Scholar] [CrossRef]
- Coelho, A.I.; Berry, G.T.; Rubio-Gozalbo, M.E. Galactose metabolism and health. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, P.J. Dietary advice in dental practice. Br. Dent. J. 2002, 193, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Gunnerud, U.; Holst, J.J.; Stman, E.; Björck, I. The glycemic, insulinemic and plasma amino acid responses to equi-carbohydrate milk meals, a pilot-study of bovine and human milk. Nutr. J. 2012, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Schuette, S.A.; Knowles, J.B.; Ford, H.E. Effect of lactose or its component sugars on jejunal calcium absorption in adult man. Am. J. Clin. Nutr. 1989, 50, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- Troelsen, J.T. Adult-type hypolactasia and regulation of lactase expression. Biochim. Biophys. Acta-Gen. Subj. 2005, 1723, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Lenfestey, M.W.; Neu, J. Gastrointestinal development: Implications for management of preterm and term infants. Gastroenterol. Clin. N. Am. 2018, 47, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Raul, F.; Lacroix, B.; Aprahamian, M. Longitudinal distribution of brush border hydfolases and morphological maturation in the intestine of the preterm infant. Early Hum. Dev. 1986, 13, 225–234. [Google Scholar] [CrossRef]
- Antonowicz, I.; Lebenthal, E. Developmental pattern of small intestinal enterokinase and disaccharidase activities in the human fetus. Gastroenterology 1977, 72, 1299–1303. [Google Scholar] [PubMed]
- Weaver, L.T.; Laker, M.F.; Nelson, R. Neonatal intestinal lactase activity. Arch. Dis. Child. 1986, 61, 896–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neu, J. Gastrointestinal maturation and implications for infant feeding. Early Hum. Dev. 2007, 83, 767–775. [Google Scholar] [CrossRef] [PubMed]
- de Vrese, M.; Sieber, R.; Stransky, M. Lactose in human nutrition. Schweiz. Med. Wochenschr. 1998, 128, 1393–1400. [Google Scholar] [PubMed]
- Tan-Dy, C.R.Y.; Ohlsson, A. Lactase treated feeds to promote growth and feeding tolerance in preterm infants. Cochrane Database Syst. Rev. 2013. Art. No.: CD004591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, R.J.; Schanler, R.J.; Lau, C.; Heitkemper, M.; Ou, C.N.; Smith, E.O. Early feeding, feeding tolerance, and lactase activity in preterm infants. J. Pediatr. 1998, 133, 645–649. [Google Scholar] [CrossRef]
- Cederlund, A.; Kai-Larsen, Y.; Printz, G.; Yoshio, H.; Alvelius, G.; Lagercrantz, H.; Stromberg, R.; Jornvall, H.; Gudmundsson, G.H. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis. PLoS ONE 2013, 8, e53876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leseva, M.N.; Grand, R.J.; Klett, H.; Boerries, M.; Busch, H.; Binder, A.M.; Michels, K.B. Differences in DNA methylation and functional expression in lactase persistent and non-persistent individuals. Sci. Rep. 2018, 8, 5649. [Google Scholar] [CrossRef] [PubMed]
- Gerbault, P.; Liebert, A.; Itan, Y.; Powell, A.; Currat, M.; Burger, J.; Swallow, D.M.; Thomas, M.G. Evolution of lactase persistence: An example of human niche construction. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 863–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, C.J.E.; Mulcare, C.A.; Itan, Y.; Thomas, M.G.; Swallow, D.M. Lactose digestion and the evolutionary genetics of lactase persistence. Hum. Genet. 2009, 124, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Itan, Y.; Powell, A.; Beaumont, M.A.; Burger, J.; Thomas, M.G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 2009, 5, e1000491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, R.; Hellmann, I.; Hubisz, M.; Bustamante, C.; Clark, A.G. Recent and ongoing selection in the human genome. Nat. Rev. Genet. 2007, 8, 857–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tishkoff, S.A.; Reed, F.A.; Ranciaro, A.; Voight, B.F.; Babbitt, C.C.; Silverman, J.S.; Powell, K.; Mortensen, H.M.; Hirbo, J.B.; Osman, M.; et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007, 39, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Evershed, R.P.; Payne, S.; Sherratt, A.G.; Copley, M.S.; Coolidge, J.; Urem-Kotsu, D.; Kotsakis, K.; Özdoǧan, M.; Özdoǧan, A.E.; Nieuwenhuyse, O.; et al. Earliest date for milk use in the Near East and Southeastern Europe linked to cattle herding. Nature 2008, 455, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Makarewicz, C.; Tuross, N. Finding fodder and tracking transhumance: Isotopic detection of goat domestication processes in the Near East. Curr. Anthropol. 2012, 53, 495–505. [Google Scholar] [CrossRef]
- Helmer, D.; Vigne, J.-D. Was milk a “secondary product” in the Old World Neolithisation process? Its role in the domestication of cattle, sheep and goat. Europe 2007, 42, 9–40. [Google Scholar]
- Amiri, M.; Diekmann, L.; von Köckritz-Blickwede, M.; Naim, H.Y. The diverse forms of lactose intolerance and the putative linkage to several cancers. Nutrients 2015, 7, 7209–7230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.L.; Swallow, D.M. The impact of cis-acting polymorphisms on the human phenotype. Hugo J. 2011, 5, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrie, V.; Buske, O.J.; Oh, E.; Jeremian, R.; Ptak, C.; Gasinas, G.; Maleckas, A.; Petereit, R.; Avirbliene, A.; Adamonis, K.; et al. Lactase nonpersistence is directed by DNA-variation-dependent epigenetic aging. Nat. Struct. Mol. Biol. 2016, 23, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Swallow, D.M.; Troelsen, J.T. Escape from epigenetic silencing of lactase expression is triggered by a single-nucleotide change. Nat. Struct. Mol. Biol. 2016, 23, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Ranciaro, A.; Campbell, M.C.; Hirbo, J.B.; Ko, W.Y.; Froment, A.; Anagnostou, P.; Kotze, M.J.; Ibrahim, M.; Nyambo, T.; Omar, S.A.; et al. Genetic origins of lactase persistence and the spread of pastoralism in africa. Am. J. Hum. Genet. 2014, 94, 496–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauri, H.P.; Sander, B.; Naim, H. Induction of lactase biosynthesis in the human intestinal epithelial cell line Caco-2. Eur. J. Biochem. 1994, 219, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Madan, A.; Furuta, G.T.; Colgan, S.P.; Sibley, E. Lactase gene transcription is activated in response to hypoxia in intestinal epithelial cells. Mol. Genet. Metab. 2002, 75, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Lev, R.; Bender, M.S.; Appleton, H.D. The biochemical and histochemical demonstration of lactase induction in fetal rat intestine by intra-amniotic injection of lactose. Histochemistry 1979, 61, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Venema, K. Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int. Dairy J. 2012, 22, 123–140. [Google Scholar] [CrossRef]
- Campbell, A.K.; Matthews, S.B.; Vassel, N.; Cox, C.D.; Naseem, R.; Chaichi, J.; Holland, I.B.; Green, J.; Wann, K.T. Bacterial metabolic “toxins”: A new mechanism for lactose and food intolerance, and irritable bowel syndrome. Toxicology 2010, 278, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Robayo-Torres, C.C.; Nichols, B.L. Molecular differentiation of congenital lactase deficiency from adult-type hypolactasia. Nutr. Rev. 2007, 65, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Uchida, N.; Sakamoto, O.; Irie, M.; Abukawa, D.; Takeyama, J.; Kure, S.; Tsuchiya, S. Two Novel mutations in the lactase gene in a Japanese infant with congenital lactase deficiency. Tohoku J. Exp. Med. 2012, 227, 69–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Chumpitazi, B.P.; Hollister, E.B.; Oezguen, N.; Tsai, C.M.; McMeans, A.R.; Luna, R.A.; Savidge, T.C.; Versalovic, J.; Shulman, R.J. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes 2014, 5, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumpitazi, B.P.; Cope, J.L.; Hollister, E.B.; Tsai, C.M.; McMeans, A.R.; Luna, R.A.; Versalovic, J.; Shulman, R.J. Randomised clinical trial: Gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment. Pharmacol. Ther. 2015, 42, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Altobelli, E.; Del Negro, V.; Angeletti, P.M.; Latella, G. Low-FODMAP diet improves irritable bowel syndrome symptoms: A meta-analysis. Nutrients 2017, 9, E940. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A. Functional gastrointestinal disorders: History, pathophysiology, clinical features, and Rome IV. Gastroenterology 2016, 150, 1262–1279.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benninga, M.A.; Nurko, S.; Faure, C.; Hyman, P.E.; St James Roberts, I.; Schechter, N.L. Childhood functional gastrointestinal disorders: Neonate/toddler. Gastroenterology 2016, 150, 1443–1455.e2. [Google Scholar] [CrossRef] [PubMed]
- Hyams, J.S.; Di Lorenzo, C.; Saps, M.; Shulman, R.J.; Staiano, A.; Van Tilburg, M. Childhood functional gastrointestinal disorders: Child/adolescent. Gastroenterology 2016, 150, 1456–1468.e2. [Google Scholar] [CrossRef] [PubMed]
- Heyman, M.B.; Care, P. Lactose intolerance in infants, children, and adolescents. Pediatrics 2006, 118, 1279–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrosa-Haro, A.; Flores-Fong, L.E. Fecal Excretion of Reducing Substances in Infants with Dyschezia. J. Pediatr. Gastroenterol. Nutr. 2013, 57, E82. [Google Scholar]
- Codex Alimentarius Food Standards Commission. Standard for infant formula and formulas for special medical purposes intended for infants. Codex Standard number 72–1981, revision 2007. pp. 1–21. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B72-1981%252FCXS_072e.pdf (accessed on 12 November 2019).
- Hertzler, S.R.; Huynh, B.C.L.; Savaiano, D.A. How much lactose is low lactose? J. Am. Diet. Assoc. 1996, 96, 243–246. [Google Scholar] [CrossRef]
- Deng, Y.; Misselwitz, B.; Dai, N.; Fox, M. Lactose intolerance in adults: Biological mechanism and dietary management. Nutrients 2015, 7, 8020–8035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasbarrini, A.; Corazza, G.R.; Gasbarrini, G.; Montalto, M.; Di Stefano, M.; Basilisco, G.; Parodi, A.; Satta, P.U.; Vernia, P.; Anania, C.; et al. Methodology and indications of H2-breath testing in gastrointestinal diseases: The Rome consensus conference. Aliment. Pharmacol. Ther. 2009, 29, 1–3. [Google Scholar] [PubMed]
- Lomer, M.C.E. The aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. Aliment. Pharmacol. Ther. 2015, 41, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Mattar, R.; Mazo, de Campos Mazo, D.F.; Carrilho, F.J. Lactose intolerance: Diagnosis, genetic, and clinical factors. Clin. Exp. Gastroenterol. 2012, 5, 113–121. [Google Scholar]
- Lukito, W.; Malik, S.G.; Surono, I.S.; Wahlqvist, M.L. From “lactose intolerance” to “lactose nutrition”. Asia Pac. J. Clin. Nutr. 2015, 24, S1–S8. [Google Scholar] [PubMed]
- Rosado, J.L.; Gonzalez, C.; Valencia, M.E.; López, P.; Palma, M.; López, B.; Mejía, L.; Báez, M. Lactose maldigestion and milk intolerance: A study in rural and urban Mexico using physiological doses of milk. J. Nutr. 1994, 124, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on lactose thresholds in lactose intolerance and galactosaemia. EFSA J. 2010, 8, 1777. [Google Scholar] [CrossRef]
- Suchy, F.J.; Brannon, P.M.; Carpenter, T.O.; Fernandez, J.R.; Gilsanz, V.; Gould, J.B.; Hall, K.; Hui, S.L.; Lupton, J.; Mennella, J.; et al. NIH consensus development conference statement: Lactose intolerance and health. NIH Consens. State Sci. Statements 2010, 27, 1–27. [Google Scholar] [PubMed]
- Matte, J.J.; Britten, M.; Girard, C.L. The importance of milk as a source of vitamin B12 for human nutrition. Anim. Front. 2014, 4, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Soeparto, P.; Stobo, E.A.; Walker-Smith, J.A. Role of chemical examination of the stool in diagnosis of sugar malabsorption in children. Arch. Dis. Child. 1972, 47, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostoni, C.; Turck, D. Is cow’s milk harmful to a child’s health? J. Pediatr. Gastroenterol. Nutr. 2011, 53, 594–600. [Google Scholar] [PubMed]
- Guzmàn-Maldonado, H.; Paredes-Lòpez, O.; Biliaderis, C.G. Amylolytic enzymes and products derived from starch: A review. Crit. Rev. Food Sci. Nutr. 1995, 35, 373–403. [Google Scholar] [CrossRef] [PubMed]
- Hofman, D.L.; van Buul, V.J.; Brouns, F.J.P.H. Nutrition, health, and regulatory aspects of digestible maltodextrins. Crit. Rev. Food Sci. Nutr. 2016, 56, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slupsky, C.M.; He, X.; Hernell, O.; Andersson, Y.; Rudolph, C.; Lönnerdal, B.; West, C.E. Postprandial metabolic response of breast-fed infants and infants fed lactose-free vs regular infant formula: A randomized controlled trial. Sci. Rep. 2017, 7, 3640. [Google Scholar] [CrossRef] [PubMed]
- Keim, N.L.; Levin, R.J.; Havel, P.J. Carbohydrates. In Modern Nutrition in Health and Disease; Jones & Bartlett Learning: Burlington, MA, USA, 2014; pp. 36–57. [Google Scholar]
- Adeva-Andany, M.M.; Perez-Felpete, N.; Fernandez-Fernandez, C.; Donapetry-Garcia, C.; Pazos-Garcia, C. Liver glucose metabolism in humans. Biosci. Rep. 2016, 36, e00416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, B.E.; Tang, M.; Griese, K.; Krebs, N.F. Consumption of a corn-sugar based infant formula is associated with higher C-peptide secretion compared to lactose based formula among exclusively formula fed infants. FASEB J. 2016, 30, 1. supplement, 673.7. [Google Scholar]
- Guilbaud, A.; Niquet-Leridon, C.; Boulanger, E.; Tessier, F. How can diet affect the accumulation of advanced glycation end-products in the human body? Foods 2016, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Uribarri, J. Dietary advanced glycation end products and their potential role in cardiometabolic disease in children. Horm. Res. Paediatr. 2016, 85, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Mills, D.J.S.; Tuohy, K.M.; Booth, J.; Buck, M.; Crabbe, M.J.C.; Gibson, G.R.; Ames, J.M. Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J. Appl. Microbiol. 2008, 105, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, K.P.; Chanin, R.; McDonald, C. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin. Gut Microbes 2015, 6, 78–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudisi, F.; Di Fusco, D.; Dinallo, V.; Stolfi, C.; Di Grazia, A.; Marafini, I.; Colantoni, A.; Ortenzi, A.; Alteri, C.; Guerrieri, F.; et al. The food additive maltodextrin promotes endoplasmic reticulum stress–driven mucus depletion and exacerbates intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 457–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, M.C.; Clément, K. Gut microbiota and obesity: Concepts relevant to clinical care. Eur. J. Intern. Med. 2018, 48, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Marcos, J.A.; Perez-Jimenez, F.; Camargo, A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J. Nutr. Biochem. 2019, 70, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.K.; Mennella, J.A. Flavor perception in human infants: Development and functional significance. Proc. Dig. 2011, 83, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forestell, C.A. Flavor perception and preference development in human infants. Ann. Nutr. Metab. 2017, 70, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaveau, P. Brief survey about feeding and obesity. Ann. Pharm. Fr. 2004, 62, 103–110. [Google Scholar] [CrossRef]
- Blass, E.M.; Shide, D.J. Some comparisons among the calming and pain-relieving effects of sucrose, glucose, fructose and lactose in infant rats. Chem. Senses 1994, 19, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Blass, E.M.; Shah, A. Pain-reducing properties of sucrose in human newborns. Chem. Senses 1995, 20, 29–35. [Google Scholar] [CrossRef] [PubMed]
- González de Cosío, T.; Escobar-Zaragoza, L.; González-Castell, L.D.; Rivera-Dommarco, J.Á. Infant feeding practices and deterioration of breastfeeding in Mexico. Salud Publica Mex. 2013, 55 (Suppl. 2), S170–S179. [Google Scholar]
- Walker, R.W.; Goran, M.I. Laboratory determined sugar content and composition of commercial infant formulas, baby foods and common grocery items targeted to children. Nutrients 2015, 7, 5850–5867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidler Mis, N.; Braegger, C.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.D.; Hojsak, I.; Hulst, J.; Indrio, F.; Lapillonne, A.; et al. Sugar in infants, children and adolescents: A position paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 6, 681–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwman, L.M.S.; Fernandez-Calleja, J.M.S.; van der Stelt, I.; Oosting, A.; Keijer, J.; van Schothorst, E.M. Replacing part of glucose with galactose in the postweaning diet protects female but not male mice from high-fat diet-induced adiposity in later life. J. Nutr. 2019, 148, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Mysorekar, I.U.; Cao, B. Microbiome in parturition and preterm birth. Semin. Reprod. Med. 2014, 32, 50–55. [Google Scholar] [PubMed] [Green Version]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinson, L.F.; Payne, M.S.; Keelan, J.A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 2017, 43, 352–369. [Google Scholar] [CrossRef] [PubMed]
- Hawrelak, J.A.; Myers, S.P. The causes of intestinal dysbiosis: A review. Altern. Med. Rev. 2004, 9, 180–197. [Google Scholar] [PubMed]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Mantrana, I.; Bertua, B.; Martínez-Costa, C.; Collado, M.C. Perinatal nutrition: How to take care of the gut microbiota? Clin. Nutr. Exp. 2016, 6, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017, 66, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Ishida, S.; Tanaka, M.; Mitsuyama, E.; Xiao, J.Z.; Odamaki, T. Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS ONE 2018, 13, e0206189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szilagyi, A. Adaptation to lactose in lactase non persistent people: Effects on intolerance and the relationship between dairy food consumption and evalution of diseases. Nutrients 2015, 7, 6751–6779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, K.; Darby, A.C.; Hall, N.; Nau, A.; Bravo, D.; Shirazi-Beechey, S.P. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br. J. Nutr. 2014, 111, S30–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francavilla, R.; Calasso, M.; Calace, L.; Siragusa, S.; Ndagijimana, M.; Vernocchi, P.; Brunetti, L.; Mancino, G.; Tedeschi, G.; Guerzoni, E.; et al. Effect of lactose on gut microbiota and metabolome of infants with cow’s milk allergy. Pediatr. Allergy Immunol. 2012, 23, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, J.; Zhu, Y.; Wang, X.; Hu, X.; Bao, W.; Huang, Y.; Chen, L.; Chen, S.; Yang, W.; et al. Effects of whole milk supplementation on gut microbiota and cardiometabolic biomarkers in subjects with and without lactose malabsorption. Nutrients 2018, 10, 1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aakko, J.; Kumar, H.; Rautava, S.; Wise, A.; Autran, C.; Bode, L.; Isolauri, E.; Salminen, S. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes 2017, 8, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Boehm, G. Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2002, 86, 178F–181F. [Google Scholar] [CrossRef] [PubMed]
- Ben, X.M.; Zhou, X.Y.; Zhao, W.H.; Yu, W.L.; Pan, W.; Zhang, W.L.; Wu, S.M.; Van Beusekom, C.M.; Schaafsma, A. Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation interm infants. Chin. Med. J. 2004, 117, 927–931. [Google Scholar] [PubMed]
- Savaiano, D.A.; Ritter, A.J.; Klaenhammer, T.R.; James, G.M.; Longcore, A.T.; Chandler, J.R.; Walker, W.A.; Foyt, H.L. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): A randomized, double-blind clinical trial. Nutr. J. 2013, 12, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumbeck, J.A.; Rasmussen, H.E.; Hutkins, R.W.; Clarke, J.; Shawron, K.; Keshavarzian, A.; Walter, J. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 2018, 6, 121. [Google Scholar] [CrossRef] [PubMed]
- Azcarate-Peril, M.A.; Ritter, A.J.; Savaiano, D.; Monteagudo-Mera, A.; Anderson, C.; Magness, S.T.; Klaenhammer, T.R. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl. Acad. Sci. USA 2017, 114, E367–E375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, C.E.; Renz, H.; Jenmalm, M.C.; Kozyrskyj, A.L.; Allen, K.J.; Vuillermin, P.; Prescott, S.L. The gut microbiota and inflammatory noncommunicable diseases: Associations and potentials for gut microbiota therapies. J. Allergy Clin. Immunol. 2015, 135, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Velázquez, G.; Parra-Ortiz, M.; De la Mora-De la Mora, I.; García-Torres, I.; Enríquez-Flores, S.; Alcántara-Ortigoza, M.A.; González-del Angel, A.; Velázquez-Aragón, J.; Ortiz-Hernández, R.; Cruz-Rubio, J.M.; et al. Effects of fructans from Mexican agave in newborns fed with infant formula: A randomized controlled trial. Nutrients 2015, 7, 8939–8951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, H.J. Role of colonic short-chain fatty acid transport in diarrhea. Annu. Rev. Physiol. 2010, 72, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Savaiano, D.A. Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am. J. Clin. Nutr. 1996, 64, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Leturque, A.; Brot-Laroche, E.; Le Gall, M.; Stolarczyk, E.; Tobin, V. The role of GLUT2 in dietary sugar handling. J. Physiol. Biochem. 2005, 61, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.C.; Coate, K.C.; Winnick, J.J.; An, Z.; Cherrington, A.D. Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 2012, 3, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, H.S.; Lee, W.J.; Lee, M.R. Revisiting lactose as an enhancer of calcium absorption. Int. Dairy J. 2012, 22, 147–151. [Google Scholar] [CrossRef]
- Saulnier, D.M.; Spinler, J.K.; Gibson, G.R.; Versalovic, J. Mechanisms of probiosis and prebiosis: Considerations for enhanced functional foods. Curr. Opin. Biotechnol. 2009, 20, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.A.; Phillips, T.; Macdonald, I. The influence of glucose on serum galactose levels in man. Metabolism 1983, 32, 250–256. [Google Scholar] [CrossRef]
- van Weeren, P.C.; De Bruyn, K.M.T.; De Vries-Smits, A.M.M.; van Lint, J.; Burgering, B.M.T. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J. Biol. Chem. 1998, 273, 13150–13156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuttall, F.Q.; Gannon, M.C. Dietary management of type 2 diabetes: A personal odyssey. J. Am. Coll. Nutr. 2007, 26, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Urashima, T.; Fukuda, K.; Messer, M. Evolution of milk oligosaccharides and lactose: A hypothesis. Animal 2012, 6, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Shwe, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp. Gerontol. 2018, 101, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.F.; Carvalho, R.A.; Veiga, F.J.; Jones, J.F. Effects of galactose on direct and indirect pathways estimates of hepatic glycogen synthesis. Metab. Eng. 2010, 12, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Elsas, L.J.; Acosta, P.B. Inherited metabolic disease: Amino acids, organic acids, and galactose. In Modern Nutrition in Health and Disease, 11th ed.; Ross., A.C., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 906–969. [Google Scholar]
- Tormo, R.; Martin, B.; Rivero, G.C.; Dominguez, V.; Segurola, H.; Cardenas, G. Lactose intake and brain functions. In Proceedings of the ESPGHAN Congres 2019, Glasgow, UK, 5–8 June 2019; p. N-P-088. [Google Scholar]
- Guo, J.; Givens, D.; Astrup, A.; Bakker, S.J.L.; Goossens, G.H.; Kratz, M.; Marette, A.; Pijl, H.; Soedamah-Muthu, S.S. The impact of dairy products in the development of type 2 diabetes: Where does the evidence stand in 2019? Adv. Nutr. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, J.S.J.; McRae, J.L.; Kukuljan, S.; Woodford, K.; Elliott, R.B.; Swinburn, B.; Dwyer, K.M. A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes. Nutr. Diabetes 2017, 15, e274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K.A. Systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 14, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, S.B.; Garland, C.F.; Gorham, E.D.; Garland, F.C. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia 2008, 51, 1391–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Writing Group for the TRIGR Study Group; Knip, M.; Åkerblom, H.K.; Al Taji, E.; Becker, D.; Bruining, J.; Castano, L.; Danne, T.; de Beaufort, C.; Dosch, H.M.; et al. Effect of hydrolyzed infant formula vs conventional formula on risk of type 1 diabetes. The TRIGR randomized clinical trial. JAMA 2018, 319, 38–48. [Google Scholar] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Velarde, E.; Delgado-Franco, D.; García-Gutiérrez, M.; Gurrola-Díaz, C.; Larrosa-Haro, A.; Montijo-Barrios, E.; Muskiet, F.A.J.; Vargas-Guerrero, B.; Geurts, J. The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting. Nutrients 2019, 11, 2737. https://doi.org/10.3390/nu11112737
Romero-Velarde E, Delgado-Franco D, García-Gutiérrez M, Gurrola-Díaz C, Larrosa-Haro A, Montijo-Barrios E, Muskiet FAJ, Vargas-Guerrero B, Geurts J. The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting. Nutrients. 2019; 11(11):2737. https://doi.org/10.3390/nu11112737
Chicago/Turabian StyleRomero-Velarde, Enrique, Dagoberto Delgado-Franco, Mariana García-Gutiérrez, Carmen Gurrola-Díaz, Alfredo Larrosa-Haro, Ericka Montijo-Barrios, Frits A. J. Muskiet, Belinda Vargas-Guerrero, and Jan Geurts. 2019. "The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting" Nutrients 11, no. 11: 2737. https://doi.org/10.3390/nu11112737
APA StyleRomero-Velarde, E., Delgado-Franco, D., García-Gutiérrez, M., Gurrola-Díaz, C., Larrosa-Haro, A., Montijo-Barrios, E., Muskiet, F. A. J., Vargas-Guerrero, B., & Geurts, J. (2019). The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting. Nutrients, 11(11), 2737. https://doi.org/10.3390/nu11112737