Caffeine Supplementation and Physical Performance, Muscle Damage and Perception of Fatigue in Soccer Players: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategies
2.2. Inclusion and Exclusion Criteria
3. Results
3.1. Main Search
3.2. Caffeine Supplementation
3.3. Outcome Measures
4. Discussion
4.1. Impact on Sports Performance
4.2. Impact on Muscle Damage
4.3. Impact on the Perception of Fatigue
4.4. Caffeine Dose and Inter-Individual Responses to Caffeine Administration
4.5. Strengths, Limitations and Future Lines of Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FIFA Communications Division. The FIFA Big Count 2006: 230 Million Active in Football. 2007. Available online: https://www.fifa.com/mm/document/fifafacts/bcoffsurv/bigcount.statspackage_7024.pdf (accessed on 18 July 2018).
- Cornelissen, S.; Maennig, W. On the Political Economy of ‘feel-good’ effects at Sport Mega-Events: Experiences from FIFA Germany 2006 and Prospects for South Africa 2010. Alternation 2010, 17, 96–120. [Google Scholar]
- Haycraft, J.A.; Kovalchik, S.; Pyne, D.B.; Robertson, S. Physical characteristics of players within the Australian football league participation pathways: A systematic review. Sports Med. Open 2017, 3, 46. [Google Scholar] [CrossRef] [PubMed]
- Sporis, G.; Jukic, I.; Ostojic, S.M.; Milanovic, D. Fitness profiling in soccer: Physical and physiologic characteristics of elite players. J. Strength Cond. Res. 2009, 23, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Mohr, M.; Steensberg, A.; Bencke, J.; Kjaer, M.; Bangsbo, J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006, 38, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Chia, J.S.; Barrett, L.A.; Chow, J.Y.; Burns, S.F. Effects of caffeine supplementation on performance in ball games. Sports Med. 2017, 47, 2453–2471. [Google Scholar] [CrossRef] [PubMed]
- Holway, F.E.; Spriet, L.L. Sport-specific nutrition: Practical strategies for team sports. J. Sports Sci. 2011, 29, S115–S125. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D. Dietary supplements and team-sport performance. Sports Med. 2010, 40, 995–1017. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Roelofs, E.J.; Hirsch, K.R.; Mock, M.G. Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur. J. Sport Sci. 2015. [Google Scholar] [CrossRef]
- Glaister, M.; Muniz-Pumares, D.; Patterson, S.D.; Foley, P.; McInnes, G. caffeine supplementation and peak anaerobic power output. Eur. J. Sport. Sci. 2015, 15, 400–406. [Google Scholar] [CrossRef]
- Australian Institute of Sport. Australian Institute of Sport. 2014. Available online: https://www.sportaus.gov.au/ais (accessed on 25 October 2017).
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Munoz-Fernandez, V.E.; Munoz, G.; Fernandez-Elias, V.E.; Ortega, J.F.; Hamouti, N.; Barbero, J.C.; Munoz-Guerra, J. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 2012, 7, e31380. [Google Scholar] [CrossRef] [PubMed]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.B.; Korgaokar, A.; Farley, R.S.; Coons, J.M.; Caputo, J.L. Caffeine supplementation and reactive agility in elite youth soccer players. Pediatr. Exerc. Sci. 2014, 26, 168–176. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int. J. Sport Nutr. Exerc. Metab. 2018. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.A., Jr.; Caldas, L.C.; De Souza, H.L.; Vitzel, K.F.; Cholewa, J.M.; Duncan, M.J.; Guimaraes-Ferreira, L. The acute effects of plyometric and sled towing stimuli with and without caffeine ingestion on vertical jump performance in professional soccer players. J. Int. Soc. Sports Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, A.; Mougios, V.; Smilios, I.; Rodosthenous, J.; Hadjicharalambous, M. Caffeine supplementation: Ergogenic in both high and low caffeine responders. Int. J. Sports Physiol. Perform. 2018, 14, 1–25. [Google Scholar] [CrossRef]
- Astorino, T.A.; Matera, A.J.; Basinger, J.; Evans, M.; Schurman, T.; Marquez, R. Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 2012, 42, 1803–1808. [Google Scholar] [CrossRef]
- Ellis, M.; Noon, M.; Myers, T.; Clarke, N. Low doses of caffeine: Enhancement of physical performance in elite adolescent male soccer players. Int. J. Sports Physiol. Perform. 2018, 9, 1–21. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- Hespel, P.; Maughan, R.J.; Greenhaff, P.L. Dietary supplements for football. J. Sports Sci. 2006, 24, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [PubMed]
- Andrade-Souza, V.A.; Bertuzzi, R.; de Araujo, G.G.; Bishop, D.; Lima-Silva, A.E. Effects of isolated or combined carbohydrate and caffeine supplementation between 2 daily training sessions on soccer performance. Appl. Physiol. Nutr. Metab. 2015, 40, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Guttierres, A.P.M.; Alfenas, R.d.C.; Gatti, K.; Lima, J.R.P.; Silva, Â.A.; Natali, A.J.; Marins, J.C.B. Metabolic effects of a caffeinated sports drink consumed during a soccer match. Motriz: Revista de Educação Física 2013, 19, 688–695. [Google Scholar] [Green Version]
- Lara, B.; Gonzalez-Millan, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Munoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Gant, N.; Ali, A.; Foskett, A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Guttierres, A.P.M.; Natali, A.J.; Alfenas, R.D.C.G.; Marins, J.C.B. Ergogenic Effect of a caffeinated sports drink on performance in soccer specific abilities tests. Revista Brasileira de Medicina do Esporte 2009, 15, 450–454. [Google Scholar] [CrossRef]
- Machado, M.; Koch, A.J.; Willardson, J.M.; dos Santos, F.C.; Curty, V.M.; Pereira, L.N. Caffeine does not augment markers of muscle damage or leukocytosis following resistance exercise. Int. J. Sports Physiol. Perform. 2010, 5, 18–26. [Google Scholar]
- Machado, M.; Antunes, W.D.; Tamy, A.L.M.; Azevedo, P.G.; Barreto, J.G.; Hackney, A.C. Effect of a single dose of caffeine supplementation and intermittent-interval exercise on muscle damage markers in soccer players. J. Exerc. Sci. Fit. 2009, 7, 91–97. [Google Scholar] [CrossRef]
- Machado, M.; Breder, A.C.; Ximenes, M.C.; Simões, J.R.; Vigo, J.F.F. Caffeine supplementation and muscle damage in soccer players. Braz. J. Pharm. 2009, 45, 257–261. [Google Scholar] [CrossRef]
- Bassini-Cameron, A.; Sweet, E.; Bottino, A.; Bittar, C.; Veiga, C.; Cameron, L.C. Effect of caffeine supplementation on haematological and biochemical variables in elite soccer players under physical stress conditions. Br. J. Sports Med. 2007, 41, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Young, W.B.; Doyle, T.L.; Sheppard, T.A.; Newton, R.U. An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J. Sci. Med. Sport 2006, 9, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A Multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond Res. 2005, 19, 76–78. [Google Scholar]
- Bangsbo, J. The Physiology of soccer—With special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar] [PubMed]
- Roozen, M. Illinois Agility Test. NSCA’s Perform. Train. J. 2004, 3, 5–6. [Google Scholar]
- Serrano, J.; Shahidian, S.; Sampaio, J.; Leite, N. The importance of sports performance factors and training contents from the perspective of futsal coaches. J. Hum. Kinet. 2013, 38, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I. Lactate, muscle glycogen and exercise performance in man. Acta Physiol. Scand. 1981, 495, 1–35. [Google Scholar]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Thorpe, R.; Sunderland, C. Muscle damage, endocrine, and immune marker response to a soccer match. J. Strength Cond. Res. 2012, 26, 2783–2790. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Sathasivam, P.; Rowland, M.; Marko, N.; Greer, F.; Battram, D. Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test. Can. J. Physiol. Pharmacol. 2001, 79, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.E.; Jentjens, R.L.; Wallis, G.A.; Jeukendrup, A.E. Caffeine increases exogenous carbohydrate oxidation during exercise. J. Appl. Physiol. 2005, 99, 844–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, M.; Smith, P. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A Meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Ramirez, J.A.; Munoz, G.; Portillo, J.; Gonzalez-Millan, C.; Munoz, V.; Barbero-Alvarez, J.C.; Munoz-Guerra, J. Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl. Physiol. Nutr. Metab. 2013, 38, 368–374. [Google Scholar] [CrossRef]
- Astorino, T.A.; Cottrell, T.; Lozano, A.T.; Aburto-Pratt, K.; Duhon, J. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol. Behav. 2012, 106, 211–217. [Google Scholar] [CrossRef]
- Turley, K.; Eusse, P.A.; Thomas, M.M.; Townsend, J.R.; Morton, A.B. Effects of different doses of caffeine on anaerobic exercise in boys. Pediatr. Exerc. Sci. 2015, 27, 50–56. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M.; Davison, R.C.; Hughes, M.G. Caffeine is ergogenic after supplementation of oral creatine monohydrate. Med. Sci. Sports Exerc. 2002, 34, 1785–1792. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef]
- Lara, B.; Ruiz-Vicente, D.; Areces, F.; Abian-Vicen, J.; Salinero, J.J.; Gonzalez-Millan, C.; Gallo-Salazar, C.; Del Coso, J. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br. J. Nutr. 2015, 114, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Skinner, T.L.; Jenkins, D.G.; Coombes, J.S.; Taaffe, D.R.; Leveritt, M.D. Dose response of caffeine on 2000-m rowing performance. Med. Sci. Sports Exerc. 2010, 42, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
Author/s | Population | Intervention | Outcomes Analyzed | Main Conclusion |
---|---|---|---|---|
Ellis M. et al. 2018 [21] | 15 male elite youth players (16 ± 1 years) | 1, 2 or 3 mg/kg of caffeine capsules 60 min before the start | 20-m sprint Arrowhead agility CMJ Yo-Yo IR1 | ↑ 20-m sprint ↑ Arrowhead agility ↑ CMJ ↑ Yo-Yo IR1 |
Apostolidis A. et al. 2018 [19] | 20 well-trained male players High (n = 11) and low (n = 9) responders (21.5 ± 4 years) | 6 mg/kg of caffeine capsules 60 min before the start | CMJ Reaction time Time to fatigue | ↑ CMJ † Reaction time ↑ Time to fatigue |
Guerra MA Jr. et al. 2018 [18] | 12 male professional players (23 ± 5 years) | 5 mg/kg of caffeine + 20% carbohydrate solution 60 min before the start | CMJ at 1, 3 and 5 min after the conditioning stimulus | ↑ CMJ |
Ranchordas et al., 2018 [17] | 10 male university-standard players (19 ± 1 years) | 200 mg (≈2.7 g/kg) of caffeinated gum 5 min before the start | 20-m sprint CMJ Yo-Yo IR1 | † 20-m sprint ↑ CMJ ↑ Yo-Yo IR1 |
Andrade Souza, V. et al. 2015 [25] | 11 male amateur players (25.4 ± 2.3 years) | 6 mg/kg of caffeine capsules 3 h after the LIST | 30-m Repeated-Sprint test CMJ LSPT | † 30-m Repeated-sprint test † CMJ † LSPT |
Jordan, J.et al. 2014 [16] | 17 male elite young players (14.1 ± 0.5 years) | 6 mg/kg of caffeine capsules 60 min before the start | Sprint time Reaction time | † Sprint time ↑ Reaction time on non-dominant leg |
Lara, B. et al. 2014 [27] | 18 female semi-professional players (21 ± 2 years) | 3 mg/kg of caffeinated energy drinks 60 min before the start | Height and power of jump Average speed of running Total distance covered Number of sprints | ↑ Height and power of jump ↑ Average speed of running ↑ Total distance covered ↑Number of sprints |
Astorino, T. et al. 2012 [20] | 15 female collegiate players (19.5 ± 1.1 years) | 255 mL (≈1.3 mg/kg) of caffeinated energy drinks (Redbull) 60 min before the start | Sprint time | † Sprint time |
Del Coso, J. et al. 2012 [16] | 19 male semi-professional players (21 ± 2 years) | 3 mg/kg of caffeine in energy drink 60 min before the start | Maximum height jump Maximum running speed Distance covered Caffeine concentration in urine | ↑ Maximum height jump ↑ Maximum running speed ↑Distance covered ↑Caffeine concentrations in urine |
Gant, N. et al. 2010 [28] | 15 male first team level players (21.3 ± 3 years) | 160 mg/L (≈3.7 mg/kg) of caffeinated sport drinks 60 min before the start and every 15 min during the test | Sprint times Jump power Test of passes Blood lactate Post-exercise caffeine in urine | ↑ Sprint times ↑ Jump power † Test of passes † Blood lactate ↑ Post-exercise caffeine in urine |
Foskett et al. 2009 [15] | 12 male professional players (23.8 ± 4.5 years) | 6 mg/kg of caffeine capsules 60 min before the start | LSPT CMJ | ↑ LSPT ↑CMJ |
Guttierres, A. P. et al. 2009 [29] | 18 male junior players (16.1 ± 0.7 years) | 250 mg/L (≈7.2 mg/kg) of caffeinated sport drinks 20 min before and every 15 min during the test | Jump height Illinois agility test | ↑ Jump height † Illinois agility test |
Author/s | Population | Intervention | Outcomes Analyzed | Main Conclusion |
---|---|---|---|---|
Guttierres, A. P. et al. 2013 [26] | 20 male young players (16.1 ± 0.7 years) | 7.2 mg/kg of caffeinated sport drinks 20 min before and every 15 min during the test | Blood glucose Blood lactate Plasma caffeine Free fatty acids Urine caffeine | ↑ Blood glucose ↑ Blood lactate ↑ Plasma caffeine † Free fatty acids † Urine caffeine |
Machado, M. et al. 2010 [30] | 15 male players (18.4 ± 0.8 years) | 4.5mg/kg of caffeine capsules Immediately before the test | CK LDH ALT AST basophils, eosinophils, neutrophils, monocyte lymphocytes | † CK † LDH † ALT † AST † basophils, eosinophils, neutrophils, monocyte lymphocytes |
Machado, M. et al. 2009 [31] | 20 male players (18.8 ± 1 years) | 4.5 mg/kg of caffeine capsules Immediately before the test | Basic hemogram CK LDH ALT AST AP γ-GT | † Basic hemogram † CK † LDH † ALT † AST † AP † γ-GT |
Machado, M. et al. 2009 [32] | 15 male professional players (19 ± 1 years) | 5.5 mg/kg of caffeine capsules Immediately before the test | CK LDH ALT AST | † CK † LDH † ALT † AST |
Bassini-Cameron, A. et al. 2007 [33] | 22 male professional players (26.0 ± 1.6 years) | 5 mg/kg of caffeine capsules 60 min before the start | CK LDH ALT AST | ↑ CK † LDH ↑ALT † AST |
Author/s | Population | Intervention | Outcomes Analyzed | Main Conclusion |
---|---|---|---|---|
Andrade Souza, V. et al. 2015 [25] | 11 male amateur players (25.4 ± 2.3 years) | 6 mg/kg of caffeine capsules 3 h after the LIST | Perceived effort | † Perceived effort |
Jordan, J.et al. 2014 [16] | 17 male elite young players (14.1 ± 0.5 years) | 6 mg/kg of caffeine capsules 60 min before the start | Heart rate | † Heart rate |
Lara, B. et al. 2014 [27] | 18 female semi-professional players (21 ± 2 years) | 3 mg/kg of caffeinated energy drinks 60 min before the start | Heart rate | † Heart rate |
Guttierres, A. P. et al. 2013 [26] | 20 male young players (16.1 ± 0.7 years) | 7.2 mg/kg of caffeinated sport drinks 20 min before and every 15 min during the test | Perceived effort | † Perceived effort |
Astorino, T. et al. 2012 [20] | 15 female collegiate players (19.5 ± 1.1 years) | 255 mL (≈1.3 mg/kg) of caffeinated energy drinks (Redbull) 60 min before the start | Perceived effort Heart rate | † Perceived effort † Heart rate |
Foskett et al. 2009 [15] | 12 male professional players (23.8 ± 4.5 years) | 6 mg/kg of caffeine capsules 60 min before the start | Heart rate | † Heart rate |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Del Coso, J.; Urdampilleta, A.; León-Guereño, P.; Fernández-Lázaro, D. Caffeine Supplementation and Physical Performance, Muscle Damage and Perception of Fatigue in Soccer Players: A Systematic Review. Nutrients 2019, 11, 440. https://doi.org/10.3390/nu11020440
Mielgo-Ayuso J, Calleja-Gonzalez J, Del Coso J, Urdampilleta A, León-Guereño P, Fernández-Lázaro D. Caffeine Supplementation and Physical Performance, Muscle Damage and Perception of Fatigue in Soccer Players: A Systematic Review. Nutrients. 2019; 11(2):440. https://doi.org/10.3390/nu11020440
Chicago/Turabian StyleMielgo-Ayuso, Juan, Julio Calleja-Gonzalez, Juan Del Coso, Aritz Urdampilleta, Patxi León-Guereño, and Diego Fernández-Lázaro. 2019. "Caffeine Supplementation and Physical Performance, Muscle Damage and Perception of Fatigue in Soccer Players: A Systematic Review" Nutrients 11, no. 2: 440. https://doi.org/10.3390/nu11020440