Inclusion of Sunflower Oil in the Bovine Diet Improves Milk Nutritional Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements and Sample Collection
2.3. Feed Assay
2.4. Milk Fatty Acid Assay
2.5. Determination of Milk Oxidative Stability
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results
3.1. Milk Fatty Acid Composition
3.2. Oxidative Stability of Milk Fat and Sensory Evaluation of Milk
4. Discussion
4.1. Milk Fatty Acid Composition
4.2. Oxidative Stability of Milk Fat and Sensory Evaluation of Milk
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caroli, A.; Poli, A.; Ricotta, D.; Banfi, G.; Cocchi, D. Invited review: Dairy intake and bone health: A viewpoint from the state of the art. J. Dairy Sci. 2011, 94, 5249–5262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, L.A.; Wood, R.J. Milk intake and the risk of type 2 diabetes mellitus, hypertension and prostate cancer. Arq. Bras. Endocrinol. Metabol. 2009, 53, 688–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.Y.; Qin, L.Q.; Wang, P.Y.; Li, W.; Chang, C. Effect of milk tripeptides on blood pressure: A meta-analysis of randomized controlled trials. Nutrition 2008, 24, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.C.; Nicolau, A.; Teixeira, J.A.; Rodrigues, L.R. The effect of bovine milk lactoferrin on human breast cancer cell lines. J. Dairy Sci. 2011, 94, 66–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parodi, P.W. Cows’ milk fat components as potential anticarcinogenic agents. J. Nutr. 1997, 127, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Grummer, R.R. Effect of feed on the composition of milk-fat. J. Dairy Sci. 1991, 74, 3244–3257. [Google Scholar] [CrossRef]
- Astrup, A.; Bradley, B.H.R.; Brenna, J.T.; Delplanque, B.; Ferry, M.; Torres-Gonzalez, M. Regular-Fat Dairy and Human Health: A Synopsis of Symposia Presented in Europe and North America (2014–2015). Nutrients 2016, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Bu, D.P.; Wang, J.Q.; Dhiman, T.R.; Liu, S.J. Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. J. Dairy Sci. 2007, 90, 998–1007. [Google Scholar] [CrossRef]
- Chantaprasarn, N.; Wanapat, M. Effects of sunflower oil supplementation in cassava hay based-diets for lactating dairy cows. Asian-australas. J. Anim. Sci. 2008, 42–50. [Google Scholar] [CrossRef]
- Collomb, M.; Schmid, A.; Sieber, R.; Wechsler, D.; Ryhanen, E.L. Conjugated linoleic acids in milk fat: Variation and physiological effects. Int. Dairy J. 2006, 16, 1347–1361. [Google Scholar] [CrossRef]
- Dilzer, A.; Park, Y. Implication of Conjugated Linoleic Acid (CLA) in Human Health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef] [PubMed]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, E525–E532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.W.; Wang, J.Q.; Yang, Y.X.; Bu, D.P.; Cui, H.; Sun, Y.; Xu, X.Y.; Zhou, L.Y. Effects of different fat mixtures on milk fatty acid composition and oxidative stability of milk fat. Anim. Feed Sci. Technol. 2013, 185, 35–42. [Google Scholar] [CrossRef]
- Hedegaard, R.V.; Kristensen, D.; Nielsen, J.H.; Frost, M.B.; Ostdal, H.; Hermansen, J.E.; Kroger-Ohlen, M.; Skibsted, L.H. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk. J. Dairy Sci. 2006, 89, 495–504. [Google Scholar] [CrossRef]
- Lindmark-Mansson, H.; Akesson, B. Antioxidative factors in milk. Br. J. Nutr. 2000, 84, S103–S110. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W.G.; Stlaurent, A.M.; McQueen, R.E.; Charmley, E. The effect of feeding organically bound selenium and alpha-tocopherol to dairy-cows on susceptibility of milk to oxidation. Can. J. Anim. Sci. 1991, 71, 135–143. [Google Scholar] [CrossRef]
- Patching, S.G.; Gardiner, P.H.E. Recent developments in selenium metabolism and chemical speciation: A review. J. Trace Elem. Med. Biol. 1999, 13, 193–214. [Google Scholar] [CrossRef]
- McDowell, L.R.; Williams, S.N.; Hidiroglou, N.; Njeru, C.A.; Hill, G.M.; Ochoa, L.; Wilkinson, N.S. Vitamin E supplementation for the ruminant. Anim. Feed Sci. Technol. 1996, 60, 273–296. [Google Scholar] [CrossRef]
- National Research Council. Mineral Tolerance of Animals, 2nd revised ed.; National Academy Press: Washington, DC, USA, 2005. [Google Scholar]
- Latimer, G.W., Jr. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Vansoest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [PubMed]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Feng, S.; Lock, A.L.; Garnsworthy, P.C. Technical note: A rapid lipid separation method for determining fatty acid composition of milk (vol 87, pg 3785, 2006). J. Dairy Sci. 2006, 89, 3275. [Google Scholar]
- Shanta, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric method for determination of peroxide values of food lipid. J. AOAC Int. 1994, 77, 421–424. [Google Scholar]
- King, R.L. Oxidation of milk fat globule membrane material.1. Thiobarbituric acid reaction as a measure of oxidized flavor in milk and model systems. J. Dairy Sci. 1962, 45, 1165–1171. [Google Scholar] [CrossRef]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elsevier: Redwood City, CA, USA, 2004. [Google Scholar]
- Meyners, M.; Castura, J.C. Check-All-That-Apply questions. In Novel Techniques in Sensory Characterization and Consumer Profiling; Varela, P., Ares, G., Eds.; CRC Press: Montevideo, Uruguai, 2014. [Google Scholar]
- SAS; Version 9.1; SAS software User’s Guide; SAS Inst. Inc.: Cary, NC, USA, 2004.
- Thanh, L.P.; Suksombat, W. Milk Yield, Composition, and Fatty Acid Profile in Dairy Cows Fed a High-concentrate Diet Blended with Oil Mixtures Rich in Polyunsaturated Fatty Acids. Asian-australas. J. Anim. Sci. 2015, 28, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Rego, O.A.; Alves, S.P.; Antunes, L.M.S.; Rosa, H.J.D.; Alfaia, C.M.M.; Prates, J.A.M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Bessa, R.J.B. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. J. Dairy Sci. 2009, 92, 4530–4540. [Google Scholar] [CrossRef] [PubMed]
- Norum, K.R. Dietary-fat and blood-lipids. Nutr. Rev. 1992, 50, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.D.; Amer, B.; Young, J.F.; Mortensen, G.; Petersen, R.K.; Kristiansen, K.; Dalsgaard, T.K. Medium chain fatty acids from milk induce angiopoietin-like 4 (ANGPTL4) gene expression. Int. Dairy J. 2015, 42, 34–41. [Google Scholar] [CrossRef]
- Mills, S.; Ross, R.P.; Hill, C.; Fitzgerald, G.F.; Stanton, C. Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 2011, 21, 377–401. [Google Scholar] [CrossRef]
- Cruz-Hernandez, C.; Kramer, J.K.G.; Kennelly, J.J.; Glimm, D.R.; Sorensen, B.M.; Okine, E.K.; Goonewardene, L.A.; Weselake, R.J. Evaluating the conjugated linoleic acid and trans 18:1 isomers in milk fat of dairy cows fed increasing amounts of sunflower oil and a constant level of fish oil. J. Dairy Sci. 2007, 90, 3786–3801. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.C.; Harvatine, K.J. Lipid Feeding and Milk Fat Depression. Vet. Clin. North Am. Food Anim. Pract. 2014, 30, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Gervais, R.; Gagnon, F.; Kheadr, E.E.; Van Calsteren, M.R.; Farnworth, E.R.; Fliss, I.; Chouinard, P.Y. Bioaccessibility of fatty acids from conjugated linoleic acid-enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinal model. Int. Dairy J. 2009, 19, 574–581. [Google Scholar] [CrossRef]
- Jedidi, H.; Kheadr, E.; Gagnon, F.; Van Calsteren, M.R.; Farnworth, E.; Fliss, I. In vitro study of the bioavailability of fatty acids in cow milk containing conjugated linoleic acids produced in vivo or added in synthetic form. Int. Dairy J. 2014, 36, 95–100. [Google Scholar] [CrossRef]
- Dewettinck, K.; Rombaut, R.; Thienpont, N.; Le, T.T.; Messens, K.; Van Camp, J. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 2008, 18, 436–457. [Google Scholar] [CrossRef]
- Nantapo, C.T.W.; Muchenje, V.; Hugo, A. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian x Jersey cross cow milk under a pasture-based dairy system. Food Chem. 2014, 146, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Ghosh, M. Reduction of cardiac and aortic cholesterol in hypercholesterolemic rats fed esters of phytosterol and omega-3 fatty acids. J. Food Sci. Technol. Mysore 2015, 52, 2741–2750. [Google Scholar] [CrossRef] [PubMed]
- Lecerf, J.M. Fatty acids and cardiovascular disease. Nutr. Rev. 2009, 67, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Kliem, K.E.; Shingfield, K.J. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. Eur. J. Lipid Sci. Technol. 2016, 118, 1661–1683. [Google Scholar] [CrossRef]
- Rafalowski, R.; Zegarska, Z.; Kuncewicz, A.; Borejszo, Z. Oxidative stability of milk fat in respect to its chemical composition. Int. Dairy J. 2014, 36, 82–87. [Google Scholar] [CrossRef]
- Charmley, E.; Nicholson, J.W.G.; Zee, J.A. Effect of supplemental vitamin-E and selenium in the diet on vitamin-E and selenium levels and control of oxidized flavor in milk from Holstein cows. Can. J. Anim. Sci. 1993, 73, 453–457. [Google Scholar] [CrossRef]
- Wiking, L.; Lokke, M.M.; Kidmose, U.; Sundekilde, U.K.; Dalsgaard, T.K.; Larsen, T.; Feilberg, A. Comparison between novel and standard methods for analysis of free fatty acids in milk—Including relation to rancid flavour. Int. Dairy J. 2017, 75, 22–29. [Google Scholar] [CrossRef]
- Cassens, R.G.; Faustman, C.; Jimenez-Colmenero, F. Modern development in research on color of meat. In Trends in Modern Meat Technology 2; Krol, B., Van Roon, P.S., Houben, J.H., Eds.; Pudoc: Wageningen, The Netherlands, 1988. [Google Scholar]
- Noziere, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Owens, S.L.; Brewer, J.L.; Rankin, S.A. Influence of bacterial cell population and pH on the color of nonfat milk. Lwt.-Food Sci. Technol. 2001, 34, 329–333. [Google Scholar] [CrossRef]
- Amador-Espejo, G.G.; Suarez-Berencia, A.; Juan, B.; Barcenas, M.E.; Trujillo, A.J. Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk. J. Dairy Sci. 2014, 97, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.G.; Kelly, A.L. High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. J. Dairy Res. 2003, 70, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Walstra, P.; Geurts, T.J.; Wouters, J.T.M. Dairy Science and Technology; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Lee, S.J.E.; Sherbon, J.W. Chemical changes in bovine milk fat globule membrane caused by heat treatment and homogenization of whole milk. J. Dairy Res. 2002, 69, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Khanal, R.C.; Dhiman, T.R.; Ure, A.L.; Brennand, C.P.; Boman, R.L.; McMahon, D.J. Consumer acceptability of conjugated linoleic acid-enriched milk and cheddar cheese from cows grazing on pasture. J. Dairy Sci. 2005, 88, 1837–1847. [Google Scholar] [CrossRef]
Treatments 2 | ||||
---|---|---|---|---|
Ingredients (%) | C | A | O | OA |
Corn Silage | 42.00 | 42.00 | 42.00 | 42.00 |
Coast-Cross Hay | 8.00 | 8.00 | 8.00 | 8.00 |
Corn Meal | 20.00 | 20.00 | 16.00 | 16.00 |
Soybean Meal | 18.00 | 18.00 | 18.00 | 18.00 |
Wheatmeal | 4.00 | 4.00 | 4.00 | 4.00 |
Urea | 0.90 | 0.90 | 0.90 | 0.90 |
Salt | 0.50 | 0.49 | 0.50 | 0.49 |
Mineral Complex 1 | 1.00 | 1.00 | 1.00 | 1.00 |
Ammonium Sulfate | 0.04 | 0.04 | 0.04 | 0.04 |
Sodium Bicarbonate | 0.53 | 0.53 | 0.53 | 0.53 |
Sunflower Oil 3 | - | - | 4.00 | 4.00 |
Selenium (mg/kg) | - | 3.50 | - | 3.50 |
Vitamin E (UI/day) | - | 2000 | - | 2000 |
Nutrients (%MS) | ||||
Dry Matter (%) | 62.39 | 62.58 | 62.65 | 62.69 |
Crude Protein | 20.30 | 18.71 | 18.37 | 20.32 |
Ether Extract | 2.51 | 2.51 | 4.27 | 4.14 |
Mineral Matter | 7.00 | 8.03 | 7.94 | 7.84 |
Neutral Detergent Fiber | 34.87 | 34.96 | 34.65 | 34.74 |
Acid Detergent Fiber | 20.36 | 20.40 | 20.79 | 20.68 |
N-Neutral Detergent Fiber | 9.76 | 10.25 | 9.67 | 9.58 |
N-Acid Detergent Fiber | 7.53 | 7.81 | 8.23 | 7.58 |
Cellulose | 17.05 | 16.87 | 17.29 | 17.19 |
Lignin | 2.85 | 2.94 | 2.90 | 2.92 |
Energy (cal/g) | 4033.38 | 3997.37 | 4082.07 | 4094.70 |
Hemicellulose | 14.50 | 14.57 | 13.87 | 14.07 |
Calcium (g/kg) | 12.33 | 9.17 | 9.50 | 9.24 |
Phosphorus (g/kg) | 4.23 | 5.70 | 4.72 | 5.56 |
Magnesium (g/kg) | 2.58 | 2.68 | 2.77 | 2.56 |
Sulfur (g/kg) | 2.54 | 3.33 | 3.00 | 3.16 |
Potassium (g/kg) | 9.11 | 9.07 | 8.85 | 8.92 |
Selenium (mg/kg) | 0.18 | 2.98 | 0.23 | 3.16 |
Iron (mg/kg) | 680.32 | 821.13 | 743.15 | 813.30 |
Copper (mg/kg) | 36.61 | 78.86 | 72.75 | 89.54 |
Zinc (mg/kg) | 120.66 | 193.67 | 176.56 | 186.61 |
Manganese (mg/kg) | 85.70 | 112.88 | 114.59 | 112.88 |
α-Tocopherol (mg/kg) | 21.22 | 60.86 | 26.28 | 67.52 |
Fatty Acids 1 | Treatment | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|
Sunflower Oil | Antioxidants | |||||||
With | Without | With | Without | SEM 2 | O | A | OxA | |
4:0 | 2.4285 | 2.2356 | 2.2978 | 2.3563 | 0.1171 | 0.2334 | 0.7278 | 0.7225 |
6:0 | 1.6576 | 1.6577 | 1.6790 | 1.6363 | 0.1364 | 0.9999 | 0.8268 | 0.6481 |
8:0 | 0.7180 | 0.8504 | 0.7578 | 0.8106 | 0.0498 | 0.0727 | 0.4623 | 0.8241 |
10:0 | 1.6891 | 2.2256 | 1.8704 | 2.0444 | 0.1475 | 0.0169 | 0.4142 | 0.9561 |
10:1 | 0.1320 | 0.1835 | 0.1526 | 0.1630 | 0.0165 | 0.0374 | 0.6622 | 0.2776 |
11:0 | 0.0234 | 0.0343 | 0.0279 | 0.0298 | 0.0034 | 0.0363 | 0.7082 | 0.4225 |
12:0 | 2.0386 | 2.787 | 2.3090 | 2.5169 | 0.1915 | 0.0108 | 0.4515 | 0.9800 |
12:1 | 0.0198 | 0.0313 | 0.0240 | 0.0313 | 0.0038 | 0.0480 | 0.5783 | 0.2086 |
13:0 | 0.0654 | 0.0892 | 0.0761 | 0.0785 | 0.0066 | 0.0161 | 0.7995 | 0.7279 |
iso 13:0 | 0.0342 | 0.0424 | 0.0382 | 0.0384 | 0.0024 | 0.0309 | 0.9643 | 0.1628 |
anteiso 13:0 | 0.0454 | 0.0717 | 0.0550 | 0.0621 | 0.0091 | 0.0067 | 0.4292 | 0.4260 |
14:0 | 7.8408 | 9.7588 | 8.3117 | 9.2880 | 0.5153 | 0.0145 | 0.1934 | 0.6910 |
iso 14:0 | 0.1001 | 0.1095 | 0.0991 | 0.1105 | 0.0012 | 0.4548 | 0.3623 | 0.1158 |
9c-14:1 | 0.5713 | 0.7538 | 0.6378 | 0.6874 | 0.0650 | 0.0420 | 0.5652 | 0.1397 |
15:0 | 0.9283 | 1.1315 | 1.0186 | 1.0411 | 0.0464 | 0.0049 | 0.7350 | 0.4644 |
iso 15:0 | 0.2371 | 0.3014 | 0.2695 | 0.2690 | 0.0154 | 0.0069 | 0.9806 | 0.9652 |
anteiso 15:0 | 0.3833 | 0.4351 | 0.4088 | 0.4096 | 0.0289 | 0.2184 | 0.9855 | 0.1121 |
16:0 | 31.1715 | 36.4695 | 33.2483 | 34.3926 | 1.8373 | 0.0526 | 0.6641 | 0.4625 |
iso 16:0 | 0.2369 | 0.2746 | 0.2472 | 0.2643 | 0.0201 | 0.1987 | 0.5554 | 0.1930 |
9c-16:1 | 1.7331 | 1.9239 | 1.7969 | 1.8601 | 0.1513 | 0.3820 | 0.7708 | 0.6555 |
17:0 | 0.6918 | 0.8211 | 0.7749 | 0.7380 | 0.0369 | 0.0085 | 0.4227 | 0.9527 |
iso 17:0 | 0.4675 | 0.4436 | 0.4605 | 0.4506 | 0.0177 | 0.3531 | 0.6967 | 0.3196 |
17:1 | 0.2422 | 0.2639 | 0.2503 | 0.2558 | 0.0352 | 0.6684 | 0.9124 | 0.9734 |
18:0 | 16.3261 | 12.2372 | 14.9994 | 13.5638 | 1.0331 | 0.0099 | 0.3363 | 0.2094 |
6+7+8+9t-18:1 | 0.4526 | 0.3231 | 0.4114 | 0.3643 | 0.0401 | 0.0316 | 0.4162 | 0.0325 |
10+11+12t-18:1 | 2.2160 | 1.2102 | 1.7667 | 1.6595 | 0.1547 | 0.0001 | 0.6293 | 0.6053 |
9c-18:1 | 20.6488 | 17.5691 | 19.3948 | 18.8231 | 1.7807 | 0.2338 | 0.8227 | 0.8454 |
11c-18:1 | 1.6563 | 1.3782 | 1.5665 | 1.4680 | 0.1442 | 0.1859 | 0.6340 | 0.9206 |
12c-18:1 | 0.8983 | 0.7623 | 0.8480 | 0.8126 | 0.0756 | 0.2168 | 0.7439 | 0.6975 |
13c-18:1 | 0.4921 | 0.4058 | 0.4662 | 0.4316 | 0.0417 | 0.1573 | 0.5645 | 0.7867 |
15c-18:1 | 0.0516 | 0.0356 | 0.0484 | 0.0388 | 0.0046 | 0.0231 | 0.1577 | 0.8662 |
16t-18:1 | 0.2160 | 0.1370 | 0.1935 | 0.1595 | 0.0127 | 0.0002 | 0.0726 | 0.0039 |
18:2 ω6 | 1.5101 | 1.3900 | 1.5002 | 1.4001 | 0.1110 | 0.4722 | 0.5378 | 0.6989 |
9c, 11t-18:2 | 0.6547 | 0.4065 | 0.5381 | 0.5231 | 0.0407 | 0.0002 | 0.7982 | 0.7472 |
18:3ω6 | 0.0702 | 0.0626 | 0.0692 | 0.0636 | 0.0070 | 0.4542 | 0.5868 | 0.1229 |
18:3ω3 | 0.1060 | 0.1094 | 0.1095 | 0.1059 | 0.0099 | 0.8126 | 0.7991 | 0.7656 |
20:0 | 0.0649 | 0.0695 | 0.0732 | 0.0612 | 0.0049 | 0.5121 | 0.0978 | 0.0049 |
20:1 | 0.0727 | 0.0751 | 0.0829 | 0.0649 | 0.0079 | 0.8353 | 0.1255 | 0.2813 |
20:2 | 0.0008 | 0.0006 | 0.0004 | 0.0011 | 0.0002 | 0.4675 | 0.0205 | 0.4675 |
20:3ω6 | 0.0041 | 0.0052 | 0.0041 | 0.0051 | 0.0014 | 0.5885 | 0.6304 | 0.2346 |
20:3ω3 | 0.0063 | 0.0058 | 0.0073 | 0.0048 | 0.0011 | 0.7605 | 0.1033 | 0.1620 |
20:4ω6 | 0.0368 | 0.0404 | 0.0379 | 0.0393 | 0.0072 | 0.7327 | 0.8903 | 0.3689 |
20:5ω3 | 0.0013 | 0.0011 | 0.0008 | 0.0016 | 0.0004 | 0.8343 | 0.2521 | 0.5567 |
21:0 | 0.0057 | 0.0056 | 0.0056 | 0.0057 | 0.0008 | 0.9496 | 0.9496 | 0.9496 |
22:0 | 0.0140 | 0.0053 | 0.0112 | 0.0081 | 0.0031 | 0.0653 | 0.5123 | 0.1425 |
22:1ω9 | 0.0037 | 0.0057 | 0.0047 | 0.0048 | 0.0010 | 0.4667 | 0.9749 | 0.0768 |
22:2 | 0.0010 | 0.0009 | 0.0009 | 0.0010 | 0.0001 | 0.7748 | 0.7748 | 0.0360 |
22:5 | 0.0205 | 0.0225 | 0.0195 | 0.0235 | 0.0026 | 0.6248 | 0.3284 | 0.5644 |
22:6ω3 | 0.0010 | 0.0013 | 0.0012 | 0.0011 | 0.0002 | 0.2976 | 0.9729 | 0.9729 |
23:0 | 0.0038 | 0.0043 | 0.0050 | 0.0030 | 0.0008 | 0.6817 | 0.1032 | 0.2487 |
24:0 | 0.0272 | 0.0281 | 0.0307 | 0.0246 | 0.0033 | 0.8474 | 0.2153 | 0.0267 |
24:1 | 0.0003 | 0.0002 | 0.0004 | 0.0001 | 0.0001 | 0.6506 | 0.2731 | 0.9875 |
Total | 99.0340 | 99.0796 | 99.0209 | 99.0927 | 0.0912 | 0.7272 | 0.5838 | 0.7272 |
Fatty Acids | Treatment | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|
Sunflower Oil | Antioxidants | |||||||
With | Without | With | Without | SEM 1 | O | A | OxA | |
∑CLnA, CLA | 2.3548 | 2.0166 | 2.2424 | 2.1290 | 0.1370 | 0.0932 | 0.5637 | 0.5379 |
ΣSFA | 67.2003 | 71.9411 | 69.0761 | 70.0653 | 2.4490 | 0.1841 | 0.7780 | 0.9559 |
ΣUFA | 31.8327 | 27.1381 | 29.9443 | 29.0265 | 2.3653 | 0.1737 | 0.7865 | 0.9435 |
ΣMUFA | 29.4058 | 25.0594 | 27.6456 | 26.8197 | 2.2377 | 0.1827 | 0.7967 | 0.9042 |
ΣPUFA | 2.4268 | 2.0786 | 2.2987 | 2.2068 | 0.1481 | 0.1098 | 0.6654 | 0.4945 |
Σω3 | 0.1146 | 0.1178 | 0.1189 | 0.1135 | 0.0141 | 0.8199 | 0.6976 | 0.6648 |
Σω6 | 0.1112 | 0.1083 | 0.1113 | 0.1082 | 0.0088 | 0.8186 | 0.8095 | 0.0814 |
SFA/UFA | 2.4365 | 2.9623 | 2.5837 | 2.8150 | 0.3608 | 0.3142 | 0.6553 | 0.7852 |
ω6/ω3 | 1.0686 | 1.0278 | 1.0163 | 1.0801 | 0.1412 | 0.8405 | 0.7530 | 0.0900 |
AI | 2.4823 | 3.4360 | 2.7324 | 3.1858 | 0.3504 | 0.0663 | 0.3701 | 0.8428 |
TI | 3.9813 | 4.6558 | 4.1268 | 4.5103 | 0.6226 | 0.4518 | 0.6675 | 0.6909 |
h/H | 0.5732 | 0.4067 | 0.5024 | 0.4775 | 0.0653 | 0.0845 | 0.7907 | 0.9733 |
Treatment | p-Value 2 | |||||||
---|---|---|---|---|---|---|---|---|
Sunflower Oil | Antioxidants | |||||||
With | Without | With | Without | SEM 1 | O | A | OxA | |
Color perception | 6.77 | 6.15 | 6.38 | 6.54 | 0.17 | 0.012 | 0.522 | 0.006 |
Odor | 6.46 | 6.19 | 6.15 | 6.50 | 0.14 | 0.190 | 0.086 | 0.140 |
Flavor | 6.42 | 6.08 | 6.07 | 6.43 | 0.17 | 0.169 | 0.149 | 0.481 |
Mouthfeel | 6.63 | 6.25 | 6.26 | 6.62 | 0.16 | 0.100 | 0.133 | 0.352 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salles, M.S.V.; D’Abreu, L.F.; Júnior, L.C.R.; César, M.C.; Guimarães, J.G.L.; Segura, J.G.; Rodrigues, C.; Zanetti, M.A.; Pfrimer, K.; Netto, A.S. Inclusion of Sunflower Oil in the Bovine Diet Improves Milk Nutritional Profile. Nutrients 2019, 11, 481. https://doi.org/10.3390/nu11020481
Salles MSV, D’Abreu LF, Júnior LCR, César MC, Guimarães JGL, Segura JG, Rodrigues C, Zanetti MA, Pfrimer K, Netto AS. Inclusion of Sunflower Oil in the Bovine Diet Improves Milk Nutritional Profile. Nutrients. 2019; 11(2):481. https://doi.org/10.3390/nu11020481
Chicago/Turabian StyleSalles, Márcia S. V., Léa F. D’Abreu, Luiz Carlos R. Júnior, Marcelo C. César, Judite G. L. Guimarães, Julio G. Segura, Cintia Rodrigues, Marcus A. Zanetti, Karina Pfrimer, and Arlindo Saran Netto. 2019. "Inclusion of Sunflower Oil in the Bovine Diet Improves Milk Nutritional Profile" Nutrients 11, no. 2: 481. https://doi.org/10.3390/nu11020481
APA StyleSalles, M. S. V., D’Abreu, L. F., Júnior, L. C. R., César, M. C., Guimarães, J. G. L., Segura, J. G., Rodrigues, C., Zanetti, M. A., Pfrimer, K., & Netto, A. S. (2019). Inclusion of Sunflower Oil in the Bovine Diet Improves Milk Nutritional Profile. Nutrients, 11(2), 481. https://doi.org/10.3390/nu11020481