Three Polymethoxyflavones Purified from Ougan (Citrus reticulata Cv. Suavissima) Inhibited LPS-Induced NO Elevation in the Neuroglia BV-2 Cell Line via the JAK2/STAT3 Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. UPLC and UPLC-MS Analysis of Nobiletin, Tangeretin, and 5-Demethylnobiletin
2.4. Crude Extraction and Preparation of the PMF Enrichment Fraction with Solid-Phase Extraction (SPE)
2.5. High-speed Countercurrent Chromatography (HSCCC) Separation of Nobiletin, Tangeretin, and 5-Demethylnobiletin
2.6. Cell Culture and NO Release Analysis
2.7. Cell Viability Assay
2.8. Quantitative Real-Time PCR Assay
2.9. Enzyme-Linked Immunosorbent Assay (ELISA) Assay
2.10. Western Blot Assay
2.11. Verification Assay Using Jak2 Inhibitor and Stat3 Inhibitor
2.12. Statistics
3. Results
3.1. Purification of Nobiletin, Tangeretin, and 5-Demethylnobiletin
3.1.1. SPE
3.1.2. High-Speed Countercurrent Chromatography (HSCCC) Purification
3.1.3. UPLC-MS Analysis
3.2. Polymethoxyflavones Inhibited LPS-Induced NO Release in BV-2 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AP-1 | Activator protein 1 |
BV | Bed volume |
CREB | cAMP-response element binding protein |
DMSO | Dimethyl sulfoxide |
ECL | Electrogenerated chemiluminescence |
ERK1/2 | Extracellular regulated protein kinases 1/2 |
HSCCC | High-speed Countercurrent Chromatography |
IL-1β | Interleukin 1 beta |
IL-6 | Interleukin 6 |
iNOS | Inducible nitric oxide synthase |
JAK2 | Janus kinase 2 |
LPS | Lipopolysaccharides |
NF-kappa B | Nuclear factor-kappa B |
NO | Nitric oxide |
MAPK | Mitogen-activated protein kinase |
p-Akt | phosphorylated AKT serine/threonine kinase 1 |
PCR | Polymerase chain reaction |
PMFs | Polymethoxyflavones |
PVDF | Polyvinylidene fluoride |
qRT-PCR | Quantitative Real-Time Polymerase Chain Reaction |
Rux | Ruxolitinib |
STAT3 | Signal transducer and activator of transcription 3 |
TLR1 | Toll-like receptor 1 |
TLR2 | Toll-like receptor 2 |
TLR4 | Toll-like receptor 4 |
TLR6 | Toll-like receptor 6 |
TNF | Tumor Necrosis Factor α |
UPLC | Ultra Performance Liquid Chromatography |
UPLC-MS | Ultra Performance Liquid Chromatography-Mass Spectrometer |
References
- Surichan, S.; Arroo, R.R.; Ruparelia, K.; Tsatsakis, A.M.; Androutsopoulos, V.P. Nobiletin bioactivation in MDA-MB-468 breast cancer cells by cytochrome P450 CYP1 enzymes. Food Chem. Toxicol. 2018, 113, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Hagenlocher, Y.; Gommeringer, S.; Held, A.; Feilhauer, K.; Koninger, J.; Bischoff, S.C.; Lorentz, A. Nobiletin acts anti-inflammatory on murine IL-10(−/−) colitis and human intestinal fibroblasts. Eur. J. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother. Res. 2015, 29, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.Y.; Zhang, X.L.; Xu, Q.; Xue, X.Y.; Zhang, F.F.; Liang, X.M. UPLC/Q-TOFMS/MS as a powerful technique for rapid identification of polymethoxylated flavones in Fructus aurantii. J. Pharm. Biomed. 2009, 50, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Arafa el, S.A.; Zhu, Q.; Barakat, B.M.; Wani, G.; Zhao, Q.; El-Mahdy, M.A.; Wani, A.A. Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res. 2009, 69, 8910–8917. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cha, B.Y.; Saito, K.; Yamakawa, H.; Choi, S.S.; Yamaguchi, K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.T. Nobiletin improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice. Biochem. Pharm. 2010, 79, 1674–1683. [Google Scholar] [CrossRef]
- He, B.K.; Nohara, K.; Park, N.; Park, Y.S.; Guillory, B.; Zhao, Z.Y.; Garcia, J.M.; Koike, N.; Lee, C.C.; Takahashi, J.S.; et al. The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metab. 2016, 23, 610–621. [Google Scholar] [CrossRef]
- Ho, S.C.; Kuo, C.T. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem. Toxicol. 2014, 71, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qian, J.; Cao, J.P.; Wang, D.L.; Liu, C.R.; Yang, R.X.; Li, X.; Sun, C.D. Antioxidant Capacity, Anticancer Ability and Flavonoids Composition of 35 Citrus (Citrus reticulata Blanco) Varieties. Molecules 2017, 22, 1114. [Google Scholar] [CrossRef]
- Zhang, J.K.; Sun, C.D.; Yan, Y.Y.; Chen, Q.J.; Luo, F.L.; Zhu, X.Y.; Li, X.; Chen, K.S. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chem. 2012, 135, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Kriszbacher, I.; Koppan, M.; Bodis, J. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 353, 429–430. [Google Scholar]
- Casserly, I.; Topol, E. Convergence of atherosclerosis and Alzheimer’s disease: Inflammation, cholesterol, and misfolded proteins. Lancet 2004, 363, 1139–1146. [Google Scholar] [CrossRef]
- Baldwin, A.S., Jr. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol. 1996, 14, 649–683. [Google Scholar] [CrossRef] [PubMed]
- Satriotomo, I.; Bowen, K.K.; Vemuganti, R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J. Neurochem. 2006, 98, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Cario, E.; Podolsky, D.K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 2000, 68, 7010–7017. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, J.; Jung, S.C.; Park, D.B.; Maeng, Y.H.; Hong, J.Y.; Kim, S.J.; Lee, S.R.; Kim, S.J.; Kim, S.J.; et al. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol. Pharm. Bull. 2010, 33, 1814–1821. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Yang, B.; Zhao, H.; Xu, B.; Jiao, W.; Wang, Q.; Wang, Z.; Kuang, H. Tangeretin exerts anti-neuroinflammatory effects via NF-kappaB modulation in lipopolysaccharide-stimulated microglial cells. Int. Immunopharmacol. 2014, 19, 275–282. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Lee, E.J.; Park, J.S.; Jang, S.E.; Kim, D.H.; Kim, H.S. Anti-Inflammatory and Antioxidant Mechanism of Tangeretin in Activated Microglia. J. Neuroimmune Pharmacol. 2016, 11, 294–305. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.N.; Xie, W.H.; Zheng, Y.X.; Cao, J.P.; Cao, P.R.; Chen, Q.J.; Li, X.; Sun, C.D. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression. Nutrients 2016, 8, 599. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, C.; Cao, Y.; Wang, Y.; Duan, W.; Xie, L.; Sun, C.; Li, X. Characterization and Purification of Bergamottin from Citrus grandis (L.) Osbeck cv. Yongjiazaoxiangyou and Its Antiproliferative Activity and Effect on Glucose Consumption in HepG2 cells. Molecules 2017, 22, 1227. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Tang, D.; Wang, Y.; Li, X.; Hong, L.; Sun, C. Characteristics and immune-enhancing activity of pectic polysaccharides from sweet cherry (Prunus avium). Food Chem. 2018, 254, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Abad-Garcia, B.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B.; Vicente, F. On line characterization of 58 phenolic compounds in Citrus fruit juices from Spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry. Talanta 2012, 99, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B.; Valentao, P.; Tomas-Barberan, F.A. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 214–223. [Google Scholar] [CrossRef]
- Li, S.M.; Yu, H.Q.; Ho, C.T. Nobiletin: Efficient and large quantity isolation from orange peel extract. Biomed. Chromatogr. 2006, 20, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, F.W.; Zhang, H.X.; Geng, Y.L.; Yuan, J.P.; Jiang, T. Preparative isolation and purification of polymethoxylated flavones from Tangerine peel using high-speed counter-current chromatography. J. Chromatogr. A 2005, 1090, 188–192. [Google Scholar] [CrossRef]
- Choi, S.Y.; Ko, H.C.; Ko, S.Y.; Hwang, J.H.; Park, J.G.; Kang, S.H.; Han, S.H.; Yun, S.H.; Kim, S.J. Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biol. Pharm. Bull. 2007, 30, 772–778. [Google Scholar] [CrossRef]
- Lin, N.; Sato, T.; Takayama, Y.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem. Pharm. 2003, 65, 2065–2071. [Google Scholar] [CrossRef]
- Murakami, A.; Shigemori, T.; Ohigashi, H. Zingiberaceous and citrus constituents, 1′-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 murine macrophages through different modes of action. J. Nutr. 2005, 135, 2987s–2992s. [Google Scholar] [CrossRef]
- Lai, C.S.; Li, S.; Chai, C.Y.; Lo, C.Y.; Ho, C.T.; Wang, Y.J.; Pan, M.H. Inhibitory effect of citrus 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mice. Carcinogenesis 2007, 28, 2581–2588. [Google Scholar] [CrossRef]
- Verstovsek, S.; Kantarjian, H.M.; Estrov, Z.; Cortes, J.E.; Thomas, D.A.; Kadia, T.; Pierce, S.; Jabbour, E.; Borthakur, G.; Rumi, E.; et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: Survival advantage in comparison to matched historical controls. Blood 2012, 120, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Vaddi, K.; Sarlis, N.J.; Gupta, V. Ruxolitinib, an oral JAK1 and JAK2 inhibitor, in myelofibrosis. Expert Opin. Pharmacother. 2012, 13, 2397–2407. [Google Scholar] [CrossRef] [PubMed]
- Mesa, R.A. Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. Idrugs Investig. Drugs J. 2010, 13, 394–403. [Google Scholar]
- Leidgens, V.; Proske, J.; Rauer, L.; Moeckel, S.; Renner, K.; Bogdahn, U.; Riemenschneider, M.J.; Proescholdt, M.; Vollmann-Zwerenz, A.; Hau, P.; et al. Stattic and metformin inhibit brain tumor initiating cells by reducing STAT3-phosphorylation. Oncotarget 2017, 8, 8250–8263. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhou, F.; Zhang, R.; Claret, F.X. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS ONE 2013, 8, e54565. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; He, J.; Guo, Q.; Hu, D.; Yang, X.; Wang, J.; Kang, Y.; She, R.; Wang, Z.; et al. STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma. Tumour Biol. 2015, 36, 2135–2142. [Google Scholar] [CrossRef]
Chemicals | Source | Address |
---|---|---|
Nobiletin standards | Sigma-Aldrich | St. Louis, MO, USA |
Tangeretin standards | Sigma-Aldrich | St. Louis, MO, USA |
Lipopolysaccharide | Sigma-Aldrich | St. Louis, MO, USA |
methanol | Sigma-Aldrich | St. Louis, MO, USA |
acetonitrile | Sigma-Aldrich | St. Louis, MO, USA |
5-demethylnobiletin standards | Biobiopha Co., Ltd. | Kunming, China |
Nitric oxide assay kit | Beyotime Biotechnology | Shanghai, China |
RPMI 1640 medium | Gibco | Waltham, MA, USA |
trypsin-EDTA | Gibco | Waltham, MA, USA |
Mouse Elisa TNFα kit | R&D Systems | Carlsbad, CA, USA |
Mouse Elisa IL-6 kit | R&D Systems | Carlsbad, CA, USA |
Mouse Elisa IL-1β kit | R&D Systems | Carlsbad, CA, USA |
Hexane | Sinopharm Chemical Reagent Co., Ltd. | Shanghai, China |
ethyl acetate | Sinopharm Chemical Reagent Co., Ltd. | Shanghai, China |
NP40 lysis Buffer | ThermoFisher Scientific | Waltham, MA, USA |
Halt™ Protease and Phosphatase Inhibitor Cocktail | ThermoFisher Scientific | Waltham, MA, USA |
Enhanced BCA Protein Assay Kit | Beyotime Biotechnology | Shanghai, China |
PVDF membrane | ThermoFisher Scientific | Waltham, MA, USA |
ECL kit | Service Bio | Wuhan, China |
Ruxolitinib | MedChemExpress | Shanghai, China |
Stattic | MedChemExpress | Shanghai, China |
Genes | Sequences |
---|---|
GAPDH | F: TCA ACG GCA CAG TCA AGG R: ACT CCA CGA CAT ACT CAG C |
IL-1β | F: AGT AAG TTC CTC TCT GCA AGA GAC T R: CAC TAG GTT TGC CGA GTA GAT CTC |
IL-6 | F: GAG ACT TCC ATC CAG TTG CCT R: CAG GTC TGT TGG GAG TGG TA |
TNFα | F: CGG GCA GGT CTA CTT TGG AG R: ACC CTG AGC CAT AAT CCC CT |
iNOS | F: CGG CAA ACA TGA CTT CAG GC R: GCA CAT CAA AGC GGC CAT AG |
TLR1 | F: TCT CTG AAG GCT TTG TCG ATA CA R: GAC AGA GCC TGT AAG CAT ATT CG |
TLR2 | F: TCT AAA GTC GAT CCG CGA CAT R: TAC CCA GCT CGC TCA CTA CGT |
TLR4 | F: CAA GAA CAT AGA TCT GAG CTT CAA CCC R: GCT GTC CAA TAG GGA AGC TTT CTA GAG |
TLR6 | F: AAC AGG ATA CGG AGC CTT GA R: CCA GGA AAG TCA GCT TCG TC |
JAK2 | F: AAG ATG CTT TCT GGG TTG G R: ACA TTG TCT AAG AGG GAG CAG |
STAT3 | F: ACC TCC AGG ACG ACT TTG AT R: TGT CTT CTG CAC GTA CTC CA |
IκBα | F: TAC CCC TCT ACA TCT TGC CTG T R: GTG TCA TAG CTC TCC TCA TCC TC |
Solvent System (v/v/v/v) | Ratio | Knobiletin | Ktangeretin | K5-demethylnobiletin |
---|---|---|---|---|
Hexane-ethyl acetate-methanol-water | 1:0.8:1.1:1.1 | 0.76 | 1.32 | 2.59 |
Hexane-ethyl acetate-methanol-water | 1:0.8:1.1:1 | 0.69 | 1.09 | 2.42 |
Hexane-ethyl acetate-methanol-water | 1:0.8:1.1:0.9 | 0.57 | 0.88 | 2.21 |
Hexane-ethyl acetate-methanol-water | 1:0.8:1.2:1.1 | 0.63 | 1.39 | 2.63 |
Hexane-ethyl acetate-methanol-water | 1:0.8:1.2:1 | 0.58 | 1.15 | 2.56 |
Hexane-ethyl acetate-methanol-water | 1:0.8:1.2:0.9 | 0.43 | 0.98 | 2.31 |
Hexane-ethyl acetate-methanol-water | 1.1:0.8:1.1:1.1 | 0.67 | 1.21 | 2.36 |
Hexane-ethyl acetate-methanol-water | 1.1:0.8:1.1:1 | 0.61 | 1.13 | 2.10 |
Hexane-ethyl acetate-methanol-water | 1.1:0.8:1.1:0.9 | 0.55 | 0.78 | 1.81 |
Hexane-ethyl acetate-methanol-water | 1.1:0.8:1.2:1.1 | 0.47 | 1.67 | 2.34 |
Hexane-ethyl acetate-methanol-water | 1.1:0.8:1.2:1 | 0.32 | 1.49 | 1.97 |
Hexane-ethyl acetate-methanol-water | 1.1:0.8:1.2:0.9 | 0.26 | 0.90 | 1.77 |
Hexane-ethyl acetate-methanol-water | 1:0.8:1.1:1.1 | 0.76 | 1.32 | 2.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zang, W.; Ji, S.; Cao, J.; Sun, C. Three Polymethoxyflavones Purified from Ougan (Citrus reticulata Cv. Suavissima) Inhibited LPS-Induced NO Elevation in the Neuroglia BV-2 Cell Line via the JAK2/STAT3 Pathway. Nutrients 2019, 11, 791. https://doi.org/10.3390/nu11040791
Wang Y, Zang W, Ji S, Cao J, Sun C. Three Polymethoxyflavones Purified from Ougan (Citrus reticulata Cv. Suavissima) Inhibited LPS-Induced NO Elevation in the Neuroglia BV-2 Cell Line via the JAK2/STAT3 Pathway. Nutrients. 2019; 11(4):791. https://doi.org/10.3390/nu11040791
Chicago/Turabian StyleWang, Yue, Wenjing Zang, Shiyu Ji, Jinping Cao, and Chongde Sun. 2019. "Three Polymethoxyflavones Purified from Ougan (Citrus reticulata Cv. Suavissima) Inhibited LPS-Induced NO Elevation in the Neuroglia BV-2 Cell Line via the JAK2/STAT3 Pathway" Nutrients 11, no. 4: 791. https://doi.org/10.3390/nu11040791
APA StyleWang, Y., Zang, W., Ji, S., Cao, J., & Sun, C. (2019). Three Polymethoxyflavones Purified from Ougan (Citrus reticulata Cv. Suavissima) Inhibited LPS-Induced NO Elevation in the Neuroglia BV-2 Cell Line via the JAK2/STAT3 Pathway. Nutrients, 11(4), 791. https://doi.org/10.3390/nu11040791