Short Chain Fatty Acid Production from Mycoprotein and Mycoprotein Fibre in an In Vitro Fermentation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Batch Fermentation
2.3. Participants
3. Results
3.1. SCFA Production (Table 1)
3.2. Ranking of Substrates (Table 2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nutritional Profile of QuornTM Mycoprotein. Available online: https://www.mycoprotein.org/files/nutritional-profile-of-quorn.pdf (accessed on 24 February 2019).
- Bottin, J.H.; Swann, J.R.; Cropp, E.; Chambers, E.S.; Ford, H.E.; Ghatei, M.A.; Frost, G.S. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: A randomised-controlled trial. Br. J. Nutr. 2016, 116, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Burley, V.J.; Paul, A.W.; Blundell, J.E. Influence of a high-fibre food (myco-protein) on appetite: Effects on satiation (within meals) and satiety (following meals). Eur. J. Clin. Nutr. 1993, 47, 409–418. [Google Scholar] [PubMed]
- Turnbull, W.H.; Walton, J.; Leeds, A.R. Acute effects of mycoprotein on subsequent energy intake and appetite variables. Am. J. Clin. Nutr. 1993, 58, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Wanders, A.J.; van den Borne, J.J.G.C.; de Graaf, C.; Hulshof, T.; Jonathan, M.C.; Kristensen, M.; Mars, M.; Schols, H.A.; Feskens, E.J.M. Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trials. Obes. Rev. 2011, 12, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.K.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015, 64, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Deville, C.; Gharbi, M.; Dandrifosse, G.; Peulen, O.; Devillé, C. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J. Sci. Food Agric. 2007, 87, 1717–1725. [Google Scholar] [CrossRef]
- Wong, K.-H.; Wong, K.-Y.; Kwan, H.-S.; Cheung, P.C.K. Dietary fibers from mushroom sclerotia: 3. In vitro fermentability using human fecal microflora. J. Agric. Food Chem. 2005, 53, 9407–9412. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.A.; Shewry, P.R.; Gibson, G.R.; McCleary, B.V.; Rastall, R.A. In vitro fermentation of oat and barley derived beta-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 2008, 64, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Adiotomre, J.; Eastwood, M.A.; Edwards, C.A.; Brydon, W.G. Dietary fiber: In vitro methods that anticipate nutrition and metabolic activity in humans. Am. J. Clin. Nutr. 1990, 52, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.C.; Edwards, C.A.; Morrison, D.J. Impact of glycosidic bond configuration on short chain fatty acid production from model fermentable carbohydrates by the human gut microbiota. Nutrients 2017, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, W.H.; Ward, T. Mycoprotein reduces glycemia and insulinemia when taken with an oral- glucose-tolerance test. Am. J. Clin. Nutr. 1995, 61, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C.H.S.; McMillan, B. The impact of mycoprotein on blood cholesterol levels: A pilot study. Br. Food J. 2010, 112, 1092–1101. [Google Scholar] [CrossRef]
- Ho, H.V.T.; Sievenpiper, J.L.; Zurbau, A.; Blanco Mejia, S.; Jovanovski, E.; Au-Yeung, F.; Jenkins, A.L.; Vuksan, V. The effect of oat beta-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: A systematic review and meta-analysis of randomised-controlled trials. Br. J. Nutr. 2016, 116, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Mhurchu, C.N.; Poppitt, S.D.; McGill, A.-T.; Leahy, F.E.; Bennett, D.A.; Lin, R.B.; Ormrod, D.; Ward, L.; Strik, C.; Rodgers, A. The effect of the dietary supplement, chitosan, on body weight: A randomised controlled trial in 250 overweight and obese adults. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Bokura, H.; Kobayashi, S. Chitosan decreases total cholesterol in women: A randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr. 2003, 57, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Gietl, E.; Mengerink, W.; de Slegte, J.; Gibson, G.; Rastall, R.; van den Heuvel, E. Factors involved in the in vitro fermentability of short carbohydrates in static faecal batch cultures. Int. J. Carbohydr. Chem. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Li, Z.; Yi, C.-X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F.P.; et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
Ratio (% of SCFA Produced) | ||||
---|---|---|---|---|
Substrate | Total SCFA Production (mmol/L) | Acetate | Propionate | Butyrate |
Control (blank) | 11.13 (0.93) bcdf | 56.91 (6.35) b | 20.12 (2.17) bcd | 22.97 (3.88) b |
Oligofructose | 50.05 (4.35) a | 92.57 (2.82) acdef | 2.57 (0.34) acef | 4.86 (2.72) ade |
Rhamnose | 51.14 (1.90) a | 44.77 (3.13) b | 45.33 (1.95) abdef | 9.90 (2.70) de |
Laminarin | 64.08 (9.0) a | 65.04 (11.51) b | 6.95 (2.48) acef | 28.02 (10.04) bc |
Mycoprotein (whole) | 24.87 (1.68) d | 48.31 (6.53) b | 25.99 (3.51) bcd | 25.70 (3.11) bc |
Mycoprotein fibre | 61.15 (15.73) a | 61.36 (4.17) b | 20.25 (1.28) bcd | 18.39 (5.18) g |
Acetate | Propionate | Butyrate | |||||||
---|---|---|---|---|---|---|---|---|---|
Rank | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 |
1 | OF | Laminarin | Mycoprotein fibre | Rhamnose | Rhamnose | Rhamnose | Laminarin | Laminarin | Laminarin |
2 | Laminarin | OF | OF | Mycoprotein fibre | Mycoprotein fibre | Mycoprotein fibre | Mycoprotein fibre | Mycoprotein (whole) | Mycoprotein fibre |
3 | Mycoprotein fibre | Mycoprotein fibre | Laminarin | Mycoprotein (whole) | Mycoprotein (whole) | Laminarin | Mycoprotein (whole) | Rhamnose | Mycoprotein (whole) |
4 | Rhamnose | Rhamnose | Rhamnose | Laminarin | Laminarin | Mycoprotein (whole) | Rhamnose | Mycoprotein fibre | Rhamnose |
5 | Mycoprotein (whole) | Mycoprotein (whole) | Mycoprotein (whole) | Control | Control | Control | OF | OF | Control |
6 | Control | Control | Control | OF | OF | OF | Control | Control | OF |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, H.C.; Edwards, C.A.; Morrison, D.J. Short Chain Fatty Acid Production from Mycoprotein and Mycoprotein Fibre in an In Vitro Fermentation Model. Nutrients 2019, 11, 800. https://doi.org/10.3390/nu11040800
Harris HC, Edwards CA, Morrison DJ. Short Chain Fatty Acid Production from Mycoprotein and Mycoprotein Fibre in an In Vitro Fermentation Model. Nutrients. 2019; 11(4):800. https://doi.org/10.3390/nu11040800
Chicago/Turabian StyleHarris, Hannah C., Christine A. Edwards, and Douglas J. Morrison. 2019. "Short Chain Fatty Acid Production from Mycoprotein and Mycoprotein Fibre in an In Vitro Fermentation Model" Nutrients 11, no. 4: 800. https://doi.org/10.3390/nu11040800