Association between Dietary Cholesterol and Their Food Sources and Risk for Hypercholesterolemia: The 2012–2016 Korea National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Health Examination Survey
2.3. Dietary Intake Measurement
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Associations between Dietary Cholesterol and Food Sources and Risk for Hypercholesterolemia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Neaton, J.D.; Blackburn, H.; Jacobs, D.; Kuller, L.; Lee, D.-J.; Sherwin, R.; Shih, J.; Stamler, J.; Wentworth, D. Serum cholesterol level and mortality findings for men screened in the Multiple Risk Factor Intervention Trial. Arch. Intern. Med. 1992, 152, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Statistics Korea. The Annual Report on the Causes of Death Statistics; Statistics Korea: Daejeon, Korea, 2017. [Google Scholar]
- Korea Centers for Disease Control and Prevention. Korea Health Statistics 2016: Korea National Health and Nutrition Examination Survey (KNHANES Ⅶ-1); Korea Centers for Disease Control and Prevention: Sejong Cheongju, Korea, 2017. [Google Scholar]
- Grundy, S.M. Does dietary cholesterol matter? Curr. Atheroscleros. Rep. 2016, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.J.; Jia, S.S.; Man, Q.Q.; Song, S.; Li, Y.Q.; Song, P.K.; Zhao, W.H.; Zhang, J. Dietary cholesterol in the elderly Chinese population: An analysis of CNHS 2010–2012. Nutrients 2017, 9, 934. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wu, F.; Lu, Y.; Wang, Z.; Zang, J.; Yu, H.; Guo, C.; Jia, X.; Shen, X.; Ding, G. The association of dietary cholesterol and fatty acids with dyslipidemia in Chinese metropolitan men and women. Nutrients 2018, 10, 961. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.P.; Baghdasarian, S.; Singer, M.R.; Mott, M.M.; Bradlee, L.; Pickering, R.T.; Moore, L.L. Dietary cholesterol, lipid levels, and cardiovascular risk among adults with diabetes or impaired fasting glucose in the framingham offspring study. Nutrients 2018, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Soliman, G. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients 2018, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Howell, W.H.; McNamara, D.J.; Tosca, M.A.; Smith, B.T.; Gaines, J.A. Plasma lipid and lipoprotein responses to dietary fat and cholesterol: A meta-analysis. Am. J. Clin. Nutr. 1997, 65, 1747–1764. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Z. Do we no longer need to worry about dietary cholesterol? J. Agric. Food Chem. 2017, 65, 9931–9933. [Google Scholar] [CrossRef] [PubMed]
- Federation of American Societies for Experimental Biology Report on Nutrition Monitoring in the United States. Federation of American Societies for Experimental Biology; US Government Printing Office: Washington, DC, USA, 1995.
- Rohrmann, S.; Linseisen, J. Processed meat: The real villain? Proc. Nutr. Soc. 2016, 75, 233–241. [Google Scholar] [CrossRef]
- Li, D.; Siriamornpun, S.; Wahlqvist, M.L.; Mann, N.J.; Sinclair, A. Lean meat and heart health. Asia Pac. J. Clin. Nutr. 2005, 14, 113–119. [Google Scholar]
- Jang, J.; Shin, M.-J.; Kim, O.Y.; Park, K. Longitudinal association between egg consumption and the risk of cardiovascular disease: Interaction with type 2 diabetes mellitus. Nutr. Diabetes 2018, 8, 20. [Google Scholar] [CrossRef]
- Vazquez-Ruiz, Z.; de la Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Zazpe, I.; Santiago, S.; Razquin, C.; Toledo, E.; Martinez-Gonzalez, M.Á. Egg consumption and dyslipidemia in a Mediterranean cohort. Nutr. Hosp. 2018, 35, 153–161. [Google Scholar] [PubMed]
- Wenzel, A.J.; Gerweck, C.; Barbato, D.; Nicolosi, R.J.; Handelman, G.J.; Curran-Celentano, J. A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J. Nutr. 2006, 136, 2568–2573. [Google Scholar] [CrossRef] [PubMed]
- Goodrow, E.F.; Wilson, T.A.; Houde, S.C.; Vishwanathan, R.; Scollin, P.A.; Handelman, G.; Nicolosi, R.J. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J. Nutr. 2006, 136, 2519–2524. [Google Scholar] [CrossRef]
- Harman, N.L.; Leeds, A.R.; Griffin, B.A. Increased dietary cholesterol does not increase plasma low density lipoprotein when accompanied by an energy-restricted diet and weight loss. Eur. J. Nutr. 2008, 47, 287. [Google Scholar] [CrossRef] [PubMed]
- Rueda, J.M.; Khosla, P. Impact of breakfasts (with or without eggs) on body weight regulation and blood lipids in university students over a 14-week semester. Nutrients 2013, 5, 5097–5113. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Taguchi, C.; Suzuki-Sugihara, N.; Saita, E.; Usuda, M.; Wang, W.; Masuda, Y.; Kondo, K. The effect of the consumption of egg on serum lipids and antioxidant status in healthy subjects. J. Nutr. Sci. Vitaminol. 2016, 62, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Aljohi, H.; Dopler-Nelson, M.; Cifuentes, M.; Wilson, T.A. The consumption of 12 Eggs per week for 1 year does not alter fasting serum markers of cardiovascular disease in older adults with early macular degeneration. J. Nutr. Intermed. Metab. 2019, 15, 35–41. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Kim, J.E.; Campbell, W.W. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systemically searched meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 105, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Van Elswyk, M.E.; Alexander, D.D.; Rains, T.M.; Sohn, E.L.; McNeill, S. A meta-analysis of randomized controlled trials that compare the lipid effects of beef versus poultry and/or fish consumption. J. Clin. Lipidol. 2012, 6, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef] [PubMed]
- Bovalino, S.; Charleson, G.; Szoeke, C. The impact of red and processed meat consumption on cardiovascular disease risk in women. Nutrition 2016, 32, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Rhee, E.J.; Ryu, S.; Lee, J.; Lee, S.H.; Cheong, E.; Park, S.E.; Park, C.; Won, Y.S.; Kim, J.M.; Cho, D. The association between dietary cholesterol intake and subclinical atherosclerosis in Korean adults: The Kangbuk Samsung Health Study. J. Clin. Lipidol. 2017, 11, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar]
- Kim, C.J.; Kim, J.; Kim, K.I.; Kim, D.; Kim, M.A.; Kim, S.H.; Kim, S.R.; Kim, Y.; Kim, Y.; Kim, Y.J. 2015 Korean guidelines for the management of dyslipidemia: Executive summary (English translation). Korean Circ. J. 2016, 46, 275–306. [Google Scholar]
- Kim, D.W.; Song, S.; Lee, J.E.; Oh, K.; Shim, J.; Kweon, S.; Paik, H.Y.; Joung, H. Reproducibility and validity of an FFQ developed for the Korea National Health and Nutrition Examination Survey (KNHANES). Public Health Nutr. 2015, 18, 1369–1377. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Meat consumption and risk of metabolic syndrome: Results from the Korean population and a meta-analysis of observational studies. Nutrients 2018, 10, 390. [Google Scholar] [CrossRef]
- Saylor, J.; Friedmann, E.; Lee, H.J. Navigating complex sample analysis using national survey data. Nurs. Res. 2012, 61, 231–237. [Google Scholar] [CrossRef]
- Greenland, S.; Pearce, N. Statistical foundations for model-based adjustments. Annu. Rev. Public Health 2015, 36, 89–108. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; The Guliford Press: New York, NY, USA, 2013. [Google Scholar]
- Glatz, J.; Katan, M. Dietary saturated fatty acids increase cholesterol synthesis and fecal steroid excretion in healthy men and women. Eur. J. Clin. Investig. 1993, 23, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.S.; Machado, R.M.; Lavrador, M.; Quintao, E.C.R.; Moore, K.; Lottenberg, A. Molecular pathways underlying cholesterol homeostasis. Nutrients 2018, 10, 760. [Google Scholar] [CrossRef]
- Blesso, C.; Fernandez, M. Dietary cholesterol, serum lipids, and heart disease: Are eggs working for or against you? Nutrients 2018, 10, 426. [Google Scholar] [CrossRef]
- Rouhani, M.H.; Rashidi Pourfard, N.; Salehi Abargouei, A.; Karimi, M.; Haghighatdoost, F. Effects of egg consumption on blood lipids: A systematic review and meta-analysis of randomized clinical trials. J. Am. Coll. Nutr. 2018, 37, 99–110. [Google Scholar] [CrossRef]
- Beynen, A.C.; Katan, M.B.; Van Zutphen, L.F.M. Hypo-and hyperresponders: Individual differences in the response of serum cholesterol concentration to changes in diet. Adv. Lipid Res. 1987, 22, 115–171. [Google Scholar]
- Asato, L.; Wang, M.; Chan, Y.; Yeh, S.; Chung, H.; Chung, S.; Chida, S.; Uezato, T.; Suzuki, I.; Yamagata, N.; et al. Effect of egg white on serum cholesterol concentration in young women. J. Nutr. Sci. Vitaminol. 1996, 42, 87–96. [Google Scholar] [CrossRef]
- Matsuoka, R.; Kimura, M.; Muto, A.; Masuda, Y.; Sato, M.; Imaizumi, K. Mechanism for the cholesterol-lowering action of egg white protein in rats. Biosci. Biotechnol. Biochem. 2008, 72, 1506–1512. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Cornelis, M.C.; Wilkins, J.T.; Ning, H.; Carnethon, M.R.; Greenland, P.; Mentz, R.J.; Tucker, K.L.; Zhao, L. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA 2019, 321, 1081–1095. [Google Scholar] [CrossRef]
- Ospina, E.J.; Sierra, C.A.; Ochoa, O.; Pérez Álvarez, J.; Fernández López, J. Substitution of saturated fat in processed meat products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 113–122. [Google Scholar] [CrossRef]
- Strazzullo, P.; D’Elia, L.; Kandala, N.-B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ 2009, 339, b4567. [Google Scholar] [CrossRef]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—An updated review of the evidence. Curr. Atheroscleros. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef]
- Dahl, L. Effects of chronic excess salt feeding: Elevation of plasma cholesterol in rats and dogs. J. Exp. Med. 1960, 112, 635–651. [Google Scholar] [CrossRef]
- Bu, S.-Y.; Kang, M.-H.; Kim, E.-J.; Choi, M.-K. Dietary intake ratios of calcium-to-phosphorus and sodium-to-potassium are associated with serum lipid levels in healthy Korean adults. Prev. Nutr. Food Sci. 2012, 17, 93. [Google Scholar] [CrossRef]
- Kolahdooz, F.; van der Pols, J.C.; Bain, C.J.; Marks, G.C.; Hughes, M.C.; Whiteman, D.C.; Webb, P.M. Meat, fish, and ovarian cancer risk: Results from 2 Australian case-control studies, a systematic review, and meta-analysis. Am. J. Clin. Nutr. 2010, 91, 1752–1763. [Google Scholar] [CrossRef]
- Leheska, J.; Thompson, L.; Howe, J.; Hentges, E.; Boyce, J.; Brooks, J.; Shriver, B.; Hoover, L.; Miller, M. Effects of conventional and grass-feeding systems on the nutrient composition of beef. J. Anim. Sci. 2008, 86, 3575–3585. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Yu, S. Individual fatty acid effects on plasma lipids and lipoproteins: Human studies. Am. J. Clin. Nutr. 1997, 65, 1628S–1644S. [Google Scholar] [CrossRef]
Variables | TC | p-Value | LDL-C | p-Value | ||
---|---|---|---|---|---|---|
<200 mg/dL (n = 6593) | ≥200 mg/dL (n = 4720) | <130 mg/dL (n = 7561) | ≥130 mg/dL (n = 3752) | |||
TC (mg/dL) | 171.49 ± 0.30 | 227.56 ± 0.43 | <0.001 | 177.97 ± 0.36 | 229.23 ± 0.49 | <0.001 |
LDL-C (mg/dL) | 99.98 ± 0.29 | 144.07 ± 0.41 | <0.001 | 101.44 ± 0.26 | 152.72 ± 0.39 | <0.001 |
Age (years) | 44.38 ± 0.16 | 47.08 ± 0.18 | <0.001 | 44.59 ± 0.15 | 47.38 ± 0.20 | <0.001 |
Men, n (%) | 2443 (47.5) | 1754 (48.5) | 0.363 | 2761 (46.8) | 1436 (50.3) | 0.002 |
BMI (kg/m2) | 23.46 ± 0.05 | 24.55 ± 0.06 | <0.001 | 23.52 ± 0.05 | 24.70 ± 0.06 | <0.001 |
Education level, n (%) | ||||||
≤Elementary | 643 (8.0) | 644 (10.7) | <0.001 | 727 (7.8) | 560 (11.7) | <0.001 |
Middle | 563 (7.7) | 555 (10.6) | 681 (8.2) | 437 (10.3) | ||
High | 2385 (37.5) | 1695 (36.7) | 2774 (38.0) | 1306 (35.5) | ||
≥College | 3002 (46.8) | 1826 (42.0) | 3379 (45.9) | 1449 (42.5) | ||
Household income, n (%) | ||||||
Low | 513 (7.1) | 431 (8.4) | 0.081 | 586 (7.2) | 358 (8.6) | 0.136 |
Low-middle | 1567 (24.3) | 1142 (23.3) | 1798 (24.0) | 911 (23.4) | ||
Upper-middle | 2158 (33.3) | 1481 (32.1) | 2453 (32.8) | 1186 (32.7) | ||
High | 2355 (35.4) | 1666 (36.2) | 2724 (36.0) | 1297 (35.2) | ||
Smoking, n (%) | ||||||
Never | 4245 (56.7) | 2984 (54.5) | 0.121 | 4839 (56.4) | 2390 (54.5) | 0.165 |
Former | 1135 (19.8) | 847 (21.4) | 1312 (19.9) | 670 (21.7) | ||
Current | 1213 (23.4) | 889 (24.1) | 1410 (23.7) | 692 (23.8) | ||
Drinking, n (%) | 3681 (59.3) | 2577 (60.0) | 0.492 | 4349 (61.2) | 1909 (56.3) | <0.001 |
Physical activity, n (%) | 3148 (49.2) | 2162 (46.5) | 0.024 | 3605 (48.9) | 1705 (46.3) | 0.026 |
Dietary cholesterol (mg/day) | 253.84 ± 2.60 | 254.29 ± 2.91 | 0.905 | 256.52 ± 2.46 | 248.99 ± 3.12 | 0.050 |
Energy (kcal/day) | 2061.49 ± 11.71 | 2059.26 ± 13.45 | 0.894 | 2074.57 ± 11.20 | 2032.19 ± 15.01 | 0.018 |
Nutrients (% of energy) | ||||||
Carbohydrate | 64.68 ± 0.13 | 64.47 ± 0.16 | 0.298 | 64.23 ± 0.12 | 65.33 ± 0.18 | <0.001 |
Protein | 13.00 ± 0.04 | 12.93 ± 0.04 | 0.165 | 13.01 ± 0.03 | 12.90 ± 0.04 | 0.034 |
Fat | 17.23 ± 0.09 | 17.10 ± 0.10 | 0.266 | 17.27 ± 0.09 | 16.97 ± 0.11 | 0.019 |
SFA | 5.00 ± 0.03 | 4.96 ± 0.03 | 0.367 | 5.01 ± 0.03 | 4.93 ± 0.04 | 0.069 |
MUFA | 5.26 ± 0.03 | 5.22 ± 0.03 | 0.348 | 5.28 ± 0.03 | 5.17 ± 0.04 | 0.016 |
PUFA | 4.66 ± 0.03 | 4.62 ± 0.03 | 0.238 | 4.67 ± 0.02 | 4.58 ± 0.03 | 0.020 |
Foods (servings/week) | ||||||
Egg | 2.52 ± 0.03 | 2.54 ± 0.04 | 0.694 | 2.54 ± 0.03 | 2.51 ± 0.05 | 0.590 |
White meat | 0.79 ± 0.01 | 0.77 ± 0.01 | 0.189 | 0.80 ± 0.01 | 0.74 ± 0.02 | 0.001 |
Red meat | 3.38 ± 0.05 | 3.25 ± 0.01 | 0.050 | 3.40 ± 0.04 | 3.17 ± 0.06 | 0.001 |
Processed meat | 0.63 ± 0.02 | 0.59 ± 0.02 | 0.089 | 0.63 ± 0.01 | 0.58 ± 0.02 | 0.033 |
Serum Cholesterol Abnormalities | Tertiles of Total Dietary Cholesterol Intake (mg/day) | p Value for Trend b | ||
---|---|---|---|---|
T1 <155.03 | T2 155.03 to 277.51 | T3 >277.51 | ||
TC ≥200 mg/dL, n (%) | 1646 (43.7) | 1478 (39.2) | 1596 (42.3) | |
Crude OR (95% CI) | 1 | 0.863 (0.779–0.957) | 0.988 (0.888–1.100) | 0.796 |
Adjusted OR (95% CI) c | 1 | 0.990 (0.897–1.116) | 1.153 (0.995–1.337) | 0.028 |
Adjusted OR (95% CI) c,d | 1 | 0.963 (0.854–1.086) | 1.104 (0.952–1.282) | 0.096 |
LDL-C ≥130 mg/dL, n (%) | 1349 (35.8) | 1173 (31.1) | 1230 (32.6) | |
Crude OR (95% CI) | 1 | 0.846 (0.757–0.944) | 0.901 (0.808–1.004) | 0.139 |
Adjusted OR (95% CI) c | 1 | 1.037 (0.912–1.179) | 1.186 (1.019–1.382) | 0.018 |
Adjusted OR (95% CI) c,d | 1 | 0.991 (0.871–1.128) | 1.110 (0.951–1.296) | 0.120 |
Serum Cholesterol Abnormalities | Tertiles of Food Consumption (servings/week) | p Value for Trend b | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
Red meat, range | <1.70 | 1.70–3.49 | >3.49 | |
TC ≥200 mg/dL, n (%) | 1667 (43.9) | 1548 (41.6) | 1505 (39.7) | |
Crude OR (95% CI) | 1 | 0.928 (0.838–1.028) | 0.891 (0.802–0.989) | 0.039 |
Adjusted OR (95% CI) c,d | 1 | 1.069 (0.957–1.195) | 1.109 (0.983–1.252) | 0.111 |
Processed meat, range | 0 | 0 to 0.58 | >0.58 | |
TC ≥200 mg/dL, n (%) | 2068 (44.2) | 1124 (40.1) | 1528 (39.8) | |
Crude OR (95% CI) | 1 | 0.871 (0.778–0.975) | 0.919 (0.831–1.015) | 0.264 |
Adjusted OR (95% CI) c,e | 1 | 1.047 (0.929–1.181) | 1.220 (1.083–1.374) | 0.001 |
White meat, range | <0.23 | 0.23 to 0.81 | >0.81 | |
TC ≥200 mg/dL, n (%) | 1719 (42.9) | 1590 (42.4) | 1411 (39.7) | |
Crude OR (95% CI) | 1 | 1.054 (0.947–1.173) | 0.925 (0.833–1.027) | 0.119 |
Adjusted OR (95% CI) c,d | 1 | 1.179 (1.052–1.322) | 1.088 (0.969–1.222) | 0.204 |
Egg, range | <1.00 | 1.00 to 3.23 | >3.23 | |
TC ≥200 mg/dL, n (%) | 1759 (43.0) | 1330 (40.9) | 1631 (40.8) | |
Crude OR (95% CI) | 1 | 0.921 (0.829–1.023) | 0.951 (0.856–1.057) | 0.505 |
Adjusted OR (95% CI) c | 1 | 1.006 (0.901–1.123) | 1.082 (0.966–1.212) | 0.142 |
Serum Cholesterol Abnormalities | Tertiles of Food Consumption (servings/week) | p Value for Trend b | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
Red meat, range | <1.70 | 1.70 to 3.49 | >3.49 | |
LDL ≥130 mg/dL, n (%) | 1375 (36.2) | 1227 (33.0) | 1150 (30.3) | |
Crude OR (95% CI) | 1 | 0.874 (0.789–0.968) | 0.809 (0.729–0.898) | <0.001 |
Adjusted OR (95% CI) c,d | 1 | 1.020 (0.915–1.138) | 1.030 (0.914–1.161) | 0.656 |
Processed meat, range | 0 | 0 to 0.58 | >0.58 | |
LDL ≥130 mg/dL, n (%) | 1684 (36.0) | 871 (31.1) | 1197 (31.2) | |
Crude OR (95% CI) | 1 | 0.848 (0.757–0.949) | 0.873 (0.786–0.969) | 0.049 |
Adjusted OR (95% CI) c,e | 1 | 1.030 (0.912–1.163) | 1.193 (1.052–1.354) | 0.004 |
White meat, range | <0.23 | 0.23 to 0.81 | >0.81 | |
LDL ≥130 mg/dL, n (%) | 1431 (35.7) | 1240 (33.1) | 1081 (30.4) | |
Crude OR (95% CI) | 1 | 0.934 (0.838–1.043) | 0.813 (0.725–0.911) | <0.001 |
Adjusted OR (95% CI) c,d | 1 | 1.052 (0.934–1.184) | 0.980 (0.863–1.114) | 0.716 |
Egg, range | <1.00 | 1.00 to 3.23 | >3.23 | |
LDL ≥130 mg/dL, n (%) | 1408 (34.5) | 1052 (32.4) | 1292 (32.5) | |
Crude OR (95% CI) | 1 | 0.898 (0.805–1.002) | 0.920 (0.825–1.026) | 0.232 |
Adjusted OR (95% CI) c | 1 | 0.995 (0.887–1.117) | 1.075 (0.954–1.210) | 0.188 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, D.; Park, Y. Association between Dietary Cholesterol and Their Food Sources and Risk for Hypercholesterolemia: The 2012–2016 Korea National Health and Nutrition Examination Survey. Nutrients 2019, 11, 846. https://doi.org/10.3390/nu11040846
Cha D, Park Y. Association between Dietary Cholesterol and Their Food Sources and Risk for Hypercholesterolemia: The 2012–2016 Korea National Health and Nutrition Examination Survey. Nutrients. 2019; 11(4):846. https://doi.org/10.3390/nu11040846
Chicago/Turabian StyleCha, Dongjoo, and Yongsoon Park. 2019. "Association between Dietary Cholesterol and Their Food Sources and Risk for Hypercholesterolemia: The 2012–2016 Korea National Health and Nutrition Examination Survey" Nutrients 11, no. 4: 846. https://doi.org/10.3390/nu11040846