Association between Adherence to the Antioxidant-Rich Mediterranean Diet and Sensory Processing Profile in School-Aged Children: The Spanish Cross-Sectional InProS Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Procedure
2.2. Study Variables
2.3. Statistical Analysis
3. Results
3.1. Demographic and Lifestyle of Maternal, Parternal, and Child’s Characteristics
3.2. Association Between Adherence to Mediterranean Diet and Prevalence of Atypical Sensory Processing
3.3. Association between Components of KIDMED Index and Atypical Sensory Processing
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bulló, M.; Lamuela-Raventós, R.; Salas-Salvadó, J. Mediterranean diet and oxidation: Nuts and olive oil as important sources of fat and antioxidants. Curr. Top. Med. Chem. 2011, 11, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Dietary patterns, Mediterranean diet, and cardiovascular disease. Curr. Opin. Lipidol. 2014, 25, 20–26. [Google Scholar] [CrossRef]
- Barak, Y.; Fridman, D. Impact of Mediterranean diet on cancer: Focused literature review. Cancer Genomics Proteomics 2017, 14, 403–408. [Google Scholar]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [PubMed]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R.L. The Association between the Mediterranean dietary pattern and cognitive health: A systematic review. Nutrients 2017, 9, 674. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino Idelson, P.; Scalfi, L.; Valerio, G. Adherence to the Mediterranean Diet in children and adolescents: A systematic review. Nutr. Metab. Cardiovasc. Dis. NMCD 2017, 27, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.R. How to approach feeding difficulties in young children. Korean J. Pediatr. 2017, 60, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Cooke, L.; Wardle, J.; Gibson, E.L. Relationship between parental report of food neophobia and everyday food consumption in 2–6-year-old children. Appetite 2003, 41, 205–206. [Google Scholar] [CrossRef]
- Dubois, L.; Farmer, A.P.; Girard, M.; Peterson, K. Preschool children’s eating behaviours are related to dietary adequacy and body weight. Eur. J. Clin. Nutr. 2007, 61, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Falciglia, G.A.; Couch, S.C.; Gribble, L.S.; Pabst, S.M.; Frank, R. Food neophobia in childhood affects dietary variety. J. Am. Diet. Assoc. 2000, 100, 1474–1481. [Google Scholar] [CrossRef]
- Oliveira, A.; Jones, L.; de Lauzon-Guillain, B.; Emmett, P.; Moreira, P.; Charles, M.A.; Lopes, C. Early problematic eating behaviours are associated with lower fruit and vegetable intake and less dietary variety at 4–5 years of age. A prospective analysis of three European birth cohorts. Br. J. Nutr. 2015, 114, 763–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Tadeo, A.; Patiño Villena, B.; Urquidez-Romero, R.; Vidaña-Gaytán, M.E.; Periago Caston, M.J.; Ros Berruezo, G.; González Martinez-Lacuesta, E. Food neophobia: Impact on food habits and acceptance of healthy foods in schoolchildren. Nutr. Hosp. 2014, 31, 260–268. [Google Scholar] [PubMed]
- Lucas, A. Programming by early nutrition in man. Ciba Found. Symp. 1991, 156, 38–50. [Google Scholar]
- Singhal, A. The global epidemic of noncommunicable disease: The role of early-life factors. Nestle Nutr. Inst. Workshop Ser. 2014, 78, 123–132. [Google Scholar]
- Langley-Evans, S.C. Nutrition in early life and the programming of adult disease: A review. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2015, 28, 1–14. [Google Scholar] [CrossRef]
- Koletzko, B.; Brands, B.; Grote, V.; Kirchberg, F.F.; Prell, C.; Rzehak, P.; Uhl, O.; Weber, M. Early nutrition programming project long-term health impact of early nutrition: The power of programming. Ann. Nutr. Metab. 2017, 70, 161–169. [Google Scholar] [CrossRef]
- Kong, M.; Moreno, M.A. Sensory processing in children. JAMA Pediatr. 2018, 172, 1208. [Google Scholar] [CrossRef]
- Davis, A.M.; Bruce, A.S.; Khasawneh, R.; Schulz, T.; Fox, C.; Dunn, W. Sensory processing issues in young children presenting to an outpatient feeding clinic. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Farrow, C.V.; Coulthard, H. Relationships between sensory sensitivity, anxiety and selective eating in children. Appetite 2012, 58, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Chistol, L.T.; Bandini, L.G.; Must, A.; Phillips, S.; Cermak, S.A.; Curtin, C. sensory sensitivity and food selectivity in children with autism spectrum disorder. J. Autism Dev. Disord. 2018, 48, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Shmaya, Y.; Eilat-Adar, S.; Leitner, Y.; Reif, S.; Gabis, L.V. Meal time behavior difficulties but not nutritional deficiencies correlate with sensory processing in children with autism spectrum disorder. Res. Dev. Disabil. 2017, 66, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Zangen, T.; Ciarla, C.; Zangen, S.; Di Lorenzo, C.; Flores, A.F.; Cocjin, J.; Reddy, S.N.; Rowhani, A.; Schwankovsky, L.; Hyman, P.E. Gastrointestinal motility and sensory abnormalities may contribute to food refusal in medically fragile toddlers. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 287–293. [Google Scholar] [CrossRef]
- Coulthard, H.; Williamson, I.; Palfreyman, Z.; Lyttle, S. Evaluation of a pilot sensory play intervention to increase fruit acceptance in preschool children. Appetite 2018, 120, 609–615. [Google Scholar] [CrossRef]
- Coulthard, H.; Sealy, A. Play with your food! Sensory play is associated with tasting of fruits and vegetables in preschool children. Appetite 2017, 113, 84–90. [Google Scholar] [CrossRef]
- Coulthard, H.; Thakker, D. Enjoyment of tactile play is associated with lower food neophobia in preschool children. J. Acad. Nutr. Diet. 2015, 115, 1134–1140. [Google Scholar] [CrossRef]
- Dunn, W. The Short Sensory Profile; The Psychological Corporation: New York, NY, USA, 1999. [Google Scholar]
- Beaudry-Bellefeuille, I.; Lane, S.J. Cultural Adaptation for Spain of the Spanish version of the short sensory profile using cognitive interviews. Austin J. Autism Relat. Disabil. 2015, 1, 1004. [Google Scholar]
- Román-Oyola, R.; Reynolds, S.E. Validating the response process of the spanish version of the short sensory profile: A pilot study using cognitive interviews. J. Occup. Ther. Sch. Early Interv. 2010, 3, 197–206. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Van Hulle, C.; Lemery-Chalfant, K.; Goldsmith, H.H. Trajectories of sensory over-responsivity from early to middle childhood: Birth and temperament risk factors. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Tavassoli, T.; Brandes-Aitken, A.; Chu, R.; Porter, L.; Schoen, S.; Miller, L.J.; Gerdes, M.R.; Owen, J.; Mukherjee, P.; Marco, E.J. Sensory over-responsivity: Parent report, direct assessment measures, and neural architecture. Mol. Autism 2019. [Google Scholar] [CrossRef] [PubMed]
- Tomás Vila, M.; Miralles Torres, A.; Beseler Soto, B. Spanish version of the Pediatric Sleep Questionnaire (PSQ). A useful instrument in investigation of sleep disturbances in childhood. Reliability analysis. Anales Pediatria (Barcelona Spain 2003) 2007, 66, 121–128. [Google Scholar]
- Espelt, A.; Marí-Dell’Olmo, M.; Penelo, E.; Bosque-Prous, M. Applied Prevalence Ratio estimation with different Regression models: An example from a cross-national study on substance use research. Adicciones 2016, 29, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- Deddens, J.A.; Petersen, M.R. Approaches for estimating prevalence ratios. Occup. Environ. Med. 2008, 65, 501–506. [Google Scholar] [CrossRef]
- Jones, L.; Moschonis, G.; Oliveira, A.; de Lauzon-Guillain, B.; Manios, Y.; Xepapadaki, P.; Lopes, C.; Moreira, P.; Charles, M.A.; Emmett, P. The influence of early feeding practices on healthy diet variety score among pre-school children in four European birth cohorts. Public Health Nutr. 2015, 18, 1774–1784. [Google Scholar] [CrossRef]
- Coulthard, H.; Blissett, J. Fruit and vegetable consumption in children and their mothers. Moderating effects of child sensory sensitivity. Appetite 2009, 52, 410–415. [Google Scholar] [CrossRef]
- Naish, K.R.; Harris, G. Food Intake Is Influenced by Sensory Sensitivity. PLoS ONE 2012. [Google Scholar] [CrossRef]
- Coulthard, H.; Palfreyman, Z.; Morizet, D. Sensory evaluation of a novel vegetable in school age children. Appetite 2016, 100, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Coulthard, H.; Harris, G.; Fogel, A. Association between tactile over-responsivity and vegetable consumption early in the introduction of solid foods and its variation with age. Matern. Child. Nutr. 2016, 12, 848–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiz, E.; Balluerka, N. Nutritional status and Mediterranean diet quality among Spanish children and adolescents with food neophobia. Food Qual. Prefer. 2016, 52, 133–142. [Google Scholar] [CrossRef]
- Rodriguez-Tadeo, A.; Patiño-Villena, B.; González Martínez-La Cuesta, E.; Urquídez-Romero, R.; Ros-Berruezo, G. Food neophobia, Mediterranean diet adherence and acceptance of healthy foods prepared in gastronomic workshops by Spanish students. Nutr. Hosp. 2018, 35, 642–649. [Google Scholar]
- Donini, L.M.; Serra-Majem, L.; Bulló, M.; Gil, Á.; Salas-Salvadó, J. The Mediterranean diet: Culture, health and science. Br. J. Nutr. 2015, 113 (Suppl. 2), S1–S3. [Google Scholar] [CrossRef]
Total | Sensory Profile 3 | p-Value 4 | ||
---|---|---|---|---|
Typical: n; % | Atypical: n; % | |||
409; 70.2 | 174; 29.8 | |||
Maternal characteristics | ||||
Age (years), median (IR) | 38 (35, 41) | 38 (35, 41) | 37 (33, 41) | 0.169 × 10−2 |
Country of birth (Spain), % | 84.7 | 89.2 | 74.1 | 0.349 × 10−5 |
Education (university studies), % | 40.8 | 43.8 | 33.9 | 0.054 |
Employment (yes), % | 69.3 | 73.8 | 59.2 | 0.563 × 10−3 |
Paternal characteristics 1 | ||||
Age (years), median (IR) | 40 (37, 43) | 40 (37, 43) | 40 (36, 43) | 0.149 |
Country of birth (Spain), % | 83.3 | 87.6 | 73.0 | 0.936 × 10−4 |
Education (university studies), % | 33.1 | 36.8 | 24.2 | 0.017 |
Employment (yes), % | 89.5 | 89.8 | 88.8 | 0.743 |
Child characteristics | ||||
Age (years), median (IR) | 5 (4, 6) | 5 (4, 6) | 5 (4, 6) | 0.342 |
Sex (female), % | 49.4 | 54.0 | 38.5 | 0.785 × 10−3 |
Body mass index 2, median (IR) | 16.0 (14.5, 17.4) | 15.7 (14.3, 17.4) | 16.0 (15.0, 17.4) | 0.096 |
Sleep (h/day), median (IR) | 10.0 (9.3, 10.3) | 10.0 (9.4, 10.3) | 10.0 (9.3,10.4) | 0.401 |
Sleep quality (poor), % | 10.3 | 4.4 | 24.1 | 0.115 × 10−11 |
TV watching (h/day), median (IR) | 2.0 (1.3, 2.6) | 1.9 (1.3, 2.3) | 2.2 (1.6, 3.0) | 0.291 × 10−4 |
Physical activity (active/very active), % | 61.4 | 58.7 | 67.8 | 0.041 |
Adherence to Mediterranean Diet (KIDMED) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Low (0–7 Points) | Medium (8 Points) | High (9–12 Points) | p-Trend 1 | Two-Point Increase | |||||||
n Cases | n Cases | PR 2 (95% CI) | p-Value | n Cases | PR 2 (95% CI) | p-Value | n Cases | PR 2 (95% CI) | p-Value | ||
SSP total score (atypical; <155 points) | 100 | 27 | 0.77 (0.54; 1.12) | 0.175 | 47 | 0.83 (0.62; 1.10) | 0.187 | 0.236 | 174 | 0.90 (0.80; 1.02) | 0.097 |
Tactile sensitivity (atypical; <30 points) | 44 | 8 | 0.50 (0.25; 0.99) | 0.049 | 15 | 0.58 (0.34; 0.99) | 0.049 | 0.122 | 67 | 0.81 (0.64; 1.02) | 0.079 |
Taste/smell sensitivity (atypical; <15 points) | 64 | 13 | 0.57 (0.33; 0.99) | 0.048 | 12 | 0.33 (0.19; 0.60) | 0.257 × 10−3 | 0.372 × 10−3 | 89 | 0.71 (0.59; 0.85) | 0.201 × 10−3 |
Movement sensitivity (atypical; <13 points) | 73 | 22 | 0.77 (0.51; 1.17) | 0.225 | 38 | 0.84 (0.60; 1.18) | 0.323 | 0.359 | 133 | 0.91 (0.78; 1.06) | 0.221 |
Underresponsive/seek sensation (atypical; <26 points) | 148 | 56 | 1.03 (0.83; 1.27) | 0.822 | 82 | 0.90 (0.75; 1.09) | 0.291 | 0.520 | 286 | 0.99 (0.92; 1.08) | 0.894 |
Auditory filtering (atypical; <23 points) | 131 | 56 | 1.11 (0.89; 1.39) | 0.357 | 72 | 0.88 (0.71; 1.09) | 0.254 | 0.476 | 259 | 1.02 (0.93; 1.11) | 0.723 |
Low energy/weak (atypical; <26 points) | 47 | 6 | 0.37 (0.16; 0.83) | 0.015 | 19 | 0.79 (0.48; 1.29) | 0.344 | 0.282 | 72 | 0.80 (0.64; 0.99) | 0.049 |
Visual/auditory sensitivity (atypical; <19 points) | 75 | 25 | 0.88 (0.59; 1.30) | 0.513 | 52 | 1.16 (0.86; 1.56) | 0.330 | 0.358 | 152 | 0.96 (0.83; 1.11) | 0.578 |
Atypical Sensory Processing | ||||||
---|---|---|---|---|---|---|
Accomplishment vs. No Accomplishment | Tactile Sensitivity | Taste/Smell Sensitivity | Low Energy/Weak | |||
(<30 Points) | (<15 Points) | (<26 Points) | ||||
PR 1 (CI 95%) | p-Value | PR 1 (CI 95%) | p-Value | PR 1 (CI 95%) | p-Value | |
Takes a fruit or fruit juice every day | 1.66 (0.94; 2.94) | 0.081 | 2.53 (1.69; 3.80) | 0.712 × 10−5 | 0.55 (0.25; 1.21) | 0.134 |
Has a second fruit every day | 1.54 (0.98; 2.44) | 0.062 | 1.42 (0.94; 2.15) | 0.094 | 0.87 (0.57; 1.33) | 0.515 |
Has fresh or cooked vegetables regularly once a day | 1.61 (1.03; 2.53) | 0.038 | 1.60 (1.08; 2.36) | 0.018 | 1.64 (1.09; 2.46) | 0.018 |
Has fresh or cooked vegetables more than once a day | 1.17 (0.72; 1.89) | 0.526 | 1.49 (0.96; 2.31) | 0.072 | 1.17 (0.74; 1.83) | 0.502 |
Consumes fish regularly (at least 2–3 times per week) | 0.94 (0.56; 1.60) | 0.829 | 1.68 (1.14; 2.48) | 0.009 | 1.19 (0.77; 1.85) | 0.430 |
Goes more than once a week to a fast-food restaurant 2 | 0.72 (0.40; 1.28) | 0.259 | 0.95 (0.54; 1.69) | 0.869 | 0.71 (0.41; 1.23) | 0.224 |
Likes pulses and eats them more than once a week | 1.05 (0.63; 1.74) | 0.853 | 1.87 (1.28; 2.73) | 0.001 | 1.17 (0.75; 1.84) | 0.488 |
Consumes pasta or rice almost every day (≥5 times per week) | 0.91 (0.57; 1.44) | 0.682 | 1.03 (0.70; 1.53) | 0.868 | 1.20 (0.77; 1.85) | 0.421 |
Has cereals or grains (bread, etc.) for breakfast | 1.98 (1.29; 3.05) | 0.002 | 1.37 (0.93; 2.02) | 0.110 | 1.19 (0.74; 1.90) | 0.470 |
Consumes nuts regularly (at least 2–3 times per week) | 0.95 (0.60; 1.51) | 0.830 | 0.64 (0.44; 0.93) | 0.020 | 1.13 (0.74; 1.74) | 0.565 |
Uses olive oil at home | 2.00 (1.02; 3.93) | 0.043 | 2.21 (1.31; 3.73) | 0.003 | 1.97 (1.06; 3.63) | 0.031 |
Skips breakfast 2 | 0.69 (0.30; 1.60) | 0.391 | 0.69 (0.35; 1.37) | 0.285 | 0.92 (0.39; 2.18) | 0.844 |
Has a dairy product for breakfast (yoghurt, milk, etc.) | 0.70 (0.27; 1.85) | 0.478 | 0.40 (0.13; 1.26) | 0.117 | 0.49 (0.19; 1.28) | 0.144 |
Has commercially baked goods or pastries for breakfast 2 | 1.73 (0.86; 3.49) | 0.125 | 1.24 (0.71; 2.17) | 0.449 | 0.59 (0.34; 1.02) | 0.058 |
Takes two yoghurts and/or some cheese (40 g) daily | 0.81 (0.51; 1.31) | 0.390 | 1.08 (0.73; 1.61) | 0.687 | 1.38 (0.90; 2.11) | 0.139 |
Takes sweets and candy several times every day 2 | 1.15 (0.65; 2.06) | 0.628 | 0.82 (0.50; 1.34) | 0.430 | 1.01 (0.63; 1.64) | 0.954 |
Atypical Sensory Processing | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Tactile Sensitivity | Taste/Smell Sensitivity | Low Energy/Weak | |||||||
(<30 Points) | (<15 Points) | (<26 Points) | ||||||||
n | PR 1 (CI 95%) | p-Value | n | PR 1 (CI 95%) | p-Value | n | PR 1 (CI 95%) | p-Value | ||
Complete model | 583 | 67 | 0.81 (0.64; 1.02) | 0.079 | 89 | 0.71 (0.59; 0.85) | 0.201 × 10−3 | 72 | 0.80 (0.64; 0.99) | 0.049 |
Including only boys | 295 | 43 | 1.07 (0.81; 1.41) | 0.620 | 48 | 0.71 (0.56; 0.90) | 0.004 | 35 | 0.85 (0.66; 1.09) | 0.209 |
Including only girls | 288 | 24 | 0.51 (0.32; 0.80) | 0.003 | 41 | 0.74 (0.55; 1.00) | 0.048 | 37 | 0.75 (0.53; 1.06) | 0.103 |
Including only children aged 3–4 | 182 | 27 | 0.73 (0.48; 1.11) | 0.142 | 32 | 0.54 (0.40; 0.73) | 0.734 × 10−4 | 24 | 1.02 (0.69; 1.50) | 0.936 |
Including only children aged 5 | 196 | 22 | 0.81 (0.59; 1.11) | 0.183 | 29 | 0.84 (0.62; 1.14) | 0.267 | 21 | 0.84 (0.54; 1.29) | 0.428 |
Including only children aged 6–7 | 205 | 18 | 0.78 (0.46; 1.33) | 0.366 | 28 | 0.78 (0.55; 1.11) | 0.164 | 27 | 0.63 (0.46; 0.86) | 0.004 |
Excluding poor sleep quality | 461 | 55 | 0.74 (0.58; 0.94) | 0.014 | 69 | 0.68 (0.56; 0.82) | 0.838 × 10−4 | 55 | 0.78 (0.62; 0.99) | 0.042 |
Excluding preterm children | 505 | 53 | 0.83 (0.64; 1.09) | 0.185 | 75 | 0.77 (0.63; 0.93) | 0.006 | 56 | 0.83 (0.64; 1.08) | 0.169 |
Excluding low weight at birth | 537 | 59 | 0.80 (0.62; 1.02) | 0.067 | 77 | 0.71 (0.59; 0.86) | 0.483 × 10−3 | 62 | 0.84 (0.66; 1.06) | 0.132 |
Excluding children with some diseases | 523 | 62 | 0.78 (0.61; 0.99) | 0.049 | 76 | 0.72 (0.58; 0.88) | 0.002 | 66 | 0.83 (0.67; 1.03) | 0.097 |
Adjusted for child body mass index | 460 | 53 | 0.83 (0.65; 1.06) | 0.143 | 67 | 0.72 (0.60; 0.87) | 0.554 × 10−3 | 58 | 0.83 (0.66; 1.05) | 0.118 |
Adjusted for father’s education and country of birth | 523 | 57 | 0.87 (0.68; 1.12) | 0.274 | 81 | 0.70 (0.58; 0.85) | 0.394 × 10−3 | 64 | 0.79 (0.61; 1.02) | 0.073 |
Including only probable atypical sensory processing | 531 | 34 | 0.83 (0.60; 1.15) | 0.261 | 52 | 0.48 (0.37; 0.61) | 0.619 × 10−8 | 28 | 0.63 (0.47; 0.83) | 0.001 |
Including only definitive atypical sensory processing | 546 | 33 | 0.79 (0.58; 1.08) | 0.145 | 37 | 0.87 (0.70; 1.09) | 0.236 | 44 | 1.04 (0.74; 1.46) | 0.809 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarrete-Muñoz, E.-M.; Fernández-Pires, P.; Navarro-Amat, S.; Hurtado-Pomares, M.; Peral-Gómez, P.; Juárez-Leal, I.; Espinosa-Sempere, C.; Sánchez-Pérez, A.; Valera-Gran, D. Association between Adherence to the Antioxidant-Rich Mediterranean Diet and Sensory Processing Profile in School-Aged Children: The Spanish Cross-Sectional InProS Project. Nutrients 2019, 11, 1007. https://doi.org/10.3390/nu11051007
Navarrete-Muñoz E-M, Fernández-Pires P, Navarro-Amat S, Hurtado-Pomares M, Peral-Gómez P, Juárez-Leal I, Espinosa-Sempere C, Sánchez-Pérez A, Valera-Gran D. Association between Adherence to the Antioxidant-Rich Mediterranean Diet and Sensory Processing Profile in School-Aged Children: The Spanish Cross-Sectional InProS Project. Nutrients. 2019; 11(5):1007. https://doi.org/10.3390/nu11051007
Chicago/Turabian StyleNavarrete-Muñoz, Eva-María, Paula Fernández-Pires, Silvia Navarro-Amat, Miriam Hurtado-Pomares, Paula Peral-Gómez, Iris Juárez-Leal, Cristina Espinosa-Sempere, Alicia Sánchez-Pérez, and Desirée Valera-Gran. 2019. "Association between Adherence to the Antioxidant-Rich Mediterranean Diet and Sensory Processing Profile in School-Aged Children: The Spanish Cross-Sectional InProS Project" Nutrients 11, no. 5: 1007. https://doi.org/10.3390/nu11051007