Bioelectrical Impedance Vector Analysis and Phase Angle on Different Oral Zinc Supplementation in Eutrophic Children: Randomized Triple-Blind Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Standardization of Clinical Trials
2.2.1. Oral Zinc Supplementation
2.2.2. Assessment of Serum Zinc
2.2.3. Anthropometric Assessment
2.2.4. Bioelectric Impedance
2.3. Bioelectrical Impedance Vector Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bera, T.K. Bioelectrical impedance methods for noninvasive health monitoring: A review. J. Med. Eng. 2014, 2014, 381251. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Bielemann, R.M.; Gallagher, D.; Heymsfield, S.B. Phase angle and its determinants in healthy subjects: Influence of body composition. Am. J. Clin. Nutr. 2016, 103, 712–716. [Google Scholar] [CrossRef]
- Margutti, A.V.B.; Bustamante, C.R.; Sanches, M.; Padilha, M.; Beraldo, R.A.; Monteiro, J.P.; Camelo, J.S., Jr. Bioelectrical impedance vector analysis (BIVA) in stable preterm newborns. J. Pediatr. 2012, 88, 253–258. [Google Scholar] [CrossRef]
- Berbigier, M.C.; Pasinato, V.F.; Rubin, B.A.; Moraes, R.B.; Perry, I.D.S. Bioelectrical impedance phase angle in septic patients admitted to intensive care units. Rev. Bras. Ter. Intensiva 2013, 25, 25–31. [Google Scholar] [CrossRef]
- Vermeulen, K.M.; Leal, L.L.A.; Furtado, M.C.M.B.; Vale, S.H.L.; Lais, L.L. Phase angle and Onodera’s prognostic nutritional index in critically ill patients. Nutr. Hosp. 2016, 33, 1268–1275. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Genton, L.; Norman, K.; Spoerri, A.; Pichard, C.; Karsegard, V.L.; Herrmann, F.R.; Graf, C.E. Bioimpedance-derived phase angle and mortality among older people. Rejuvenation Res. 2017, 20, 118–124. [Google Scholar] [CrossRef]
- Pileggi, V.N.; Scalize, A.R.H.; Camelo, J.S., Jr. Phase angle and World Health Organization criteria for the assessment of nutritional status in children with osteogenesis imperfecta. Rev. Paul. Pediatr. 2016, 34, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Marginet, M.; Castizo-Olier, J.; Rodríguez-Zamora, L.; Iglesias, X.; Rodríguez, F.A.; Chaverri, D.; Brotons, D.; Irurtia, A. Bioelectrical impedance vector analysis (BIVA) for measuring the hydration status in young elite synchronized swimmers. PLoS ONE 2017, 12, e0178819. [Google Scholar] [CrossRef] [PubMed]
- Koury, J.C.; Oliveira-Junior, A.V.; Portugal, M.R.C.; Oliveira, K.J.F.; Donangelo, C.M. Bioimpedance parameters in adolescent athletes in relation to bone maturity and biochemical zinc indices. J. Trace Elem. Med. Biol. 2018, 46, 26–31. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, B.L. Role of zinc in plasma membrane function. J. Nutr. 2000, 130, 1432S–1436S. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Loutsidou, A.C.; Spiliopoulou, C.A.; Stefanidou, M.E. Zinc and human health: An update. Arch. Toxicol. 2012, 86, 521–534. [Google Scholar] [CrossRef]
- Oliveira, K.J.F.; Koury, J.C.; Donangelo, C.M. Micronutrients and antioxidant capacity in sedentary adolescents and runners. Rev. Nutr. 2007, 20, 171–179. [Google Scholar] [CrossRef]
- Marreiro, D.; Cruz, K.; Morais, J.; Beserra, J.; Severo, J.; Oliveira, A. Zinc and oxidative stress: Current mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Lee, S.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid. Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef]
- Wood, R.J. Assessment of marginal zinc status in humans. J. Nutr. 2000, 130, 1350S–1354S. [Google Scholar] [CrossRef]
- Alves, C.X.; Vale, S.H.L.; Dantas, M.M.G.; Maia, A.A.; Franca, M.C.; Marchini, J.S.; Leite, L.D.; Brandao-Neto, J. Positive effects of zinc supplementation on growth, GH, IGF1, and IGFBP3 in eutrophic children. J. Pediatr. Endocrinol. Metab. 2012, 25, 881–887. [Google Scholar] [CrossRef]
- Rocha, É.D.M.; Brito, N.J.N.; Dantas, M.M.G.; Silva, A.A.; Almeida, M.G.; Brandão-Neto, J. Effect of zinc supplementation on GH, IGF1, IGFBP3, OCN, and ALP in non-zinc-deficient children. J. Am. Coll. Nutr. 2015, 34, 290–299. [Google Scholar] [CrossRef]
- Neves, N.J.B.; Rocha, É.D.M.; Silva, A.A.; Costa, J.B.; França, M.C.; Almeida, M.G.; Brandão-Neto, J. Oral zinc supplementation decreases the serum iron concentration in healthy schoolchildren: A pilot study. Nutrients 2014, 6, 3460–3473. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-For-Age, Weight-For-Age, Weight-For-Length, Weight-For-Height and Body Mass Index-For-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; 312p. [Google Scholar]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef] [Green Version]
- Houtkooper, L.B.; Going, S.B.; Lohman, T.G.; Roche, A.F.; Van Loan, M. Bioelectrical impedance estimation of fat-free body mass in children and youth: A cross-validation study. J. Appl. Physiol. 1992, 72, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A.F. Bioelectric impedance phase angle and body composition. Am. J. Clin. Nutr. 1988, 48, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, A.; Pastori, G. BIVA Software; Department of Medical and Surgical Sciences, University of Padova: Padova, Italy, 2002. [Google Scholar]
- Alves, C.X.; Brito, N.J.N.; Vermeulen, K.M.; Lopes, M.M.G.D.; França, M.C.; Bruno, S.S.; Almeida, M.G.; Brandão-Neto, J. Serum zinc reference intervals and its relationship with dietary, functional, and biochemical indicators in 6- to 9-year-old healthy children. Food Nutr. Res. 2016, 60, 30157. [Google Scholar] [CrossRef]
- Park, S.G.; Choi, H.N.; Yang, H.R.; Yim, J.E. Effects of zinc supplementation on catch-up growth in children with failure to thrive. Nutr. Res. Pract. 2017, 11, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Chao, H.C.; Chang, Y.J.; Huang, W.L. Cut-off Serum zinc concentration affecting the appetite, growth, and nutrition status of undernourished children supplemented with zinc. Nutr. Clin. Pract. 2018, 33, 701–710. [Google Scholar] [CrossRef]
- Hamza, R.T.; Hamed, A.I.; Sallam, M.T. Effect of zinc supplementation on growth hormone Insulin growth factor axis in short Egyptian children with zinc deficiency. Ital. J. Pediatr. 2012, 38, 21. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.M.; Kim, J.Y.; Yang, H.R. Effects of oral zinc supplementation on zinc status and catch-up growth during the first 2 years of life in children with non-organic failure to thrive born preterm and at term. Pediatr. Neonatol. 2018, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Pimpin, L.; Shulkin, M.; Kranz, S.; Duggan, C.; Mozaffarian, D.; Fawzi, W. Effect of zinc supplementation on growth outcomes in children under 5 years of age. Nutrients 2018, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Koury, J.C.; Donangelo, C.M. Zinc, oxidative stress and physical activity. Rev. Nutr. 2003, 16, 433–441. [Google Scholar] [CrossRef]
- Więch, P.; Dąbrowski, M.; Bazaliński, D.; Sałacińska, I.; Korczowski, B.; Binkowska-Bury, M. Bioelectrical impedance phase angle as an indicator of malnutrition in hospitalized children with diagnosed inflammatory bowel diseases—A case control study. Nutrients 2018, 10, 499. [Google Scholar] [CrossRef]
- Lukaski, H.C. Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur. J. Clin. Nutr. 2013, 67, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.G.; Barros, A.J. Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.; Sammarco, R.; Filippo, E.; Caldara, A.; Speranza, E.; Scalfi, L.; Contaldo, F.; Pasanisi, F. Prediction of body composition in anorexia nervosa: Results from a retrospective study. Clin. Nutr. 2018, 37, 1670–1674. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.C. Bioelectrical impedance analysis for body composition assessment: Reflections on accuracy, clinical utility, and standardization. Eur. J. Clin. Nutr. 2019, 73, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Nigrelli, S.; Caberlotto, A.; Bottazzo, S.; Rossi, B.; Pillon, L.; Maggiore, Q. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am. J. Clin. Nutr. 1995, 61, 269–270. [Google Scholar] [CrossRef]
- Meleleo, D.; Bartolomeo, N.; Cassano, L.; Nitti, A.; Susca, G.; Mastrototaro, G.; Armenise, U.; Zito, A.; Devito, F.; Scicchitano, P.; et al. Evaluation of body composition with bioimpedence. A comparison between athletic and non-athletic children. Eur. J. Sport Sci. 2017, 17, 710–719. [Google Scholar] [CrossRef]
- Pineda-Juárez, J.A.; Lozada-Mellado, M.; Ogata-Medel, M.; Hinojosa-Azaola, A.; Santillán-Díaz, C.; Llorente, L.; Orea-Tejeda, A.; Alcocer-Varela, J.; Espinosa-Morales, R.; González-Contreras, M.; et al. Body composition evaluated by body mass index and bioelectrical impedance vector analysis in women with rheumatoid arthritis. Nutrition 2018, 53, 49–53. [Google Scholar] [CrossRef]
Group | CG | G1 | G2 | p1 |
---|---|---|---|---|
n | 24 | 24 | 23 | -- |
Age (years) | 8.4 (0.5) | 8.1 (1.0) | 9.1 (0.5) | <0.001 |
Serum zinc (μg/mL) | 0.92 (0.13) | 1.01 (0.12) | 0.90 (0.11) | 0.007 |
WAZ | −0.15 (0.79) | −0.85 (0.82) | −0.43 (1.05) | 0.031 |
HAZ | 0.26 (0.98) | −0.64 (0.82) | −0.39 (1.19) | 0.008 |
BAZ | −0.47 (0.74) | −0.70 (0.68) | −0.27 (0.75) | 0.142 |
Resistance (Ω) | 773 (41) | 807 (65) | 748 (91) | 0.017 |
R/H (Ω/cm) | 590.1 (41.7) | 654.4 (73.3) | 576.0 (87.8) | 0.001 |
Reactance (Ω) | 71 (8) | 75 (9) | 68 (6) | 0.008 |
Xc/H (Ω/cm) | 54.3 (7.2) | 60.8 (7.9) | 52.2 (6.4) | <0.001 |
Phase angle (°) | 5.28 (0.68) | 5.34 (0.61) | 5.25 (0.64) | 0.879 |
FFM (%) | 79.8 (2.8) | 78.7 (4.2) | 78.8 (3.7) | 0.524 |
Control Group | Group 1 | Group 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Anthropometrics | Before | After | p1 | Before | After | p1 | Before | After | p1 |
Weight (Kg) | 27.4 (3.3) | 27.2 (3.9) | <0.001 | 22.8 (3.4) | 23.4 (3.8) | <0.001 | 27.1 (4.4) | 28.0 (4.5) | <0.001 |
Height (cm) | 131.2 (6.4) | 132.6 (6.4) | <0.001 | 123.8 (6.9) | 125.1 (7.0) | <0.001 | 130.6 (6.8) | 132.1 (6.9) | <0.001 |
BMI (Kg/m²) | 15.3 (1.1) | 15.4 (1.3) | 0.141 | 14.8 (1.1) | 14.9 (1.2) | 0.334 | 15.8 (1.2) | 15.9 (1.3) | 0.053 |
WAZ | −0.15 (0.79) | −0.15 (0.89) | 0.980 | −0.85 (0.82) | −0.85 (0.88) | 0.938 | −0.47 (1.08) | −0.43 (1.07) | 0.152 |
HAZ | 0.26 (0.98) | 0.24 (0.99) | 0.339 | −0.64 (0.82) | −0.65 (0.80) | 0.574 | −0.39 (1.19) | −0.37 (1.18) | 0.316 |
BAZ | −0.47 (0.74) | −0.46 (0.87) | 0.809 | −0.70 (0.68) | −0.69 (0.75) | 0.970 | −0.27 (0.75) | −0.24 (0.75) | 0.500 |
Bioelectrical | Before | After | p1 | Before | After | p1 | Before | After | p1 |
R (Ω) | 772.8 (41.3) | 777.7 (50.7) | 0.559 | 806.7 (65.1) | 800.0 (71.6) | 0.370 | 748.3 (91.1) | 747.2 (101.6) | 0.835 |
R/H (Ω/cm) | 590.1 (41.7) | 588.3 (56.5) | 0.782 | 654.4 (73.3) | 642.9 (83.7) | 0.079 | 576.0 (87.8) | 568.6 (93.0) | 0.089 |
Xc (Ω) | 71.0 (7.7) | 71.9 (9.3) | 0.579 | 75.0 (8.6) | 75.0 (6.6) | 0.955 | 67.9 (6.2) | 70.0 (7.5) | 0.036 |
Xc/H (Ω/cm) | 54.3 (7.2) | 54.5 (9.0) | 0.863 | 60.8 (7.9) | 60.3 (7.9) | 0.737 | 52.2 (6.4) | 53.3 (7.3) | 0.163 |
PA (Ω) | 5.28 (0.68) | 5.30 (0.58) | 0.882 | 5.34 (0.61) | 5.40 (0.49) | 0.537 | 5.25 (0.64) | 5.43 (0.68) | 0.002 |
FFM (%) | 79.8 (2.8) | 79.2 (3.3) | 0.065 | 78.7 (4.2) | 78.9 (4.2) | 0.478 | 78.8 (3.7) | 78.7 (3.2) | 0.558 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermeulen, K.M.; Lopes, M.M.G.D.; Alves, C.X.; Brito, N.J.N.; Almeida, M.d.G.; Leite-Lais, L.; Vale, S.H.L.; Brandão-Neto, J. Bioelectrical Impedance Vector Analysis and Phase Angle on Different Oral Zinc Supplementation in Eutrophic Children: Randomized Triple-Blind Study. Nutrients 2019, 11, 1215. https://doi.org/10.3390/nu11061215
Vermeulen KM, Lopes MMGD, Alves CX, Brito NJN, Almeida MdG, Leite-Lais L, Vale SHL, Brandão-Neto J. Bioelectrical Impedance Vector Analysis and Phase Angle on Different Oral Zinc Supplementation in Eutrophic Children: Randomized Triple-Blind Study. Nutrients. 2019; 11(6):1215. https://doi.org/10.3390/nu11061215
Chicago/Turabian StyleVermeulen, Karina M., Márcia Marília G. D. Lopes, Camila X. Alves, Naira J. N. Brito, Maria das Graças Almeida, Lucia Leite-Lais, Sancha Helena L. Vale, and José Brandão-Neto. 2019. "Bioelectrical Impedance Vector Analysis and Phase Angle on Different Oral Zinc Supplementation in Eutrophic Children: Randomized Triple-Blind Study" Nutrients 11, no. 6: 1215. https://doi.org/10.3390/nu11061215
APA StyleVermeulen, K. M., Lopes, M. M. G. D., Alves, C. X., Brito, N. J. N., Almeida, M. d. G., Leite-Lais, L., Vale, S. H. L., & Brandão-Neto, J. (2019). Bioelectrical Impedance Vector Analysis and Phase Angle on Different Oral Zinc Supplementation in Eutrophic Children: Randomized Triple-Blind Study. Nutrients, 11(6), 1215. https://doi.org/10.3390/nu11061215