Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir
Abstract
:1. Introduction
2. Results
2.1. Lactobacillus Plantarum
2.1.1. Lactobacillus Plantarum CIDCA 83114
2.1.2. Lactobacillus Plantarum C4
2.1.3. Lactobacillus Plantarum MA2
2.1.4. Other Lactobacillus Plantarum STRAINS
2.1.5. Studies of Unspecified Lb. plantarum Strains
2.2. Lactobacillus kefiranofaciens
2.2.1. Lactobacillus Kefiranofaciens M1
2.2.2. Other Lactobacillus kefiranofaciens Strains
2.2.3. Studies of Unspecified Lb. kefiranofaciens Strains
2.3. Lactobacillus kefiri
2.3.1. Lactobacillus kefiri CIDCA 8348
2.3.2. Other Lactobacillus kefiri Strains
2.4. Other Lactobacillus Species and Strains
2.4.1. Lactobacillus acidophilus Strains
2.4.2. Lactobacillus paracasei Strains
2.4.3. Lb. delbrueckii Strains
2.4.4. Others
3. Integrative Analysis and Knowledge Gaps
3.1. Protection from Pathogens
3.2. Immunomodulation
3.3. Reduction of Cholesterol Levels
3.4. Antioxidative Effects
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dobson, A.; O’Sullivan, O.; Cotter, P.D.; Ross, P.; Hill, C. High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol. Lett. 2011, 320, 56–62. [Google Scholar] [CrossRef]
- Salvetti, E.; Harris, M.B.H.; Felis, G.; O’Toole, P.W. Comparative genomics reveals robust phylogroups in the genus lactobacillus as the basis for reclassification. Appl. Environ. Microbiol. 2018. [Google Scholar] [CrossRef]
- Kakisu, E.; Abraham, A.G.; Farinati, C.T.; Ibarra, C.; De Antoni, G.L. Lactobacillus plantarum isolated from kefir protects vero cells from cytotoxicity by type-ii shiga toxin from escherichia coli o157:H7. J. Dairy Res. 2013, 80, 64–71. [Google Scholar] [CrossRef]
- Bolla, P.A.; Serradell Mde, L.; de Urraza, P.J.; De Antoni, G.L. Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. J. Dairy Res. 2011, 78, 15–22. [Google Scholar] [CrossRef]
- Bolla, P.A.; Carasi, P.; Bolla Mde, L.; De Antoni, G.L.; Serradell Mde, L. Protective effect of a mixture of kefir-isolated lactic acid bacteria and yeasts in a hamster model of clostridium difficile infection. Anaerobe 2013, 21, 28–33. [Google Scholar] [CrossRef]
- Bolla, P.A.; Abraham, A.G.; Perez, P.F.; de Los Angeles Serradell, M. Kefir-isolated bacteria and yeasts inhibit shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells. Benef. Microbes 2016, 7, 103–110. [Google Scholar] [CrossRef]
- Kakisu, E.; Bolla, P.; Abraham, A.G.; de Urraza, P.; De Antoni, G.L. Lactobacillus plantarum isolated from kefir: Protection of cultured hep-2 cells against shigella invasion. Int. Dairy J. 2013, 33, 22–26. [Google Scholar] [CrossRef]
- Golowczyc, M.A.; Gugliada, M.J.; Hollmann, A.; Delfederico, L.; Garrote, G.L.; Abraham, A.G.; Semorile, L.; De Antoni, G. Characterization of homofermentative lactobacilli isolated from kefir grains: Potential use as probiotic. J. Dairy Res. 2008, 75, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Hugo, A.A.; Kakisu, E.; De Antoni, G.L.; Perez, P.F. Lactobacilli antagonize biological effects of enterohaemorrhagic escherichia coli in vitro. Lett. Appl. Microbiol. 2008, 46, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lu, Y.; Wang, J.; Yang, L.; Pan, C.; Huang, Y. Probiotic properties of lactobacillus strains isolated from tibetan kefir grains. PLoS ONE 2013, 8, e69868. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, F.; Wang, X.; Sui, Y.; Yang, L.; Wang, J. Characterization of lactobacillus plantarum lp27 isolated from tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. J. Dairy Sci. 2013, 96, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, X.; Tian, Z.; Yang, Y.; Yang, Z. Characterization of an exopolysaccharide produced by lactobacillus plantarum yw11 isolated from tibet kefir. Carbohydr. Polym. 2015, 125, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, X.; Jiang, Y.; Zhao, W.; Guo, T.; Cao, Y.; Teng, J.; Hao, X.; Zhao, J.; Yang, Z. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by lactobacillus plantarum yw11 isolated from tibetan kefir. J. Dairy Sci. 2017, 100, 6025–6041. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, X.; Wang, J.; Wu, F.; Sui, Y.; Yang, L.; Wang, Z. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J. Dairy Sci. 2013, 96, 2746–2753. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.; Kim, D.H.; Song, K.Y.; Seo, K.H. Antimicrobial and anti-biofilm activities of lactobacillus kefiranofaciens dd2 against oral pathogens. J. Oral Microbiol. 2018, 10, 1472985. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, J.; Zhao, X.; Zhao, W.; Yu, Z.; Chen, C.; Yang, Z. Complete genome sequencing of exopolysaccharide-producing lactobacillus plantarum k25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain. Biosci. Biotechnol. Biochem. 2018, 82, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, C.; He, Z.; Pan, F.; Pan, S.; Wang, Y. Probiotic properties and cellular antioxidant activity of lactobacillus plantarum ma2 isolated from tibetan kefir grains. Probiotics Antimicrob. Proteins 2018, 10, 523–533. [Google Scholar] [CrossRef]
- Tang, W.; Xing, Z.; Li, C.; Wang, J.; Wang, Y. Molecular mechanisms and in vitro antioxidant effects of lactobacillus plantarum ma2. Food Chem. 2017, 221, 1642–1649. [Google Scholar] [CrossRef]
- Tang, W.; Xing, Z.; Hu, W.; Li, C.; Wang, J.; Wang, Y. Antioxidative effects in vivo and colonization of lactobacillus plantarum ma2 in the murine intestinal tract. Appl. Microbiol. Biotechnol. 2016, 100, 7193–7202. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, N.; Xi, A.; Ahmed, Z.; Zhang, B.; Bai, X. Effects of lactobacillus plantarum ma2 isolated from tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl. Microbiol. Biotechnol. 2009, 84, 341–347. [Google Scholar] [CrossRef]
- Gangoiti, M.V.; Puertas, A.I.; Hamet, M.F.; Peruzzo, P.J.; Llamas, M.G.; Medrano, M.; Prieto, A.; Duenas, M.T.; Abraham, A.G. Lactobacillus plantarum cidca 8327: An alpha-glucan producing-strain isolated from kefir grains. Carbohydr. Polym. 2017, 170, 52–59. [Google Scholar] [CrossRef] [PubMed]
- De Montijo-Prieto, S.; Moreno, E.; Bergillos-Meca, T.; Lasserrot, A.; Ruiz-Lopez, M.D.; Ruiz-Bravo, A.; Jimenez-Valera, M. A lactobacillus plantarum strain isolated from kefir protects against intestinal infection with yersinia enterocolitica o9 and modulates immunity in mice. Res. Microbiol. 2015, 166, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Bujalance, C.; Moreno, E.; Jimenez-Valera, M.; Ruiz-Bravo, A. A probiotic strain of lactobacillus plantarum stimulates lymphocyte responses in immunologically intact and immunocompromised mice. Int. J. Food Microbiol. 2007, 113, 28–34. [Google Scholar] [CrossRef]
- Fuentes, S.; Egert, M.; Jimenez-Valera, M.; Monteoliva-Sanchez, M.; Ruiz-Bravo, A.; Smidt, H. A strain of lactobacillus plantarum affects segmented filamentous bacteria in the intestine of immunosuppressed mice. FEMS Microbiol. Ecol. 2008, 63, 65–72. [Google Scholar] [CrossRef]
- Fuentes, S.; Egert, M.; Jimenez-Valera, M.; Ramos-Cormenzana, A.; Ruiz-Bravo, A.; Smidt, H.; Monteoliva-Sanchez, M. Administration of lactobacillus casei and lactobacillus plantarum affects the diversity of murine intestinal lactobacilli, but not the overall bacterial community structure. Res. Microbiol. 2008, 159, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Puertollano, E.; Puertollano, M.A.; Cruz-Chamorro, L.; Alvarez de Cienfuegos, G.; Ruiz-Bravo, A.; de Pablo, M.A. Orally administered lactobacillus plantarum reduces pro-inflammatory interleukin secretion in sera from listeria monocytogenes infected mice. Br. J. Nutr. 2008, 99, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Puertollano, E.; Puertollano, M.A.; Cruz-Chamorro, L.; de Cienfuegos, G.A.; Ruiz-Bravo, A.; de Pablo, M.A. Effects of concentrated supernatants recovered from lactobacillus plantarum on escherichia coli growth and on the viability of a human promyelocytic cell line. J. Appl. Microbiol. 2009, 106, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Bergillos-Meca, T.; Costabile, A.; Walton, G.; Moreno-Montoro, M.; Ruiz-Bravo, A.; Ruiz-López, M.D. In vitro evaluation of the fermentation properties and potential probiotic activity of lactobacillus plantarum c4 in batch culture systems. LWT-Food Sci. Technol. 2015, 60, 420–426. [Google Scholar] [CrossRef]
- Yamane, T.; Sakamoto, T.; Nakagaki, T.; Nakano, Y. Lactic acid bacteria from kefir increase cytotoxicity of natural killer cells to tumor cells. Foods 2018, 7, 48. [Google Scholar] [CrossRef]
- Chen, Y.P.; Chen, M.J. Effects of lactobacillus kefiranofaciens m1 isolated from kefir grains on germ-free mice. PLoS ONE 2013, 8, e78789. [Google Scholar] [CrossRef]
- Chen, Y.P.; Lee, T.Y.; Hong, W.S.; Hsieh, H.H.; Chen, M.J. Effects of lactobacillus kefiranofaciens m1 isolated from kefir grains on enterohemorrhagic escherichia coli infection using mouse and intestinal cell models. J. Dairy Sci. 2013, 96, 7467–7477. [Google Scholar] [CrossRef]
- Chen, Y.P.; Hsiao, P.J.; Hong, W.S.; Dai, T.Y.; Chen, M.J. Lactobacillus kefiranofaciens m1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 2012, 95, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.S.; Chen, Y.P.; Chen, M.J. The antiallergic effect of kefir lactobacilli. J. Food Sci. 2010, 75, H244–H253. [Google Scholar] [CrossRef]
- Hong, W.S.; Chen, Y.P.; Dai, T.Y.; Huang, I.N.; Chen, M.J. Effect of heat-inactivated kefir-isolated lactobacillus kefiranofaciens m1 on preventing an allergic airway response in mice. J. Agric. Food Chem. 2011, 59, 9022–9031. [Google Scholar] [CrossRef]
- Owaga, E.E.; Chen, M.J.; Chen, W.Y.; Chen, C.W.; Hsieh, R.H. Oral toxicity evaluation of kefir-isolated lactobacillus kefiranofaciens m1 in sprague-dawley rats. Food Chem. Toxicol. 2014, 70, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Tang, H.Y.; Chiang, M.L. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic lactobacillus kefiranofaciens m1. Food Microbiol. 2017, 66, 20–27. [Google Scholar] [CrossRef]
- Hong, W.-S.; Chen, H.-C.; Chen, Y.-P.; Chen, M.-J. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. Int. Dairy J. 2009, 19, 244–251. [Google Scholar] [CrossRef]
- Vardjan, T.; Mohar Lorbeg, P.; Rogelj, I.; Canzek Majhenic, A. Characterization and stability of lactobacilli and yeast microbiota in kefir grains. J. Dairy Sci. 2013, 96, 2729–2736. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Chen, K.N.; Lo, Y.M.; Chiang, M.L.; Chen, H.C.; Liu, J.R.; Chen, M.J. Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiol. 2012, 32, 274–285. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanovic, V.; Aquilanti, L.; De Filippis, F.; Stellato, G.; Di Mauro, S.; Turchetti, B.; Buzzini, P.; Ercolini, D.; et al. Bacteria and yeast microbiota in milk kefir grains from different italian regions. Food Microbiol. 2015, 49, 123–133. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, J.; Jia, Y.; Pan, Y.; Wang, Y. Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in tibetan kefir grains. Heliyon 2018, 4, e00649. [Google Scholar] [CrossRef] [PubMed]
- Korsak, N.; Taminiau, B.; Leclercq, M.; Nezer, C.; Crevecoeur, S.; Ferauche, C.; Detry, E.; Delcenserie, V.; Daube, G. Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16s and 26s ribosomal DNA fragments. J. Dairy Sci. 2015, 98, 3684–3689. [Google Scholar] [CrossRef] [PubMed]
- Furuno, T.; Nakanishi, M. Kefiran suppresses antigen-induced mast cell activation. Biol. Pharm. Bull. 2012, 35, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Ishii, I.; Inoue, C.; Akisato, Y.; Watanabe, K.; Hosoyama, S.; Toida, T.; Ariyoshi, N.; Kitada, M. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet. J. Atheroscler. Thromb. 2010, 17, 980–988. [Google Scholar] [CrossRef]
- Ninane, V.; Mukandayambaje, R.; Berben, G. Identification of lactic acid bacteria within the consortium of a kefir grain by sequencing 16s rdna variable regions. J. AOAC Int. 2007, 90, 1111–1117. [Google Scholar] [PubMed]
- Santos, A.; San Mauro, M.; Sanchez, A.; Torres, J.M.; Marquina, D. The antimicrobial properties of different strains of lactobacillus spp. Isolated from kefir. Syst. Appl. Microbiol. 2003, 26, 434–437. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Suksawang, S.; Yeesang, J.; Boonsawang, P. Co-production of functional exopolysaccharides and lactic acid by lactobacillus kefiranofaciens originated from fermented milk, kefir. J. Food Sci. Technol. 2018, 55, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Kim, D.H.; Kang, I.B.; Kim, H.; Song, K.Y.; Kim, H.S.; Seo, K.H. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of lactobacillus kefiranofaciens dn1. Food Funct. 2017, 8, 680–686. [Google Scholar] [CrossRef]
- Seo, M.K.; Park, E.J.; Ko, S.Y.; Choi, E.W.; Kim, S. Therapeutic effects of kefir grain lactobacillus-derived extracellular vesicles in mice with 2,4,6-trinitrobenzene sulfonic acid-induced inflammatory bowel disease. J. Dairy Sci. 2018, 101, 8662–8671. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Ahmed, Z.; Bai, X. Complete genome sequence of lactobacillus kefiranofaciens zw3. J. Bacteriol. 2011, 193, 4280–4281. [Google Scholar] [CrossRef]
- Vinderola, G.; Perdigon, G.; Duarte, J.; Farnworth, E.; Matar, C. Effects of the oral administration of the exopolysaccharide produced by lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 2006, 36, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Zavala, L.; Golowczyc, M.A.; van Hoorde, K.; Medrano, M.; Huys, G.; Vandamme, P.; Abraham, A.G. Selected lactobacillus strains isolated from sugary and milk kefir reduce salmonella infection of epithelial cells in vitro. Benef. Microbes 2016, 7, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Macuamule, C.L.; Wiid, I.J.; van Helden, P.D.; Tanner, M.; Witthuhn, R.C. Effect of milk fermentation by kefir grains and selected single strains of lactic acid bacteria on the survival of mycobacterium bovis bcg. Int. J. Food Microbiol. 2016, 217, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bengoa, A.A.; Zavala, L.; Carasi, P.; Trejo, S.A.; Bronsoms, S.; Serradell, M.L.A.; Garrote, G.L.; Abraham, A.G. Simulated gastrointestinal conditions increase adhesion ability of lactobacillus paracasei strains isolated from kefir to caco-2 cells and mucin. Food Res. Int. 2018, 103, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.M.; Miguel, M.A.; Peixoto, R.S.; Ruas-Madiedo, P.; Paschoalin, V.M.; Mayo, B.; Delgado, S. Probiotic potential of selected lactic acid bacteria strains isolated from brazilian kefir grains. J. Dairy Sci. 2015, 98, 3622–3632. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Chondrou, P.; Galanis, A.; Bekatorou, A.; Bezirtzoglou, E.; Koutinas, A.A.; Plessas, S. Application of a novel potential probiotic lactobacillus paracasei strain isolated from kefir grains in the production of feta-type cheese. Microorganisms 2018, 6, 121. [Google Scholar] [CrossRef] [PubMed]
- Golowczyc, M.A.; Mobili, P.; Garrote, G.L.; Abraham, A.G.; De Antoni, G.L. Protective action of lactobacillus kefir carrying s-layer protein against salmonella enterica serovar enteritidis. Int. J. Food Microbiol. 2007, 118, 264–273. [Google Scholar] [CrossRef]
- Carasi, P.; Racedo, S.M.; Jacquot, C.; Romanin, D.E.; Serradell, M.A.; Urdaci, M.C. Impact of kefir derived lactobacillus kefiri on the mucosal immune response and gut microbiota. J. Immunol. Res. 2015, 2015, 361604. [Google Scholar] [CrossRef]
- Carasi, P.; Diaz, M.; Racedo, S.M.; De Antoni, G.; Urdaci, M.C.; Serradell Mde, L. Safety characterization and antimicrobial properties of kefir-isolated lactobacillus kefiri. Biomed. Res. Int. 2014, 2014, 208974. [Google Scholar] [CrossRef]
- Zubiria, M.G.; Gambaro, S.E.; Rey, M.A.; Carasi, P.; Serradell, M.L.A.; Giovambattista, A. Deleterious metabolic effects of high fructose intake: The preventive effect of lactobacillus kefiri administration. Nutrients 2017, 9, 470. [Google Scholar] [CrossRef]
- Carasi, P.; Ambrosis, N.M.; De Antoni, G.L.; Bressollier, P.; Urdaci, M.C.; Serradell Mde, L. Adhesion properties of potentially probiotic lactobacillus kefiri to gastrointestinal mucus. J. Dairy Res. 2014, 81, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Carasi, P.; Trejo, F.M.; Perez, P.F.; De Antoni, G.L.; Serradell Mde, L. Surface proteins from lactobacillus kefir antagonize in vitro cytotoxic effect of clostridium difficile toxins. Anaerobe 2012, 18, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, E.; Carasi, P.; Tymczyszyn, E.E.; Gomez-Zavaglia, A. Removal of cadmium by lactobacillus kefir as a protective tool against toxicity. J. Dairy Res. 2014, 81, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, E.; Carasi, P.; Araujo-Andrade, C.; Tymczyszyn, E.E.; Gomez-Zavaglia, A. Role of s-layer proteins in the biosorption capacity of lead by lactobacillus kefir. World J. Microbiol. Biotechnol. 2015, 31, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Chon, J.W.; Kang, I.B.; Kim, H.; Kim, H.S.; Song, K.Y.; Seo, K.H. Growth inhibition of cronobacter sakazakii in experimentally contaminated powdered infant formula by kefir supernatant. J. Food Prot. 2015, 78, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, L.J.; Wu, H.Y.; Wu, Y.F.; Zhao, S.N. Investigation of microorganisms involved in kefir biofilm formation. Antonie Van Leeuwenhoek 2018, 111, 2361–2370. [Google Scholar] [CrossRef] [PubMed]
- Ghoneum, M.; Felo, N. Selective induction of apoptosis in human gastric cancer cells by lactobacillus kefiri (pft), a novel kefir product. Oncol. Rep. 2015, 34, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Ghoneum, M.; Felo, N.; Agrawal, S.; Agrawal, A. A novel kefir product (pft) activates dendritic cells to induce cd4+t and cd8+t cell responses in vitro. Int. J. Immunopathol. Pharmacol. 2015, 28, 488–496. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, D.; Song, K.Y.; Kang, I.B.; Kim, H.; Seo, K.H. Culture supernatant produced by lactobacillus kefiri from kefir inhibits the growth of cronobacter sakazakii. J. Dairy Res. 2018, 85, 98–103. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, D.; Kang, I.B.; Kim, H.; Song, K.Y.; Seo, K.H. Dual function of lactobacillus kefiri dh5 in preventing high-fat-diet-induced obesity: Direct reduction of cholesterol and upregulation of ppar-alpha in adipose tissue. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Carey, C.M.; Kostrzynska, M. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by salmonella enterica serovar typhimurium. Can. J. Microbiol. 2013, 59, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kesmen, Z.; Kacmaz, N. Determination of lactic microflora of kefir grains and kefir beverage by using culture-dependent and culture-independent methods. J. Food Sci. 2011, 76, M276–M283. [Google Scholar] [CrossRef] [PubMed]
- Ostadrahimi, A.; Taghizadeh, A.; Mobasseri, M.; Farrin, N.; Payahoo, L.; Beyramalipoor Gheshlaghi, Z.; Vahedjabbari, M. Effect of probiotic fermented milk (kefir) on glycemic control and lipid profile in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Iran J. Public Health 2015, 44, 228–237. [Google Scholar] [PubMed]
- Melo, A.F.P.; Mendonca, M.C.P.; Rosa-Castro, R.M. The protective effects of fermented kefir milk on azoxymethane-induced aberrant crypt formation in mice colon. Tissue Cell 2018, 52, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Sabir, F.; Beyatli, Y.; Cokmus, C.; Onal-Darilmaz, D. Assessment of potential probiotic properties of lactobacillus spp., lactococcus spp., and pediococcus spp. Strains isolated from kefir. J. Food Sci. 2010, 75, M568–M573. [Google Scholar] [CrossRef] [PubMed]
- Folkers, B.L.; Schuring, C.; Essmann, M.; Larsen, B. Quantitative real time pcr detection of clostridium difficile growth inhibition by probiotic organisms. N. Am. J. Med. Sci. 2010, 2, 5–10. [Google Scholar] [PubMed]
- Banerjee, P.; Merkel, G.J.; Bhunia, A.K. Lactobacillus delbrueckii ssp. Bulgaricus b-30892 can inhibit cytotoxic effects and adhesion of pathogenic clostridium difficile to caco-2 cells. Gut Pathog. 2009, 1, 8. [Google Scholar] [CrossRef]
- Mikelsaar, M.; Zilmer, M. Lactobacillus fermentum me-3 - an antimicrobial and antioxidative probiotic. Microb. Ecol. Health Dis. 2009, 21, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Philpott, D.J.; Yamaoka, S.; Israel, A.; Sansonetti, P.J. Invasive shigella flexneri activates nf-kappa b through a lipopolysaccharide-dependent innate intracellular response and leads to il-8 expression in epithelial cells. J. Immunol. 2000, 165, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Buckley, A.M.; Spencer, J.; Candlish, D.; Irvine, J.J.; Douce, G.R. Infection of hamsters with the uk clostridium difficile ribotype 027 outbreak strain r20291. J. Med. Microbiol. 2011, 60, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
- Larson, H.E.; Price, A.B.; Honour, P.; Borriello, S.P. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 1978, 1, 1063–1066. [Google Scholar] [CrossRef]
- Shiomi, M.; Sasaki, K.; Murofushi, M.; Aibara, K. Antitumor activity in mice of orally administered polysaccharide from kefir grain. Jpn. J. Med. Sci. Biol. 1982, 35, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Kim, D.-H.; Kang, I.-B.; Kim, H.; Song, K.-Y.; Kim, H.-S.; Seo, K.-H. Characterization and antibacterial activity of a novel exopolysaccharide produced by lactobacillus kefiranofaciens dn1 isolated from kefir. Food Control 2017, 78, 436–442. [Google Scholar] [CrossRef]
- Giaouris, E.; Heir, E.; Desvaux, M.; Hebraud, M.; Moretro, T.; Langsrud, S.; Doulgeraki, A.; Nychas, G.J.; Kacaniova, M.; Czaczyk, K.; et al. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front. Microbiol. 2015, 6, 841. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Nojima, N.; Yoshida, K.; Hirayama, S.; Ogihara, H.; Morinaga, Y. The importance of inter-species cell-cell co-aggregation between lactobacillus plantarum ml11-11 and saccharomyces cerevisiae by4741 in mixed-species biofilm formation. Biosci. Biotechnol. Biochem. 2011, 75, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on caco-2 cell functional characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef]
- Pinto, M.; Robine, S.; Appay, M.D. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line caco-2 in culture. Biol. Cell 1983, 47, 323–330. [Google Scholar]
- Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T. Characterization of the human colon carcinoma cell line (caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96, 736–749. [Google Scholar] [CrossRef]
- Sara, M.; Sleytr, U.B. S-layer proteins. J. Bacteriol. 2000, 182, 859–868. [Google Scholar] [CrossRef]
- Long, S.L.; Gahan, C.G.M.; Joyce, S.A. Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 2017, 56, 54–65. [Google Scholar] [CrossRef]
Lactobacillus spp. | Strain and Reference | Lactobacillus Phylogenetic Group 1 | Type Strain | Genome Size (Mb) |
---|---|---|---|---|
Lb. plantarum | -Lb. plantarum CIDCA 83114 [3,4,5,6,7,8,9] -Lb. plantarum CIDCA 8336 [3,8] -Lb. plantarum B23 [10] -Lb. plantarum Lp27 [11] -Lb. plantarum YW11 [12,13] -Lb. plantarum Lp09 [14] -Lb. plantarum Lp45 [14] -Lb. plantarum ATCC 10012 [15] -Lb. plantarum K25 [16] -Lb. plantarum MA2 [17,18,19,20] -Lb. plantarum CIDCA 8327 [8,21] -Lb. plantarum C4 [22,23,24,25,26,27,28] -Unspecified [29] -Lb. plantarum CIDCA 8337 [8] | Lb. plantarum | Lb. plantarum subsp. plantarum CGMCC 1.2437 | 3.2 |
Lb. kefiranofaciens | -Lb. kefiranofaciens M1 [30,31,32,33,34,35,36,37] -Lb. kefiranofaciens ssp. Kefirgranum [38] -Lb. kefiranofaciens HL1 [39] -Unspecified [40,41,42,43,44,45] -Lb. kefiranofaciens CYC 10058 [46] -Lb. kefiranofaciens DD2 [15] -Lb kefiranofaciens JCM 6985 [47] -Lb. kefiranofaciens DN1 [48] -Lb. kefiranofaciens KCTC 5075 [49] -Lb. kefiranofaciens ZW3 [50] -Lb. kefiranofaciens ATCC 43761 [51] | Lb. delbrueckii | Lb. kefiranofaciens subsp. kefiranofaciens DSM 5016 | 2.6 |
Lb. paracasei | -Lb. paracasei CIDCA 8339 [52] -Lb. paracasei CHB 2121 [53] -Lb. paracasei CIDCA 8339 [54] -Lb. paracasei MRS59 [55] -Lb. paracasei SP3 [56] | Lb. casei | Lb. paracasei subsp. paracasei DSM 5622 | 2.9 |
Lb. kefiri | -Lb. kefiri CIDCA 8348 [3,4,5,6,7,57,58,59,60,61,62,63,64] -Lb. kefiri CIDCA 83111 [59,62] -Lb. kefiri CIDCA 83102 [52] -Unspecified [42,49,65,66] -Lb. kefiri LMG 9480 [38] -Lb. kefiri P-IF [67,68] -Lb. kefiri HL2 [39] -Lb. kefiri DH5 [69,70] -Lb. kefiri CIDCA 83115 [61] -Lb. kefir JCM 5818 [62,63,64] -Lb. kefiri D17 [10] -Lb. kefir IM002 [71] | Lb. buchneri | Lb. kefiri DSM 20587 | 2.2 |
Lb. parakefiri | -Lb. parakefiri KP91 [38] | Lb. buchneri | Lb. parakefiri DSM 10551 | 2.5 |
Lb. acidophilus | -Lb. acidophilus LA15 [10] -Lb. acidophilus B2-2 [72] -Unspecified [73,74] -Lb. acidophilus CYC 10051 [46] -Lb. acidophilus Z1L [75] | Lb. delbrueckii | Lb. acidophilus DSM 20079 | 2.0 |
Lb. casei | -Unspecified [29,73] -Lb. casei NWL63 [53] | Lb. casei | Lb. casei DSM 20011 | 2.8 |
Lb. sunkii | -Unspecified [66] | Lb. buchneri | Lb. sunkii DSM 19904 | 2.7 |
Lb. johnsonii | -Lb. johnsonii JCM 1022 [15] | Lb. delbrueckii | Lb. johnsonii ATCC 33200 | 1.8 |
Lb. rhamnosus | Lb. rhamnosus ATCC 53103 [76] | Lb. casei | Lb. rhamnosus DSM 20021 | 2.9 |
Lb. kefiranofaciens subsp. kefirgranum | -Lb. kefirgranum KCTC 5086 [49] | Lb. delbrueckii | Lb. kefiranofaciens subsp. kefirgranum DSM 10550 | 2.1 |
Lb. brevis | -Unspecified [75] | Lb. casei | Lb. brevis DSM 20054 | 2.5 |
Lb. delbrueckii | -Lb. delbruekii CYC 10047 [46] -Lb. delbrueckii subsp. Lactis CIDCA 133 [9] -Lb. delbrueckii ssp. bulgaricus B-30892 [77] | Lb. delbrueckii | Lb. delbrueckii subsp. delbrueckii DSM 20074 | 2.0 |
Lb. helveticus | -Lb. helveticus Z5L [75] | Lb. delbrueckii | Lb. helveticus CGMCC 1.1877 | 2.0 |
Lb. bulgaricus | -Unspecified [75] | Lb. delbrueckii | Lb. delbrueckii subsp. bulgaricus DSM 20081 | 1.8 |
Lb. fermentum | -Lb. fermentum ME-3 [78] | Lb. reuteri | Lb. fermentum DSM 20055 | 1.9 |
Lb. reuteri | -Lb. reuteri ATCC 53609 [76] | Lb. reuteri | Lb. reuteri DSM 20016 | 2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slattery, C.; Cotter, P.D.; W. O’Toole, P. Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients 2019, 11, 1252. https://doi.org/10.3390/nu11061252
Slattery C, Cotter PD, W. O’Toole P. Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients. 2019; 11(6):1252. https://doi.org/10.3390/nu11061252
Chicago/Turabian StyleSlattery, Conor, Paul D. Cotter, and Paul W. O’Toole. 2019. "Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir" Nutrients 11, no. 6: 1252. https://doi.org/10.3390/nu11061252
APA StyleSlattery, C., Cotter, P. D., & W. O’Toole, P. (2019). Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients, 11(6), 1252. https://doi.org/10.3390/nu11061252