Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study and Description of the Study Population
2.2. Adherence to the Mediterranean Diet Assessment
2.3. Physical Activity Intensity and Type Assessment
2.4. Assessment of Obesity-Related Parameters
2.5. Covariates Assessment
2.6. Ethical Approval
2.7. Statistical Analysis
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- 1
- Respiratory Department, Arnau de Vilanova-Santa María University Hospital, Translational Research in Respiratory Medicine, IRBLleida, University of Lleida, Lleida, Spain.
- 2
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- 3
- Vascular and Renal Translational Research Group, IRBLleida, RedinRen-ISCIII, Lleida, Spain.
- 4
- Stroke Unit. University Hospital Arnau de Vilanova, Clinical Neurosciences Group, IRBLleida, University of Lleida, Lleida, Spain.
- 5
- Applied Epidemiology Research Group, IRBLleida, Agència de Salut Pública de Catalunya, Lleida, Spain.
- 6
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII).
- 7
- Department of Experimental Medicina, IRBLleida, University of Lleida, Lleida, Spain.
- 8
- Systems Biology and Statistical Methods for Biomedical Research Group, Biostatistics Unit, IRBLleida, Universitat de Lleida, Lleida, Spain.
- 9
- Unitat de Suport a la Recerca Lleida, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
References
- Inoue, Y.; Qin, B.; Poti, J.; Sokol, R.; Gordon-Larsen, P. Epidemiology of obesity in adults: Latest trends. Curr. Obes. Rep. 2018, 7, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Pearson, N.; Biddle, S.J. Sedentary behavior and dietary intake in children, adolescents, and adults. A systematic review. Am. J. Prev. Med. 2011, 41, 178–188. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Health Observatory (GHO) Data. Obesity. Available online: https://www.who.int/features/factfiles/obesity/en/ (accessed on 15 October 2017).
- Upadhyay, J.; Farr, O.; Perakakis, N.; Ghaly, W.; Mantzoros, C. Obesity as a disease. Med. Clin. N. Am. 2018, 102, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.R.; Khoshnam, M.S.; Khoshnam, E. Effects of different modes of exercise training on body composition and risk factors for cardiovascular disease in middle-aged men. Int. J. Prev. Med. 2018, 9, 9. [Google Scholar] [PubMed]
- Drenowatz, C.; Shook, R.P.; Hand, G.A.; Hébert, J.R.; Blair, S.N. The independent association between diet quality and body composition. Sci. Rep. 2014, 4, 4928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Quezada, I.; Román-Viñas, B.; Serra-Majem, L. The mediterranean diet and nutritional adequacy: A review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet: A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Roman, B.; Estruch, R. Scientific evidence of interventions using the Mediterranean diet: A systematic review. Nutr. Rev. 2006, 64, S27–S47. [Google Scholar] [CrossRef]
- Godos, J.; Zappalà, G.; Bernardini, S.; Giambini, I.; Bes-Rastrollo, M.; Martinez-Gonzalez, M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies. Int. J. Food Sci. Nutr. 2017, 68, 138–148. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; De la Torre, R.; Martínez-González, M.Á. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Itsiopoulos, C.; Kucianski, T.; Mayr, H.L.; van Gaal, W.J.; Martinez-Gonzalez, M.A.; Vally, H.; Kingsley, M.; Kouris-Blazos, A.; Radcliffe, J.; Segal, L.; et al. The AUStralian MEDiterranean diet heart trial (AUSMED heart trial): A randomized clinical trial in secondary prevention of coronary heart disease in a multi-ethnic Australian population: Study protocol. Am. Heart J. 2018, 203, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Boghossian, N.S.; Yeung, E.H.; Mumford, S.L.; Zhang, C.; Gaskins, A.J.; Wactawski-Wende, J.; Schisterman, E.F.; BioCycle Study Group. Adherence to the Mediterranean diet and body fat distribution in reproductive aged women. Eur. J. Clin. Nutr. 2013, 67, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoli, S.; Leone, A.; Vignati, L.; Bedogni, G.; Martínez-González, M.Á.; Bes-Rastrollo, M.; Spadafranca, A.; Vanzulli, A.; Battezzati, A. Adherence to the Mediterranean diet is inversely associated with visceral abdominal tissue in Caucasian subjects. Clin. Nutr. 2015, 34, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Macchia, P.E.; Di Somma, C.; Falco, A.; Savanelli, M.C.; Colao, A.; Savastano, S. Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study. Nutrients 2017, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Dulloo, A.G.; Salvador, J.; Frühbeck, G.; EASO SAB Working Group on BMI. Beyond BMI—Phenotyping the obesities. Obes. Facts 2014, 7, 322–328. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; Silva, C.; Galofré, J.C.; Escalada, J.; Santos, S.; Millán, D.; Vila, N.; Ibañez, P.; Gil, M.J.; Valentí, V.; et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 2012, 36, 286–294. [Google Scholar] [CrossRef]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef]
- Deurenberg, P.; Weststrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age- and sex-specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef]
- Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Micciolo, R.; Ghiatas, A.A.; Lancaster, J.L.; Alyassin, A.; Muggeo, M.; DeFronzo, R.A. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism 1995, 44, 1617–1625. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Després, J.P.; Couillard, C.; Gagnon, J.; Bergeron, J.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H.; Bouchard, C. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: The Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Betriu, À.; Farràs, C.; Abajo, M.; Martinez-Alonso, M.; Arroyo, D.; Barbé, F.; Buti, M.; Lecube, A.; Portero, M.; Purroy, F.; et al. Randomised intervention study to assess the prevalence of subclinical vascular disease and hidden kidney disease and its impact on morbidity and mortality: The ILERVAS project. Nefrologia 2016, 36, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 14, 1140–1145. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; pp. 1–252. [Google Scholar]
- Ma, W.Y.; Yang, C.Y.; Shih, S.R.; Hsieh, H.J.; Hung, C.S.; Chiu, F.C.; Lin, M.S.; Liu, P.H.; Hua, C.H.; Hsein, Y.C.; et al. Measurement of Waist Circumference: Midabdominal or iliac crest? Diabetes Care 2013, 36, 1660–1666. [Google Scholar] [CrossRef]
- Ben-Noun, L.L.; Laor, A. Relationship between changes in neck circumference and cardiovascular risk factors. Exp. Clin. Cardiol. 2006, 11, 14–20. [Google Scholar] [PubMed]
- Hume, R. Prediction of lean body mass from height and weight. J. Clin. Pathol. 1966, 19, 389–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular effects and benefits of exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.; Aguirre, L.; Gurney, B.; Waters, D.L.; Sinacore, D.R.; Colombo, E.; Armamento-Villareal, R.; Qualls, C. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 2017, 376, 1943–1955. [Google Scholar] [CrossRef] [PubMed]
- Jakicic, J.M.; Gregg, E.; Knowler, W.; Kelley, D.E.; Lang, W.; Miller, G.D.; Pi-Sunyer, F.X.; Regensteiner, J.G.; Rejeski, W.J.; Ridisl, P.; et al. Activity patterns of obese adults with type 2 diabetes in the Look AHEAD study. Med. Sci. Sports Exerc. 2010, 42, 1995–2005. [Google Scholar] [CrossRef]
- Rosique-Esteban, N.; Díaz-López, A.; Martínez-González, M.A.; Corella, D.; Goday, A.; Martínez, J.A.; Romaguera, D.; Vioque, J.; Arós, F.; Garcia-Rios, A.; et al. Leisure-time physical activity, sedentary behaviors, sleep, and cardiometabolic risk factors at baseline in the PREDIMED-PLUS intervention trial: A cross-sectional analysis. PLoS ONE 2017, 12, e0172253. [Google Scholar] [CrossRef]
- Wolff-Hughes, D.L.; Fitzhugh, E.C.; Bassett, D.R.; Churilla, J.R. Total activity counts and bouted minutes of moderate-to-vigorous physical activity: Relationships with cardiometabolic biomarkers using 2003–2006 NHANES. J. Phys. Act Health 2015, 12, 694–700. [Google Scholar] [CrossRef]
- Jefferis, B.J.; Parsons, T.J.; Sartini, C.; Ash, S.; Lennon, L.T.; Wannamethee, S.G.; Lee, I.M.; Whincup, P.H. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 36. [Google Scholar] [CrossRef]
- Cameron, N.; Godino, J.; Nichols, J.F.; Wing, D.; Hill, L.; Patrick, K. Associations between physical activity and BMI, body fatness, and visceral adiposity in overweight or obese Latino and non-Latino adults. Int. J. Obes. 2017, 41, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Dagnone, D.; Jones, P.J.; Smith, H.; Paddags, A.; Hudson, R.; Janssen, I. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. Ann. Intern. Med. 2000, 133, 92–103. [Google Scholar] [CrossRef]
- Mourier, A.; Gautier, J.F.; De Kerviler, E.; Bigard, A.X.; Villette, J.M.; Garnier, J.P.; Duvallet, A.; Guezennec, C.Y.; Cathelineau, G. Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care 1997, 20, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.K.; Leibel, R.L.; Edens, N.K.; Kral, J.G. Lipolysis in intraabdominal adipose tissue of obese women and men. Obes. Res. 1993, 1, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Meek, S.E.; Nair, K.S.; Jensen, M.D. Insulin regulation of regional free fatty acid metabolism. Diabetes 1999, 48, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.W.; Pedersen, B.K. The role of IL-6 in mediating the anti-inflammatory effects of exercise. J. Physiol. Pharmacol. 2006, 57 (Suppl. 10), 43–51. [Google Scholar] [PubMed]
- Petersen, E.W.; Carey, A.L.; Sacchetti, M.; Steinberg, G.R.; Macaulay, S.L.; Febbraio, M.A.; Pedersen, B.K. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am. J. Physiol. Endocrinol. Metab. 2005, 288, 155–162. [Google Scholar] [CrossRef]
- Buscemi, S.; Corleo, D.; Vasto, S.; Buscemi, C.; Massenti, M.F.; Nuzzo, D.; Lucisano, G.; Barile, A.M.; Rosafio, G.; Maniaci, V.; et al. Factors associated with circulating concentrations of irisin in the general population cohort of the ABCD study. Int. J. Obes. 2018, 42, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Biniaminov, N.; Bandt, S.; Roth, A.; Haertel, S.; Neumann, R.; Bub, A. Irisin, physical activity and fitness status in healthy humans: No association under resting conditions in a cross-sectional study. PLoS ONE 2018, 13, e0189254. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Sato, K.; Kurihara, T.; Hasegawa, N.; Fujie, S.; Fujita, S.; Sanada, K.; Hamaoka, T.; Tabata, I.; Iemitsu, M. Endurance training-induced increase in circulating irisin levels is associated with reduction of abdominal visceral fat in middle-aged and older adults. PLoS ONE 2015, 10, e0120354. [Google Scholar] [CrossRef]
- Cowan, T.E.; Brennan, A.M.; Stotz, P.J.; Clarke, J.; Lamarche, B.; Ross, R. Separate Effects of Exercise Amount and Intensity on Adipose Tissue and Skeletal Muscle Mass in Adults with Abdominal Obesity. Obesity 2018, 26, 1696–1703. [Google Scholar] [CrossRef] [Green Version]
- Ulian, M.D.; Aburad, L.; da Silva Oliveira, M.S.; Poppe, A.C.M.; Sabatini, F.; Perez, I.; Gualano, B.; Benatti, F.B.; Pinto, A.J.; Roble, O.J.; et al. Effects of health at every size® interventions on health-related outcomes of people with overweight and obesity: A systematic review. Obes. Rev. 2018, 19, 1659–1666. [Google Scholar] [CrossRef]
- Anton, S.D.; Hida, A.; Heekin, K.; Sowalsky, K.; Karabetian, C.; Mutchie, H.; Leeuwenburgh, C.; Manini, T.M.; Barnett, T.E. Effects of Popular Diets without Specific Calorie Targets on Weight Loss Outcomes: Systematic Review of Findings from Clinical Trials. Nutrients 2017, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Mancini, J.G.; Filion, K.B.; Atallah, R.; Eisenberg, M.J. Systematic Review of the Mediterranean Diet for Long-Term Weight Loss. Am. J. Med. 2016, 129, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, J.F.; Bulló, M.; Barrubés, L. Mediterranean diet and cardiovascular disease prevention: What do we know? Prog. Cardiovasc. Dis. 2018, 61, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; DeLany, J.P.; Otto, A.D.; Kuller, L.; Vockley, J.; South-Paul, J.E.; Thomas, S.B.; Brown, J.; McTigue, K.; Hames, K.C.; et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: A randomized trial. JAMA 2010, 304, 1795–1802. [Google Scholar] [CrossRef] [PubMed]
- Nang, E.E.; van Dam, R.M.; Tan, C.S.; Mueller-Riemenschneider, F.; Lim, Y.T.; Ong, K.Z.; Ee, S.; Lee, J.; Tai, E.S. Association of television viewing time with body composition and calcified subclinical atherosclerosis in Singapore Chinese. PLoS ONE 2015, 10, e0132161. [Google Scholar] [CrossRef]
- López-Sobaler, A.M.; Rodríguez-Rodríguez, E.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Serra-Majem, L.; Varela-Moreiras, G.; Ortega, R.M. General and abdominal obesity is related to physical activity, smoking and sleeping behaviours and mediated by the educational level: Findings from the ANIBES Study in Spain. PLoS ONE 2016, 11, e0169027. [Google Scholar] [CrossRef]
- Ozemek, C.; Lavie, C.J.; Rognmo, Ø. Global physical activity levels—Need for intervention. Prog. Cardiovasc. Dis. 2019, 62, 102–107. [Google Scholar] [CrossRef]
Low PA | Moderate PA | Vigorous PA | p * | p ** | |
---|---|---|---|---|---|
Number (%) | 4408 (66.0) | 1884 (28.2) | 380 (5.6) | - | - |
Women, n (%) | 2137 (48.5) | 1192 (63.3) | 97 (25.5) | <0.001 | <0.001 |
Age (years) | 57 (52; 62) | 59 (54;64) | 54 (50; 60) | <0.001 | <0.001 |
Current or former smoker, n (%) | 2704 (61.3) | 992 (52.7) | 220 (57.0) | 0.186 | 0.062 |
Hypertension, n (%) | 1764 (40.0) | 778 (41.3) | 125 (32.9) | 0.006 | 0.002 |
Systolic blood pressure (mmHg) | 131 (120; 142) | 129 (119; 142) | 127 (117; 137) | 0.091 | 0.768 |
Diastolic blood pressure (mmHg) | 82 (75; 88) | 81 (75; 87) | 81 (75; 87) | 0.146 | 1.000 |
Antihypertensive drugs, n (%) | 1464 (33.2) | 660 (35.0) | 101 (26.6) | 0.008 | 0.001 |
Dyslipidemia, n (%) | 2276 (51.6) | 1031 (54.7) | 203 (53.4) | 0.503 | 0.642 |
Total cholesterol ≥200 mg/dL, n (%) | 2385 (54.1) | 1086 (57.6) | 196 (51.6) | 0.343 | 0.030 |
Lipid-lowering agents, n (%) | 797 (18.1) | 381 (20.2) | 71 (18.7) | 0.770 | 0.494 |
Obesity, n (%) | 1361 (30.9) | 561 (29.8) | 78 (20.5) | <0.001 | <0.001 |
BMI (kg/m2) | 28.8 (25.9; 32.2) | 28.3 (25.4; 31.6) | 27.7 (25.1; 30.2) | <0.001 | 0.002 |
Antithrombotic drugs, n (%) | 138 (3.1) | 57 (3.0) | 13 (3.4) | 0.756 | 0.684 |
Low MedDiet | Moderate MedDiet | High MedDiet | p * | p ** | |
---|---|---|---|---|---|
Number (%) | 1076 (16.1) | 5054 (75.7) | 542 (8.1) | - | - |
Women, n (%) | 419 (38.9) | 2695 (53.3) | 213 (57.6) | <0.001 | 0.060 |
Age (years) | 55 (51; 60) | 58 (53; 63) | 58 (54; 64) | <0.001 | 0.240 |
Current or former smoker, n (%) | 763 (70.9) | 2896 (57.3) | 257 (47.4) | <0.001 | <0.001 |
Hypertension, n (%) | 397 (36.9) | 2036 (40.3) | 234 (43.2) | 0.015 | 0.193 |
Systolic blood pressure (mmHg) | 129 (119; 142) | 130 (120; 142) | 129 (119; 137) | 0.257 | 0.257 |
Diastolic blood pressure (mmHg) | 82 (76; 88) | 81 (75; 88) | 80 (74;87) | 0.003 | 0.093 |
Antihypertensives, n (%) | 333 (30.9) | 1710 (33.8) | 182 (33.6) | 0.284 | 0.905 |
Dyslipidemia, n (%) | 512 (47.6) | 2686 (53.1) | 312 (57.6) | <0.001 | 0.050 |
Total cholesterol ≥200 mg/dL, n (%) | 572 (53.2) | 2781 (55.0) | 314 (57.9) | 0.069 | 0.196 |
Lipid-lowering agents, n (%) | 187 (17.4) | 958 (19.0) | 104 (19.2) | 0.371 | 0.895 |
Obesity, n (%) | 213 (29.0) | 3515 (30.5) | 149 (27.5) | 0.527 | 0.154 |
BMI (kg/m2) | 28.7 (25.5; 32.0) | 28.7 (25.8; 32.0) | 27.9 (25.2; 31.4) | 0.041 | 0.001 |
Antithrombotic drugs, n (%) | 35 (3.3) | 158 (3.1) | 15 (2.8) | 0.594 | 0.647 |
MALE SUBJECTS | Low PA | Moderate PA | Vigorous PA | p * | p ** |
n | 2270 | 692 | 283 | - | - |
Total adiposity | |||||
BMI (Kg/m2) | 29.0 (26.4; 32.0) | 28.6 (26.0; 31.3) | 27.8 (25.4; 30.2) | <0.001 | 0.004 |
CUN-BAE (%) | 30.7 (27.3; 34.2) | 30.2 (27.0; 33.8) | 29.0 (25.8; 32.3) | <0.001 | <0.001 |
Deurenberg (%) | 31.4 (28.0; 35.0) | 31.0 (27.8; 35.1) | 29.3 (26.4; 32.8) | <0.001 | <0.001 |
Central adiposity | |||||
Waist circumference (cm) | 102 (96; 110) | 101 (94; 108) | 98 (90; 104) | <0.001 | <0.001 |
Conicity index | 1.34 (1.30; 1.38) | 1.33 (1.29; 1.38) | 1.30 (1.25; 1.30) | <0.001 | <0.001 |
Waist to height ratio | 0.60 (0.56; 0.64) | 0.59 (0.55; 0.64) | 0.57 (0.53; 0.61) | <0.001 | <0.001 |
Bonora (cm2) | 196 (158; 247) | 190 (145; 234) | 171 (120; 209) | <0.001 | <0.001 |
A body shape index | 0.083 | 0.083 | 0.081 | <0.001 | <0.001 |
(0.081; 0.085) | (0.081; 0.085) | (0.079; 0.084) | |||
Body roundness index | 5.34 (4.54; 6.34) | 5.25 (4.36; 6.24) | 4.63 (3.92; 5.61) | <0.001 | <0.001 |
Neck circumference (cm) | 41.0 (39.0; 43.0) | 40.5 (39.0; 42.5) | 40.0 (38.0; 42.0) | <0.001 | 0.048 |
Lean body mass | |||||
Hume (kg) | 56.4 (52.5; 60.4) | 55.4 (51.6; 59.2) | 55.6 (52.2; 59.6) | 0.197 | 1 |
FEMALE SUBJECTS | |||||
n | 2137 | 1192 | 97 | - | - |
Total adiposity | |||||
BMI (Kg/m2) | 28.7 (25.3; 32.5) | 28.1 (25.2; 31.9) | 27.0 (24.6; 30.1) | 0.006 | 0.081 |
CUN-BAE (%) | 42.5 (38.4; 46.4) | 42.0 (38.4; 45.9) | 40.4 (37.2; 43.6) | 0.004 | 0.036 |
Deurenberg (%) | 32.1 (27.7; 36.8) | 31.6 (27.6; 36.1) | 29.4 (26.6; 33.4) | 0.003 | 0.018 |
Central adiposity | |||||
Waist circumference (cm) | 100 (92; 108) | 98 (90; 106) | 96 (89; 103) | 0.008 | 0.312 |
Conicity index | 1.36 (1.31; 1.41) | 1.35 (1.30; 1.40) | 1.33 (1.30; 1.39) | 0.04 | 0.641 |
Waist to height ratio | 0.64 (0.58; 0.69) | 0.62 (0.58; 0.68) | 0.60 (0.57; 0.65) | <0.001 | 0.046 |
Bonora (cm2) | 188 (153; 224) | 183 (150; 218) | 170 (140; 202) | 0.004 | 0.051 |
A body shape index | 0.085 (0.082; 0.088) | 0.084 (0.081; 0.087) | 0.084 (0.081; 0.087) | 0.69 | 1 |
Body roundness index | 6.17 (5.02; 7.46) | 5.92 (4.87; 7.20) | 5.45 (4.62; 6.60) | <0.001 | 0.046 |
Neck circumference (cm) | 35.0 (33.5; 37.0) | 35.0 (33.0; 36.5) | 34.5 (33.0; 36.0) | 0.043 | 0.586 |
Lean body mass | |||||
Hume (kg) | 43.3 (39.8; 46.8) | 42.5 (39.3; 46.2) | 42.4 (39.9; 46.1) | 1 | 1 |
MALE SUBJECTS | Low MedDiet | Moderate MedDiet | High MedDiet | p * | p ** |
n | 657 | 2359 | 230 | - | - |
Total adiposity | |||||
BMI (Kg/m2) | 28.7 (25.9; 31.6) | 28.9 (26.4; 31.7) | 28.1 (25.8; 31.5) | 1 | 0.101 |
CUN-BAE (%) | 30.1 (26.6; 33.7) | 30.6 (27.3; 34.0) | 29.5 (26.6; 33.8) | 1 | 0.138 |
Deurenberg (%) | 30.5 (27.2; 34.5) | 31.3 (28.0; 34.9) | 30.2 (27.3; 34.9) | 1 | 0.246 |
Central adiposity | |||||
Waist circumference (cm) | 101 (94; 109) | 102 (96; 109) | 100 (94; 107) | 0.057 | 0.057 |
Conicity index | 1.33 (1.29; 1.38) | 1.33 (1.30; 1.38) | 1.32 (1.28; 1.36) | 0.164 | 0.015 |
Waist to height ratio | 0.59 (0.55; 0.64) | 0.60 (0.56; 0.64) | 0.58 (0.55; 0.63) | 0.592 | 0.023 |
Bonora (cm2) | 190 (145; 241) | 196 (158; 241) | 183 (145; 228) | 0.06 | 0.06 |
A body shape index | 0.083 | 0.083 | 0.082 | 0.101 | 0.036 |
(0.081; 0.085) | (0.081; 0.085) | (0.080; 0.085) | |||
Body roundness index | 5.22 (4.26; 6.23) | 5.29 (4.49; 6.26) | 4.97 (4.31; 6.13) | 0.592 | 0.023 |
Neck circumference (cm) | 40.5 (39.0; 42.5) | 41.0 (39.0; 43.0) | 40.5 (39.0; 43.0) | 0.176 | 0.176 |
Lean body mass | |||||
Hume (kg) | 56.5 (52.3; 60.1) | 56.0 (52.1; 60.2) | 55.9 (52.6; 59.9) | 0.594 | 0.594 |
FEMALE SUBJECTS | |||||
n | 419 | 2695 | 312 | - | - |
Total adiposity | |||||
BMI (Kg/m2) | 28.5 (24.9; 32.8) | 28.5 (25.3; 32.3) | 27.8 (24.9; 31.1) | 0.077 | 0.02 |
CUN-BAE (%) | 42.3 (37.9; 46.6) | 42.4 (38.5; 46.3) | 41.7 (37.8; 45.3) | 0.285 | 0.041 |
Deurenberg (%) | 31.7 (26.9; 36.8) | 32.0 (27.8; 36.6) | 31.3 (27.1; 35.6) | 0.07 | 0.07 |
Central adiposity | |||||
Waist circumference (cm) | 99 (90; 107) | 99 (91; 107) | 98 (90; 105) | 0.087 | 0.087 |
Conicity index | 1.35 (1.31; 1.40) | 1.36 (1.30; 1.41) | 1.36 (1.30; 1.40) | 0.465 | 0.465 |
Waist to height ratio | 0.63 (0.58; 0.68) | 0.63 (0.58; 0.69) | 0.62 (0.57; 0.68) | 0.441 | 0.024 |
Bonora (cm2) | 182 (144; 218) | 187 (153; 222) | 182 (151; 215) | 0.082 | 0.082 |
A body shape index | 0.084 (0.081; 0.087) | 0.085 (0.081; 0.088) | 0.085 (0.082; 0.088) | 0.156 | 0.156 |
Body roundness index | 6.14 (4.84; 7.24) | 6.07 (5.00; 7.38) | 5.73 (4.79; 7.14) | 0.441 | 0.024 |
Neck circumference (cm) | 35.0 (33.5; 37.0) | 35.0 (33.5; 37.0) | 34.5 (33.0; 36.5) | 0.015 | 0.149 |
Lean body mass | |||||
Hume (kg) | 43.7 (39.8; 47.0) | 42.9 (39.6; 46.5) | 41.9 (39.5; 46.3) | 0.095 | 0.095 |
MALE SUBJECTS | Physical Activity | Mediterranean Diet | Physical Activity and Mediterranean Diet |
Total adiposity | |||
BMI (kg/m2) | 0.003 | 0.774 | 0.509 |
CUN-BAE (%) | <0.001 | 0.424 | 0.518 |
Deurenberg (%) | <0.001 | 0.237 | 0.606 |
Central adiposity | |||
Waist circumference (cm) | <0.001 | 0.697 | 0.538 |
Conicity index | <0.001 | 0.328 | 0.889 |
Waist to height ratio | <0.001 | 0.295 | 0.77 |
Bonora (cm2) | <0.001 | 0.721 | 0.584 |
A body shape index | <0.001 | 0.405 | 0.917 |
Body roundness index | <0.001 | 0.287 | 0.783 |
Neck circumference (cm) | 0.079 | 0.887 | 0.369 |
Lean body mass | |||
Hume (kg) | 0.383 | 0.436 | 0.216 |
FEMALE SUBJECTS | |||
Total adiposity | |||
BMI (kg/m2) | 0.061 | 0.435 | 0.808 |
CUN-BAE (%) | 0.067 | 0.385 | 0.835 |
Deurenberg (%) | 0.045 | 0.304 | 0.837 |
Central adiposity | |||
Waist circumference (cm) | 0.01 | 0.161 | 0.335 |
Conicity index | 0.023 | 0.051 | 0.243 |
Waist to height ratio | 0.008 | 0.106 | 0.436 |
Bonora (cm2) | 0.007 | 0.044 | 0.442 |
A body shape index | 0.198 | 0.073 | 0.503 |
Body roundness index | 0.008 | 0.125 | 0.461 |
Neck circumference (cm) | 0.192 | 0.508 | 0.612 |
Lean body mass | |||
Hume (kg) | 0.39 | 0.295 | 0.511 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, M.; Sánchez, E.; Hernández, M.; González, J.; Purroy, F.; Rius, F.; Pamplona, R.; Farràs-Sallés, C.; Gutiérrez-Carrasquilla, L.; Fernández, E.; et al. Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project. Nutrients 2019, 11, 1359. https://doi.org/10.3390/nu11061359
Sánchez M, Sánchez E, Hernández M, González J, Purroy F, Rius F, Pamplona R, Farràs-Sallés C, Gutiérrez-Carrasquilla L, Fernández E, et al. Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project. Nutrients. 2019; 11(6):1359. https://doi.org/10.3390/nu11061359
Chicago/Turabian StyleSánchez, Marta, Enric Sánchez, Marta Hernández, Jessica González, Francesc Purroy, Ferran Rius, Reinald Pamplona, Cristina Farràs-Sallés, Liliana Gutiérrez-Carrasquilla, Elvira Fernández, and et al. 2019. "Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project" Nutrients 11, no. 6: 1359. https://doi.org/10.3390/nu11061359
APA StyleSánchez, M., Sánchez, E., Hernández, M., González, J., Purroy, F., Rius, F., Pamplona, R., Farràs-Sallés, C., Gutiérrez-Carrasquilla, L., Fernández, E., Bermúdez-López, M., Salvador, J., Salas-Salvadó, J., Lecube, A., & on behalf of the ILERVAS project collaborators. (2019). Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project. Nutrients, 11(6), 1359. https://doi.org/10.3390/nu11061359