Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Socio-Demographic Characteristic, Vegetarianism Practices and Dietary Intake Assessment
2.3. Anthropometric Measurements, Blood Pressure Measurements and Biochemical Analyses
2.4. Selection of Single Nucleotide Polymorphism (SNP) and Genotyping
2.5. Definition of MetS
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Grundy, S.; Cleeman, J.; Daniels, S.; Donato, K.; Eckel, R.; Franklin, B.; Gordon, D.; Krauss, R.; Savage, P.; Smith, S.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- National Cholesterol Education Program; Expert Panel on Detection, Evaluation; Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Chol. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Lee, S.; Ko, Y.; Kwak, C.; Yim, E. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome. BMC Geriatr. 2016, 16, 27. [Google Scholar] [CrossRef]
- Tan, A.K.G.; Dunn, R.A.; Yen, S.T. Ethnic disparities in metabolic syndrome in malaysia: An analysis by risk factors. Metab. Syndr. Relat. Disord. 2011, 9, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.K.; Lin, Y.L.; Chen, C.L.; Ouyang, C.M.; Wu, Y.T.; Chi, Y.C.; Huang, K.C.; Yang, W.S. Reduced risk for metabolic syndrome and insulin resistance associated with ovo-lacto-vegetarian behavior in female Buddhists: A case-control study. PLoS ONE 2013, 8, e71799. [Google Scholar] [CrossRef]
- Kim, M.; Bae, Y. Postmenopausal vegetarians’ low serum ferritin level may reduce the risk for metabolic syndrome. Biol. Trace Elem. Res. 2012, 149, 34–41. [Google Scholar] [CrossRef]
- Rizzo, N.S.; Sabaté, J.; Jaceldo-Siegl, K.; Fraser, G.E. Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome: The adventist health study 2. Diabetes Care 2011, 34, 1225–1227. [Google Scholar] [CrossRef]
- Tee, T.S. Vegetarianism among Young Adults in the Klang Valley. J. Hosp. Tour. 2012, 9, 55–61. [Google Scholar]
- Kagawa, Y.; Nishijima, C.; Nakayama, K.; Iwamoto, S.; Tanaka, A.; Kamachi, K.; Kawabata, T. Nutrigenetics of Japanese vegetarians with polymorphism in the fatty acid desaturase. J. Nutr. Food Sci. 2016, 6, 1–15. [Google Scholar] [CrossRef]
- Gan, W.Y.; Boo, S.; Seik, M.Y.; Khoo, H.E. Comparing the nutritional status of vegetarians and non-vegetarians from a Buddhist Organisation in Kuala Lumpur, Malaysia. Malays. J. Nutr. 2018, 24, 89–101. [Google Scholar]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of sociodemographic and nutritional characteristics between self-reported vegetarians, vegans, and meat-eaters from the Nutrinet-Sante study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.S.; Shalini, S.; Farah Liana, M.R.; Wan Nurul Amera, W.M.S.; Mohd Naqiuddin, M.Y.; Norhazlina, A.W.; Zaleha, M.I. Nutrient intake pattern of vegetarians and non-vegetarians in Kuala Lumpur, Malaysia. Pak. J. Nutr. 2013, 12, 371–376. [Google Scholar] [CrossRef]
- Kothapalli, K.S.D.; Ye, K.; Gadgil, M.S.; Carlson, S.E.; O’Brien, K.O.; Zhang, J.Y.; Park, H.G.; Ojukwu, K.; Zou, J.; Hyon, S.S.; et al. Positive selection on a regulatory insertion-deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid. Mol. Biol. Evol. 2016, 33, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.; Kris-Ethertonm, P. Achieving optimal essential fatty acid status in vegetarians: Current knowledge and practical implications. Am. J. Clin. Nutr. 2003, 78, 640S–646S. [Google Scholar] [CrossRef] [PubMed]
- Chilton, F.H.; Dutta, R.; Reynolds, L.M.; Sergeant, S.; Mathias, R.A.; Seeds, M.C. Precision nutrition and omega-3 polyunsaturated fatty acids: A case for personalized supplementation approaches for the prevention and management of human diseases. Nutrients 2017, 9, 1165. [Google Scholar] [CrossRef]
- Dumont, J.; Goumidi, L.; Grenier-Boley, B.; Cottel, D.; Marécaux, N.; Montaye, M.; Wagner, A.; Arveiler, D.; Simon, C.; Ferrières, J.; et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clin. Nutr. 2017, 37, 1683–1689. [Google Scholar] [CrossRef]
- Merino, D.; Ma, D.; Mutch, D. Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids Health Dis. 2010, 9, 63. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef]
- Lopez-huertas, E. The effect of EPA and DHA on metabolic syndrome patients: A systematic review of randomised controlled trials. Br. J. Nutr. 2012, 107, S185–S194. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Tan, S.Y.; Henry, C.J. Long-chain n-3 PUFA in vegetarian women: A metabolic perspective. J. Nutr. Sci. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, L.; Zhu, C.; Yang, F.; Wang, S.; Zhu, S. A single nucleotide polymorphism in the FADS1 gene is associated with plasma fatty acid and lipid profiles and might explain gender difference in body fat Distribution. Lipids Health Dis. 2017, 16. [Google Scholar] [CrossRef]
- Hellstrand, S.; Sonestedt, E.; Ericson, U.; Gullberg, B.; Wirfalt, E.; Hedblad, B.; Orho-Melander, M. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J. Lipid Res. 2012, 53, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, K.; Bayasgalan, T.; Tazoe, F.; Yanagisawa, Y.; Gotoh, T.; Yamanaka, K.; Ogawa, A.; Munkhtulga, L.; Chimedregze, U.; Kagawa, Y.; et al. A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle. Hum. Genet. 2010, 127, 685–690. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Yang, Y.; Liu, Z.; Cheng, L.; Liu, H.; Ma, P.; Luo, W.; Liu, S.M. Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J. Transl. Med. 2016, 14, 79. [Google Scholar] [CrossRef]
- Wolters, M.; Pala, V.; Russo, P.; Risé, P.; Moreno, L.A.; De Henauw, S.; Mehlig, K.; Veidebaum, T.; Molnár, D.; Tornaritis, M.; et al. Associations of whole blood n-3 and n-6 polyunsaturated fatty acids with blood pressure in children and adolescents–results from the IDEFICS/I. Family cohort. PLoS ONE 2016, 11, e0165981. [Google Scholar] [CrossRef]
- Wolters, M.; Dering, C.; Siani, A.; Russo, P.; Kaprio, J.; Risé, P.; Moreno, L.A.; De Henauw, S.; Mehlig, K.; Veidebaum, T.; et al. The role of a FADS1 polymorphism in the association of fatty acid blood levels, BMI and blood pressure in young children—Analyses based on path models. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Mann, N.; Pirotta, Y.; Connell, S.O.; Li, D.; Kelly, F.; Sinclair, A. Fatty acid composition of habitual omnivore and vegetarian diets. Lipids 2006, 41, 637–646. [Google Scholar] [CrossRef]
- Khor, G.L.; Voon, P.C.; Tee, E.S.; Hage, B.H.H.; Wahlqvist, M.L. Cardiovascular risk factors among Malaysian urban vegetarians. J. Community Nutr. 2000, 2, 110–118. [Google Scholar]
- Goldberg, G.; Black, A.; Jebb, S.; Cole, T.; Murgatroyd, P.; Coward, W.; Prentice, A. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- USDA US Department of Agriculture, Agricultural Research Service. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 1 September 2017).
- Tee, E.; Ismail, M.; Nasir, M.; Khatijah, I. Nutrient Composition of Malaysian Foods. Malaysian Food Composition Database Programme; Institute for Medical Research: Kuala Lumpur, Malaysia, 1997. [Google Scholar]
- Health Promotion Board Singapore. Food Composition Guide Singapore; Health Promotion Board Singapore: Singapore, 2003.
- National Coordinating Committee on Food and Nutrition. RNI: Recommended Nutrient Intakes for Malaysia: A Report of the Technical Working Group on Nutritional Guidelines; Ministry of Health Malaysia: Putrajaya, Malaysia, 2017; ISBN 9789671205044.
- Michael, H.C. A Simple Calculator to Determine Whether Observed Genotype Frequencies are Consistent with Hardy-Weinberg Equilibrium. Available online: http://www.tufts.edu/~mcourt01/Documents/Court lab-HW calculator.xls (accessed on 15 June 2018 ).
- Khan, R.S. Deep fried foods and associated health risks in Malaysia. EC Nutr. 2018, 13, 682–683. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohdrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids; The National Academies Press: Washington, DC, USA, 2005; ISBN 9780309085373. [Google Scholar]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—A review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [PubMed]
- Ramli, A.S.; Daher, A.M.; Noor Khan Nor-Ashikin, M.; Mat-Nasir, N.; Keat Ng, K.; Miskan, M.; Ambigga, K.S.; Ariffin, F.; Yasin Mazapuspavina, M.; Abdul-Razak, S.; et al. JIS Definition Identified More Malaysian Adults with Metabolic Syndrome Compared to the NCEP-ATP III and IDF Criteria. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Institute for Public Health. National Health and Morbidity Survey 2015 (NHMS 2015); Volume II: Non-Communicable Diseases, Risk Factors & Other Health Problems; Institute for Public Health: Kuala Lumpur, Malaysia, 2015; Volume II. [Google Scholar]
- Liu, S.; Zhi, H.; Chen, P.; Chen, W.; Lu, F.; Ma, G.; Dai, J.; Shen, C.; Liu, N.; Hu, Z.; et al. Fatty acid desaturase 1 polymorphisms are associated with coronary heart disease in a Chinese population. Chin. Med. J. 2012, 125, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Gardner, K.N.; Johnson, J.W.; Ellingrod, V.L. Fatty acid desaturase gene polymorphisms and metabolic measures in schizophrenia and bipolar patients taking antipsychotics. Cardiovasc. Psychiatry Neurol. 2013, 2013, 596945. [Google Scholar] [CrossRef] [PubMed]
- Wiltink, J.; Michal, M.; Claus, J.; Münzel, T.; Wild, P.S.; Lackner, K.J.; Blettner, M.; Pfeiffer, N.; Brähler, E.; Beutel, M.E. Associations between degree and sub- dimensions of depression and metabolic syndrome (MetS) in the community: Results from the Gutenberg Health Study (GHS). BMC Psychiatry 2018, 18, 114. [Google Scholar] [CrossRef]
- Pinto, E. Blood pressure and ageing. Postgrad. Med. J. 2007, 83, 109–114. [Google Scholar] [CrossRef]
- Lee, H.Y.; Woo, J.; Chen, Z.Y.; Leung, S.F.; Peng, X.H. Serum fatty acid, lipid profile and dietary intake of Hong Kong Chinese omnivores and vegetarians. Eur. J. Clin. Nutr. 2000, 54, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Messina, V.; Melina, V.; Mangels, A.R. A new food guide for North American vegetarians. J. Am. Diet. Assoc. 2003, 103, 771–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamoto, K.; Arashi, M.; Noparatanawong, S.; Kamohara, S.; Radak, T.; Tuchida, M.; Miyazaki, K.; Watanabe, S.; Kudo, H.; Tanaka, A. A new Japanese vegetarian food guide. Asia Pac. J. Public Health 2009, 21, 160–169. [Google Scholar] [CrossRef] [PubMed]
Variable | n (%) | Mean ± SD |
---|---|---|
Age (years) | 48.3 ± 13.2 | |
Sex | ||
Male | 69 (34.5) | |
Female | 131 (65.5) | |
Ethnicity | ||
Chinese | 126 (63.0) | |
Indians | 74 (37.0) | |
Years of practising vegetarianism | 13.7 ± 9.2 | |
Vegetarianism categories | ||
Vegans | 38 (19.0) | |
Lacto vegetarians | 52 (26.0) | |
Ovo vegetarians | 14 (7.0) | |
Lacto-ovo vegetarians | 96 (48.0) | |
Genotype | ||
CC | 57 (28.50) | |
CT | 64 (32.0) | |
TT | 79 (39.5) |
Variables | n (%) | Mean ± SD |
---|---|---|
≠Total energy intake (kJ) | 7263 ± 1884 | |
% RNI | 87.9 ± 21.1 | |
<RNI | 151 (75.5) | |
≥RNI | 49 (24.5) | |
≠Carbohydrate (g) | 264.9 ± 74.7 | |
<50.0% | 11 (5.5) | |
50.0–65.0% | 131 (65.5) | |
>65.0% | 58 (29.0) | |
≠Protein (g) | 49.3 ± 15.1 | |
<10.0% | 51 (25.5) | |
10.0–20.0% | 149 (74.5) | |
>20.0% | 0 (0.0) | |
≠Fat (g) | 57.1 ± 19.7 | |
<25.0% | 49 (24.5) | |
25.0–30.0% | 64 (32.0) | |
>30.0% | 87 (43.5) | |
Fibre (g) | 26.0 ± 10.5 | |
Cholesterol (mg) | 112.7 ± 119.6 | |
Saturated fat (g) | 25.3 ± 11.1 | |
MUFA (g) | 18.2 ± 6.2 | |
⏀PUFA (g) | 7.6 (6.2–10.6) | |
LA (g) | 7.9 ± 3.6 | |
⏀ALA (g) | 0.5 (0.4–0.8) |
Variable | CC (n = 57) | CT (n = 64) | TT (n = 79) | Total (n = 200) | F/ Value | p Value |
---|---|---|---|---|---|---|
≠WC (cm) | ||||||
Mean ± SD | 76.6 ± 8.7 | 78.7 ± 10.8 | 84.8 ± 12.5 | 80.5 ± 11.5 | 11.01 | 0.0001 * |
Normal WC | 51 (89.5) | 43 (67.2) | 35 (44.3) | 129 (64.5) | 29.80 | 0.0001 * |
Large WC | 6 (10.5) | 21 (32.8) | 44 (55.7) | 71 (35.5) | ||
≠SBP (mmHg) | ||||||
Mean ± SD | 126.4 ± 20.9 | 128.5 ± 17.0 | 127.8 ± 17.8 | 127.6 ± 18.4 | 0.21 | 0.811 |
Normal SBP | 33 (57.9) | 34 (53.1) | 39 (49.4) | 106 (53.0) | 0.97 | 0.617 |
High SBP | 24 (42.1) | 30 (46.9) | 40 (50.6) | 94 (47.0) | ||
≠DBP (mmHg) | ||||||
Mean ± SD | 76.3 ± 11.9 | 76.3 ± 9.7 | 74.2 ± 10.8 | 75.5 ± 10.8 | 0.92 | 0.399 |
Normal DBP | 42 (73.7) | 52 (81.2) | 64 (81.0) | 158 (79.0) | 1.36 | 0.507 |
High DBP | 15 (26.3) | 12 (18.8) | 15 (19.0) | 42 (21.0) | ||
High BP | ||||||
No | 32 (56.1) | 31 (48.4) | 38 (48.1) | 101 (50.5) | 1.02 | 0.602 |
Yes | 25 (43.9) | 33 (51.6) | 41 (51.9) | 99 (49.5) | ||
⏀FBG (mmol/L) | ||||||
Median (IQR) | 4.7 (4.4–5.1) | 4.7 (4.4–5.0) | 4.9 (4.4–5.5) | 4.7 (4.4–5.2) | 3.14 | 0.082 |
Normal | 49 (86.0) | 59 (92.2) | 61 (77.2) | 169 (84.5) | 6.18 | 0.045 * |
High FBG | 8 (14.0) | 5 (7.8) | 18 (22.8) | 31 (15.5) | ||
⏀TG (mmol/L) | ||||||
Median (IQR) | 1.2 (0.8–1.8) | 0.9 (0.7-1.5) | 1.1 (0.7–1.8) | 1.1 (0.8–1.7) | 4.99 | 0.208 |
Normal TG | 41 (71.9) | 50 (78.1) | 57 (72.2) | 148 (74.0) | 0.83 | 0.659 |
High TG | 16 (28.1) | 14 (21.9) | 22 (27.8) | 52 (26.0) | ||
≠HDL-c (mmol/L) | ||||||
Mean ± SD | 1.3 ± 0.2 | 1.3 ± 0.3 | 1.2 ± 0.3 | 1.3 ± 0.3 | 3.76 | 0.025 * |
Normal HDL-c | 45 (78.9) | 47 (73.4) | 48 (60.8) | 140 (70.0) | 5.75 | 0.057 |
Low HDL-c | 12 (21.1) | 17 (26.6) | 31 (39.2) | 60 (30.0) | ||
≠MetS | ||||||
Mean ± SD | 1.2 ± 1.1 | 1.4 ± 1.0 | 2.0 ± 1.4 | 1.6 ± 1.2 | 8.29 | 0.0001 * |
No | 50 (87.7) | 54 (84.4) | 54 (68.4) | 158 (79.0) | 9.12 | 0.010 * |
Yes | 7 (12.3) | 10 (15.6) | 25 (31.6) | 42 (21.0) |
Genotype | a MetS | b Large WC | c High BP | d High FBG | e High TG | f Low HDL-c |
---|---|---|---|---|---|---|
CC | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
CT | 1.53 (0.52–4.50) | 3.84 (1.37–10.71) * | 2.04 (0.92–4.49) | 0.63 (0.19–2.16) | 0.71 (0.29–1.72) | 1.39 (0.58–3.34) |
TT | 3.57 (1.02–12.47) * | 4.73 (1.41–15.93) * | 3.17 (1.05–9.61) * | 2.04 (0.54–7.63) | 0.78 (0.24–2.48) | 3.82 (1.22–11.98) * |
Variables | LA (g/day) Low (≤5.86) (n = 67) | LA (g/day) Medium (5.87–8.19) (n = 65) | LA (g/day) High (≥8.20) (n = 68) | p Interaction | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype | Mean ± SD | p Value | Genotype | Mean ± SD | p Value | Genotype | Mean ± SD | p Value | ||
WC (cm) | CC (n = 15) | 78.9 ± 10.4 | 0.020 * | CC (n = 19) | 77.3 ± 9.4 | 0.016 * | CC (n = 23) | 74.5 ± 6.6 | 0.009 * | 0.177 |
CT (n = 23) | 77.3 ± 11.4 | CT (n = 22) | 76.3 ±8.1 | CT (n = 19) | 83.1 ± 12.0 | |||||
TT (n = 29) | 85.3 ± 9.8 | TT (n = 24) | 85.3 ±15.1 | TT (n = 26) | 83.7 ±13.1 | |||||
SBP (mmHg) | CC (n = 15) | 129.4 ± 19.4 | 0.467 | CC (n = 19) | 130.4 ± 23.5 | 0.722 | CC (n = 23) | 121.0 ± 19.3 | 0.611 | 0.535 |
CT (n = 23) | 135.4 ± 21.1 | CT (n = 22) | 126.0 ± 14.4 | CT (n = 19) | 123.2 ± 11.1 | |||||
TT (n = 29) | 128.5 ± 20.7 | TT (n = 24) | 129.6 ± 18.9 | TT (n = 26) | 125.3 ± 12.9 | |||||
DBP (mmHg) | CC (n = 15) | 76.9 ± 11.9 | 0.350 | CC (n = 19) | 78.1 ± 13.4 | 0.811 | CC (n = 23) | 74.5 ± 10.8 | 0.904 | 0.882 |
CT (n = 23) | 77.9 ± 10.8 | CT (n = 22) | 76.2 ± 7.9 | CT (n = 19) | 74.5 ± 10.4 | |||||
TT (n = 29) | 73.4 ± 11.8 | TT (n = 24) | 76.0 ± 11.4 | TT (n = 26) | 73.4 ± 9.1 | |||||
Log FBG (mmol/L) | CC (n = 15) | 0.7 ± 0.1 | 0.373 | CC (n = 19) | 0.7 ± 0.05 | 0.004 * | CC (n = 23) | 0.7 ± 0.1 | 0.459 | 0.807 |
CT (n = 23) | 0.7 ± 0.04 | CT (n = 22) | 0.7 ± 0.04 | CT (n = 19) | 0.7 ± 0.03 | |||||
TT (n = 29) | 0.7 ± 0.1 | TT (n = 24) | 0.7 ± 0.1 | TT (n = 26) | 0.7 ± 0.1 | |||||
HDL-c (mmol/L) | CC (n = 15) | 1.2 ± 0.2 | 0.213 | CC (n = 19) | 1.4 ± 0.3 | 0.001 * | CC (n = 23) | 1.3 ± 0.2 | 0.205 | 0.005* |
CT (n = 23) | 1.4 ± 0.3 | CT (n = 22) | 1.4 ± 0.3 | CT (n = 19) | 1.2 ± 0.2 | |||||
TT (n = 29) | 1.3 ± 0.3 | TT (n = 24) | 1.1 ± 0.3 | TT (n = 26) | 1.2 ± 0.3 | |||||
Log TG (mmol/L) | CC (n = 15) | 0.2 ± 0.3 | 0.101 | CC (n = 19) | 0.01 ± 0.2 | 0036 * | CC (n = 23) | 0.1 ± 0.3 | 0.460 | 0.075 |
CT (n = 23) | 0.1 ±0.2 | CT (n = 22) | −0.1 ± 0.1 | CT (n = 19) | 0.1 ±0.3 | |||||
TT (n = 29) | 0.1 ± 0.2 | TT (n = 24) | 0.1 ± 0.3 | TT (n = 26) | 0.02 ± 0.3 |
Variables | ALA Low (≤0.45) (n = 70) | ALA Medium (0.46–0.64) (n = 63) | ALA High (≥0.65) (n = 67) | p Interaction | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype | Mean ± SD | p Value | Genotype | Mean ± SD | p Value | Genotype | Mean ± SD | p Value | ||
WC (cm) | CC (n = 21) | 79.5 ± 10.7 | 0.035 * | CC (n = 16) | 77.7 ± 5.8 | 0.009 * | CC (n = 20) | 72.7 ± 7.2 | 0.004 * | 0.258 |
CT (n = 24) | 76.5 ± 10.9 | CT (n = 23) | 79.2 ± 10.6 | CT (n = 17) | 80.9 ± 11.1 | |||||
TT (n = 25) | 84.8 ± 11.9 | TT (n = 24) | 86.0 ± 10.4 | TT (n = 30) | 83.7 ± 14.7 | |||||
SBP (mmHg) | CC (n = 21) | 133.5 ± 20.8 | 0.531 | CC (n = 16) | 122.4 ± 16.6 | 0.391 | CC (n = 20) | 122.1 ± 22.9 | 0.558 | 0.434 |
CT (n = 24) | 130.4 ± 22.1 | CT (n = 23) | 128.6 ± 13.8 | CT (n = 17) | 125.8 ± 12.5 | |||||
TT (n = 25) | 126.6 ± 19.2 | TT (n = 24) | 129.3 ± 18.6 | TT (n = 30) | 127.6 ± 16.4 | |||||
DBP (mmHg) | CC (n = 21) | 79.1 ± 13.5 | 0.264 | CC (n = 16) | 76.0 ± 9.3 | 0.272 | CC (n = 20) | 73.7 ± 11.9 | 0.981 | 0.413 |
CT (n = 24) | 75.0 ± 9.6 | CT (n = 23) | 79.5 ± 9.6 | CT (n = 17) | 73.9 ± 9.4 | |||||
TT (n = 25) | 73.8 ± 11.2 | TT (n = 24) | 74.6 ± 11.9 | TT (n = 30) | 74.2 ± 9.9 | |||||
Log FBG (mmol/L) | CC (n = 21) | 0.7 ± 0.1 | 0.754 | CC (n = 16) | 0.7 ± 0.1 | 0.097 | CC (n = 20) | 0.7 ± 0.04 | 0.019 * | 0.293 |
CT (n = 24) | 0.7 ± 0.03 | CT (n = 23) | 0.7 ± 0.04 | CT (n = 17) | 0.7 ± 0.04 | |||||
TT (n = 25) | 0.7 ± 0.1 | TT (n = 24) | 0.7 ± 0.1 | TT (n = 30) | 0.7 ± 0.1 | |||||
HDL-c (mmol/L) | CC (n = 21) | 1.3 ± 0.2 | 0.200 | CC (n = 16) | 1.3 ± 0.3 | 0.043 * | CC (n = 20) | 1.3 ± 0.2 | 0.254 | 0.230 |
CT (n = 24) | 1.4 ± 0.4 | CT (n = 23) | 1.3 ± 0.3 | CT (n = 17) | 1.2 ± 0.2 | |||||
TT (n = 25) | 1.3 ± 0.3 | TT (n = 24) | 1.2 ± 0.3 | TT (n = 30) | 1.2 ± 0.3 | |||||
Log TG (mmol/L) | CC (n = 21) | 0.2 ± 0.3 | 0.212 | CC (n = 16) | 0.1 ± 0.2 | 0.226 | CC (n = 20) | 0.1 ± 0.2 | 0.981 | 0.410 |
CT (n = 24) | 0.04 ± 0.3 | CT (n = 23) | −0.02 ± 0.2 | CT (n = 17) | 0.1 ± 0.2 | |||||
TT (n = 25) | 0.04 ± 0.2 | TT (n = 24) | 0.1 ± 0.3 | TT (n = 30) | 0.1 ± 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ching, Y.K.; Chin, Y.S.; Appukutty, M.; Ramanchadran, V.; Yu, C.Y.; Ang, G.Y.; Gan, W.Y.; Chan, Y.M.; Teh, L.K.; Salleh, M.Z. Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients 2019, 11, 1686. https://doi.org/10.3390/nu11071686
Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, Gan WY, Chan YM, Teh LK, Salleh MZ. Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019; 11(7):1686. https://doi.org/10.3390/nu11071686
Chicago/Turabian StyleChing, Yuan Kei, Yit Siew Chin, Mahenderan Appukutty, Vasudevan Ramanchadran, Choo Yee Yu, Geik Yong Ang, Wan Ying Gan, Yoke Mun Chan, Lay Kek Teh, and Mohd Zaki Salleh. 2019. "Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians" Nutrients 11, no. 7: 1686. https://doi.org/10.3390/nu11071686
APA StyleChing, Y. K., Chin, Y. S., Appukutty, M., Ramanchadran, V., Yu, C. Y., Ang, G. Y., Gan, W. Y., Chan, Y. M., Teh, L. K., & Salleh, M. Z. (2019). Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients, 11(7), 1686. https://doi.org/10.3390/nu11071686