A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Oil Preparation
2.2. Study Design and Biological Samples
2.3. Gene Expression Analyses
2.4. Sample Size
2.5. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Gene Expression Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martín-Peláez, S.; Covas, M.I.; Fitó, M.; Kušar, A.; Pravst, I. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 2013, 57, 760–761. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.M.; Arnal, C.; Navarro, M.A.; Osada, J. Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development. Mol. Nutr. Food Res. 2012, 56, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of Olive Oil on Markers of Inflammation and Endothelial Function-A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 7651–7675. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids and risk of cardiovascular disease: Synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients 2012, 4, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
- Hernáez, A.; Fernández-Castillejo, S.; Farràs, M.; Catalán, U.; Subirana, I.; Montes, R.; Solà, R.; Muñoz-Aguayo, D.; Gelabert-Gorgues, A.; Díaz-Gil, O.; et al. Olive oil polyphenols enhance high-density lipoprotein function in humans: a randomized controlled trial. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2115–2119. [Google Scholar] [CrossRef] [PubMed]
- Farràs, M.; Castañer, O.; Martín-Peláez, S.; Hernáez, Á.; Schröder, H.; Subirana, I.; Muñoz-Aguayo, D.; Gaixas, S.; Torre, R.D.L.; Farré, M.; et al. Complementary phenol-enriched olive oil improves HDL characteristics in hypercholesterolemic subjects. A randomized, double-blind, crossover, controlled trial. The VOHF study. Mol. Nutr. Food Res. 2015, 59, 1758–1770. [Google Scholar] [CrossRef]
- Fernández-Castillejo, S.; Rubió, L.; Hernáez, A.; Catalán, U.; Pedret, A.; Valls, R.M.; Mosele, J.I.; Covas, M.I.; Remaley, A.T.; Castañer, O.; et al. Determinants of HDL Cholesterol Efflux Capacity after Virgin Olive Oil Ingestion: Interrelationships with Fluidity of HDL Monolayer. Mol. Nutr. Food Res. 2017. [Google Scholar] [CrossRef]
- Fernández-Castillejo, S.; García-Heredia, A.I.; Solà, R.; Camps, J.; Hazas, M.C.; Farràs, M.; Pedret, A.; Catalán, Ú.; Rubió, L.; Motilva, M.J.; et al. Phenol-enriched olive oils modify paraoxonase-related variables: A randomized, crossover, controlled trial. Mol. Nutr. Food Res. 2017, 61, 1600932. [Google Scholar] [CrossRef]
- Pedret, A.; Fernández-Castillejo, S.; Valls, R.M.; Catalán, Ú.; Rubió, L.; Romeu, M.; Macià, A.; Hazas, M.C.; Farràs, M.; Giralt, M.; et al. Cardiovascular Benefits of Phenol-Enriched Virgin Olive Oils: New Insights from the Virgin Olive Oil and HDL Functionality (VOHF) Study. Mol. Nutr. Food Res. 2018, 62, 1800456. [Google Scholar] [CrossRef]
- Farràs, M.; Fernández-Castillejo, S.; Rubió, L.; Arranz, S.; Catalán, Ú.; Subirana, I.; Romero, M.P.; Castañer, O.; Pedret, A.; Blanchart, G.; et al. Phenol-enriched olive oils improve HDL antioxidant content in hypercholesterolemic subjects. A randomized, double-blind, cross-over, controlled trial. J. Nutr. Biochem. 2018, 51, 99–104. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, E.; Lima-Cabello, E.; Biel-Glesson, S.; Fernandez-Navarro, J.; Calleja, M.; Roca, M.; Espejo-Calvo, J.; Gil-Extremera, B.; Soria-Florido, M.; Torre, R.; et al. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients 2018, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rodriguez, E.; Biel-Glesson, S.; Fernandez-Navarro, J.; Calleja, M.; Espejo-Calvo, J.; Gil-Extremera, B.; Torre, R.; Fito, M.; Covas, M.I.; Vilchez, P.; et al. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Biomarkers of Oxidative Stress and Inflammation in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients 2019, 11, 561. [Google Scholar] [CrossRef] [PubMed]
- Peyrol, J.; Riva, C.; Amiot, M.J. Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders. Nutrients 2017, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.; Marcadenti, A.; Portal, V. Effects of Olive Oil Phenolic Compounds on Inflammation in the Prevention and Treatment of Coronary Artery Disease. Nutrients 2017, 9, 1087. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, L.; Cicerale, S. The Health Benefiting Mechanisms of Virgin Olive Oil Phenolic Compounds. Molecules 2016, 21, 1734. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Marcos, L.; Lou-Bonafonte, J.; Arnal, C.; Navarro, M.; Osada, J. Transcriptomics and the Mediterranean Diet: A Systematic Review. Nutrients 2017, 9, 472. [Google Scholar] [CrossRef]
- Battino, M.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, P.P.; Reboredo-Rodríguez, P.; Lopez, A.; Quiles, J.L.; et al. Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 893–920. [Google Scholar] [CrossRef]
- Konstantinidou, V.; Covas, M.I.; Muñoz-Aguayo, D.; Khymenets, O.; Torre, R.; Saez, G.; Tormos, M.D.C.; Toledo, E.; Marti, A.; Ruiz-Gutiérrez, V.; et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: A randomized controlled trial. FASEB J. 2010, 24, 2546–2557. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Meeran, M.F.; Javed, H.; Al-Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef] [PubMed]
- Farràs, M.; Valls, R.M.; Fernández-Castillejo, S.; Giralt, M.; Solà, R.; Subirana, I.; Motilva, M.J.; Konstantinidou, V.; Covas, M.I.; Fitó, M. Olive oil polyphenols enhance the expression of cholesterol efflux related genes in vivo in humans. A randomized controlled trial. J. Nutr. Biochem. 2013, 24, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Rubió, L.; Motilva, M.J.; Macià, A.; Ramo, T.; Romero, M.P. Development of a phenol-enriched olive oil with both its own phenolic compounds and complementary phenols from thyme. J. Agric. Food Chem. 2012, 60, 3105–3112. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.r-project.org/ (accessed on 9 November 2017).
- Rosenson, R.S.; Brewer, H.B.; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.C.; Phillips, M.C.; Rader, D.J.; et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 2012, 125, 1905–1919. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhu, N.; Ao, B.X.; Liu, C.; Shi, Y.N.; Du, K.; Chen, J.X.; Zheng, X.L.; Liao, D.F. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis. Int. J. Mol. Sci. 2016, 17, 429. [Google Scholar] [CrossRef]
- Li, A.C.; Glass, C.K. PPAR and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J. Lipid Res. 2004, 45, 2161–2173. [Google Scholar] [CrossRef]
- Pedret, A.; Catalán, Ú.; Fernández-Castillejo, S.; Farràs, M.; Valls, R.M.; Rubió, L.; Canela, N.; Aragonés, G.; Romeu, M.; Castañer, O.; et al. Impact of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on the HDL Proteome in Hypercholesterolemic Subjects: A Double Blind, Randomized, Controlled, Cross-Over Clinical Trial (VOHF Study). PLoS ONE 2015, 10, e0129160. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, D.L.; Massien, C.; Pearce, G.; Billin, A.N.; Perlstein, I.; Willson, T.M.; Hassall, D.G.; Ancellin, N.; Patterson, S.D.; Lobe, D.C.; et al. Triglyceride: High-Density Lipoprotein Cholesterol Effects in Healthy Subjects Administered a Peroxisome Proliferator Activated Receptor Agonist. Arterioscler. Thromb. Vasc. Biol. 2006, 27, 359–365. [Google Scholar] [CrossRef]
- Her, N.H.; Jeong, S.I.; Cho, K.; Ha, T.K.; Han, J.; Ko, K.P.; Park, S.K.; Lee, J.H.; Lee, M.G.; Ryu, B.K.; et al. PPARδ promotes oncogenic redirection of TGF-β1 signaling through the activation of the ABCA1-Cav1 pathway. Cell Cycle 2013, 12, 1521–1535. [Google Scholar] [CrossRef]
- Zhao, J.F.; Ching, L.C.; Huang, Y.C.; Chen, C.Y.; Chiang, A.N.; Kou, Y.R.; Shyue, S.K.; Lee, T.S. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol. Nutr. Food Res. 2012, 56, 691–701. [Google Scholar] [CrossRef]
- Wang, D.; Hiebl, V.; Ladurner, A.; Latkolik, S.L.; Bucar, F.; Heiß, E.H.; Dirsch, V.M.; Atanasov, A.G. 6-Dihydroparadol, a Ginger Constituent, Enhances Cholesterol Efflux from THP-1-Derived Macrophages. Mol. Nutr. Food Res. 2018, 62, 1800011. [Google Scholar] [CrossRef] [PubMed]
- Castrejón-Tellez, V.; Rodríguez-Pérez, J.M.; Pérez-Torres, I.; Pérez-Hernández, N.; Cruz-Lagunas, A.; Guarner-Lans, V.; Vargas-Alarcón, G.; Rubio-Ruiz, M.E. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP-) 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats. Int. J. Mol. Sci. 2016, 17, 1069. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Shen, T.; Jiang, X.; Tang, X.; Wang, D.; Li, H.; Ling, W. Coenzyme Q10 consumption promotes ABCG1-mediated macrophage cholesterol efflux: A randomized, double-blind, placebo-controlled, cross-over study in healthy volunteers. Mol. Nutr. Food Res. 2015, 59, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
Sub-Sample for Transcriptomic Analyses (N = 22) | Whole VOHF Study Population (N = 33) | p-Value | |
---|---|---|---|
Age (years) | 54.8 ± 8.94 | 55.5 ± 9.98 | 0.779 |
Male sex (n, %) | 8 (36.4%) | 14 (42.4%) | 0.866 |
Glucose (mg/dL) | 91.7 ± 13.5 | 90.8 ± 11.7 | 0.798 |
Total cholesterol (mg/dL) | 227 ± 31.8 | 226 ± 35.2 | 0.968 |
HDL cholesterol (mg/dL) | 31.1 ± 9.21 | 31.3 ± 10.4 | 0.952 |
LDL cholesterol (mg/dL) | 171 ± 30.4 | 170 ± 32.2 | 0.906 |
Triglycerides (mg/dL) | 116 [91.0; 139] | 114 [88.0; 141] | 0.790 |
Systolic blood pressure (mmHg) | 128 ± 15.1 | 128 ± 14.6 | 0.863 |
Diastolic blood pressure (mmHg) | 75.0 ± 10.8 | 73.2 ± 10.0 | 0.536 |
Body mass index (kg/m2) | 26.6 ± 4.00 | 26.6 ± 4.45 | 0.999 |
Smokers (n, %) | 1 (4.55%) | 2 (6.06%) | 1.000 |
FVOOT Intervention | FVOO Intervention | VOO Intervention | ||||||
---|---|---|---|---|---|---|---|---|
Post-Intervention Value | Post- vs. Pre-Intervention Difference | FVOOT vs. VOO p-Value | Post-Intervention Value | Post- vs. Pre-Intervention Difference | FVOO vs. VOO p-Value | Post-Intervention Value | Post- vs. Pre-Intervention Difference | |
ABCA1 | 0.82 ± 0.60 | 0.23 ± 0.14 | 0.402 | 0.92 ± 0.59 | 0.15 ± 0.14 | 0.666 | 0.87 ± 0.65 | 0.064 ± 0.14 |
ABCG1 | 0.63 ± 0.79 | −0.032 ± 0.10 | 0.588 | 0.75 ± 0.79 | −0.048 ± 0.10 | 0.663 | 0.74 ± 0.77 | −0.11 ± 0.11 |
CAV1 | 1.43 ± 0.93 | 0.16 ± 0.15 | 0.070 | 1.37 ± 1.02 | −0.19 ± 0.15 | 0.814 | 1.63 ± 1.02 | −0.24 ± 0.15 |
CYP27A1 | −0.89 ± 0.81 | 0.48 ± 0.23 * | 0.053 | −0.79 ± 0.90 | 0.24 ± 0.23 | 0.216 | −0.94 ± 0.81 | −0.17 ± 0.24 |
NR1H2 (LXRβ) | 0.57 ± 0.6 | 0.57 ± 0.20 ** | 0.070 | 0.57 ± 0.61 | 0.052 ± 0.20 | 0.977 | 0.62 ± 0.59 | 0.043 ± 0.21 |
NR1H3 (LXRα) | 0.79 ± 0.51 | −0.055 ± 0.12 | 0.448 | 0.74 ± 0.59 | −0.22 ± 0.12 | 0.850 | 0.91 ± 0.58 | −0.18 ± 0.12 |
PPARA | 0.14 ± 0.44 | 0.14 ± 0.12 | 0.249 | 0.20 ± 0.52 | 0.018 ± 0.12 | 0.661 | 0.28 ± 0.48 | −0.06 ± 0.13 |
PPARD | −0.37 ± 0.56 | 0.23 ± 0.11 * | 0.206 | −0.30 ± 0.60 | 0.12 ± 0.11 | 0.573 | −0.32 ± 0.52 | 0.029 ± 0.11 |
PPARG | −0.11 ± 1.11 | 0.19 ± 0.20 | 0.353 | −0.12 ± 1.12 | 0.20 ± 0.20 | 0.330 | −0.12 ± 1.18 | −0.079 ± 0.21 |
RXRA | 0.22 ± 0.54 | 0.62 ± 0.21 ** | 0.132 | 0.24 ± 0.58 | 0.071 ± 0.22 | 0.790 | 0.32 ± 0.60 | 0.15 ± 0.22 |
RXRB | 0.76 ± 0.63 | −0.050 ± 0.16 | 0.166 | 0.80 ± 0.67 | −0.16 ± 0.16 | 0.368 | 0.89 ± 0.69 | −0.37 ± 0.16 * |
SCARB1 | 0.22 ± 0.69 | 0.12 ± 0.10 | 0.367 | 0.19 ± 0.76 | 0.018 ± 0.10 | 0.845 | 0.31 ± 0.72 | −0.010 ± 0.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farràs, M.; Arranz, S.; Carrión, S.; Subirana, I.; Muñoz-Aguayo, D.; Blanchart, G.; Kool, M.; Solà, R.; Motilva, M.J.; Escolà-Gil, J.C.; et al. A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial. Nutrients 2019, 11, 1732. https://doi.org/10.3390/nu11081732
Farràs M, Arranz S, Carrión S, Subirana I, Muñoz-Aguayo D, Blanchart G, Kool M, Solà R, Motilva MJ, Escolà-Gil JC, et al. A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial. Nutrients. 2019; 11(8):1732. https://doi.org/10.3390/nu11081732
Chicago/Turabian StyleFarràs, Marta, Sara Arranz, Sílvia Carrión, Isaac Subirana, Daniel Muñoz-Aguayo, Gemma Blanchart, Marjon Kool, Rosa Solà, María José Motilva, Joan Carles Escolà-Gil, and et al. 2019. "A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial" Nutrients 11, no. 8: 1732. https://doi.org/10.3390/nu11081732
APA StyleFarràs, M., Arranz, S., Carrión, S., Subirana, I., Muñoz-Aguayo, D., Blanchart, G., Kool, M., Solà, R., Motilva, M. J., Escolà-Gil, J. C., Rubió, L., Fernández-Castillejo, S., Pedret, A., Estruch, R., Covas, M. I., Fitó, M., Hernáez, Á., & Castañer, O. (2019). A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial. Nutrients, 11(8), 1732. https://doi.org/10.3390/nu11081732