Is Eating Raisins Healthy?
Abstract
:1. Introduction
2. Antioxidant Capacity
3. Cardiovascular Health
3.1. Hypercholesterolemia
3.2. Hypertension
4. Diabetes
5. Intestinal and Colon Health
6. Dental Health
7. Diet Quality
8. Cell Line and Animal Models
8.1. Cell Line Models
8.2. Animal Models
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shahidi, F.; Tan, Z. Raisins: Processing, phytochemicals, and health benefits. In Dried Fruits; Alasalvar, C., Shahidi, F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 372–392. ISBN 9780813811734. [Google Scholar]
- USDA. Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 20 August 2019).
- Camire, M.E.; Dougherty, M.P. Raisin dietary fiber composition and in vitro bile acid binding. J. Agric. Food Chem. 2003, 51, 834–837. [Google Scholar] [CrossRef]
- Li, Y.O.; Komarek, A.R. Dietary fibre basics: Health, nutrition, analysis, and applications. Food Qual. Saf. 2017, 1, 47–59. [Google Scholar] [CrossRef]
- O’Grady, J.; O’Connor, E.M.; Shanahan, F. Review article: Dietary fibre in the era of microbiome science. Aliment. Pharmacol. Ther. 2019, 49, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Vijn, I.; Smeekens, S. Fructan: More than a reserve carbohydrate? Plant Physiol. 1999, 120, 351–359. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Agriculture. National Nutrient Database for Standard Reference. Nutrient Laboratory Homepage. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 13 September 2019).
- Vallverdú-Queralt, A.; Regueiro, J.; Rinaldi, J.; Torrado, X.; Lamuela-Raventos, R.M. Home cooking and phenolics: Effect of thermal treatment and addition of extra virgin olive oil on the phenolic profile of tomato sauces. J. Agr. Food Chem. 2014, 62, 3314–3320. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Alvarenga, J.F.R.; Martinez-Huelamo, M.; Leal, L.N.; Lamuela-Raventos, R.M. Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: Caraway, turmeric, dill, marjoram and nutmeg. Food Sci. Technol. 2015, 35, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Parker, T.L.; Wang, X.H.; Pazmiño, J.; Engeseth, N.J. Antioxidant capacity and phenolic content of grapes, sun-dried raisins, and golden raisins and their effect on ex vivo serum antioxidant capacity. J. Agric. Food Chem. 2007, 55, 8472–8477. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Frigerio, G.; Colombo, F.; de Sousa, L.P.; Altindişli, A.; Dell’Agli, M.; Restani, P. Phenolic profile and antioxidant activity of different raisin (Vitis vinifera L.) samples. BIO Web Conf. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fabani, M.P.; Baroni, M.V.; Luna, L.; Lingua, M.S.; Monferran, M.V.; Paños, H.; Tapia, A.; Wunderlin, D.A.; Feresin, G.E. Changes in the phenolic profile of Argentinean fresh grapes during production of sun-dried raisins. J. Food Compos. Anal. 2017, 58, 23–32. [Google Scholar] [CrossRef]
- Chiou, A.; Panagopoulou, E.A.; Gatzali, F.; De Marchi, S.; Karathanos, V.T. Anthocyanins content and antioxidant capacity of Corinthian currants (Vitis vinifera L., var. Apyrena). Food Chem. 2014, 146, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Jourdes, M.; Selli, S.; Teissedre, P.L. Comparative evaluation of the phenolic content and antioxidant capacity of sun-dried raisins. J. Sci. Food Agric. 2013, 93, 2963–2972. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Cruz, J.F.; Zhu, M.; Kinghorn, A.D.; Wu, C.D. Antimicrobial constituents of Thompson seedless raisins (Vitis vinifera) against selected oral pathogens. Phytochem. Lett. 2008, 1, 151–154. [Google Scholar] [CrossRef]
- Spiller, G.A.; Story, J.A.; Furumoto, E.J.; Chezem, J.C.; Spiller, M. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults. Br. J. Nutr. 2003, 90, 803–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çaglarirmak, N. Ochratoxin A, hydroxymethylfurfural and vitamin C levels of sun-dried grapes and sultanas. J. Food Process. Preserv. 2006, 30, 549–562. [Google Scholar] [CrossRef]
- Fanelli, F.; Cozzi, G.; Raiola, A.; Dini, I.; Mulè, G.; Logrieco, A.F.; Ritieni, A. Raisins and currants as conventional nutraceuticals in Italian market: Natural occurrence of ochratoxin A. J. Food Sci. 2017, 82, 2306–2312. [Google Scholar] [CrossRef]
- Ostry, V.; Ruprich, J.; Skarkova, J. Raisins, ochratoxin A and human health. Mycotoxin Res. 2002, 18, 178–182. [Google Scholar] [CrossRef]
- European Commission. Commission regulation (EC) no 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- Christofidou, M.; Kafouris, D.; Christodoulou, M.; Stefani, D.; Christoforou, E.; Nafti, G.; Christou, E.; Aletrari, M.; Ioannou-Kakouri, E. Occurrence, surveillance, and control of mycotoxins in food in Cyprus for the years 2004–2013. Food Agric. Immunol. 2015, 26, 880–895. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Stanisz, E.; Waśkiewicz, A. Potential health benefits and quality of dried fruits: Goji fruits, cranberries and raisins. Food Chem. 2017, 221, 228–236. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliora, A.C.; Kountouri, A.M.; Karathanos, V.T. Antioxidant properties of raisins (Vitis vinifera L.). J. Med. Food 2009, 12, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; El, S.N.; Taş, A.A. Antioxidant activity of some foods containing phenolic compounds. Int. J. Food Sci. Nutr. 2001, 52, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Sério, S.; Rivero-Pérez, M.D.; Correia, A.C.; Jordão, A.M.; González-San José, M.L. Analysis of commercial grape raisins: Phenolic content, antioxidant capacity and radical scavenger activity. Ciência e Téchnica Vitivinícola 2014, 29, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Fang, Y.; Zhang, A.; Chen, S.; Xu, T.; Ren, Z.; Han, G.; Liu, J.; Li, H.; Zhang, Z.; et al. Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province. Food Res. Int. 2011, 44, 2830–2836. [Google Scholar] [CrossRef]
- Mnari, A.B.; Harzallah, A.; Amri, Z.; Dhaou Aguir, S.; Hammami, M. Phytochemical content, antioxidant properties, and phenolic profile of tunisian raisin varieties (Vitis vinifera L.). Int. J. Food Prop. 2016, 19, 578–590. [Google Scholar] [CrossRef]
- Abouzeed, Y.M.; Zgheel, F.; Elfahem, A.A.; Almagarhe, M.S.; Dhawi, A.; Elbaz, A.; Hiblu, M.A.; Kammon, A.; Ahmed, M.O. Identification of phenolic compounds, antibacterial and antioxidant activities of raisin extracts. Open Vet. J. 2018, 8, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. Total antioxidant capacity: Appraisal of a concept. J. Nutr. 2007, 137, 1493–1495. [Google Scholar] [CrossRef]
- Kanellos, P.T.; Kaliora, A.C.; Gioxari, A.; Christopoulou, G.O.; Kalogeropoulos, N.; Karathanos, V.T. Absorption and bioavailability of antioxidant phytochemicals and increase of serum oxidation resistance in healthy subjects following supplementation with raisins. Plant Foods Hum. Nutr. 2013, 68, 411–415. [Google Scholar] [CrossRef]
- WHO. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 20 November 2019).
- Quiñones, M.; Miguel, M.; Aleixandre, A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 2013, 68, 125–131. [Google Scholar] [CrossRef]
- Puglisi, M.J.; Vaishnav, U.; Shrestha, S.; Torres-Gonzalez, M.; Wood, R.J.; Volek, J.S.; Fernandez, M.L. Raisins and additional walking have distinct effects on plasma lipids and inflammatory cytokines. Lipids Health Dis. 2008, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puglisi, M.J.; Mutungi, G.; Brun, P.J.; McGrane, M.M.; Labonte, C.; Volek, J.S.; Fernandez, M.L. Raisins and walking alter appetite hormones and plasma lipids by modifications in lipoprotein metabolism and up-regulation of the low-density lipoprotein receptor. Metabolism 2009, 58, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Kanellos, P.T.; Kaliora, A.C.; Protogerou, A.D.; Tentolouris, N.; Perrea, D.N.; Karathanos, V.T. The effect of raisins on biomarkers of endothelial function and oxidant damage; an open-label and randomized controlled intervention. Food Res. Int. 2017, 102, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Rankin, J.W.; Andreae, M.C.; Chen, C.Y.O.; O’Keefe, S.F. Effect of raisin consumption on oxidative stress and inflammation in obesity. Diabetes Obes. Metab. 2008, 10, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Alahmadi, A.; Hamdy, R.; Huwait, E.A.; Alansari, A.; Ayuob, N. Renoprotective effect of red grape (Vitis vinifera L.) juice and dark raisins against hypercholesterolaemia-induced tubular renal affection in albino rats. Folia Morphologica 2019, 78, 91–100. [Google Scholar] [PubMed] [Green Version]
- Bruce, B.; Spiller, G.A.; Farquhar, J.W. Effects of a plant-based diet rich in whole grains, sun-dried raisins and nuts on serum lipoproteins. Veg. Nutr. Int. J. 1997, 1, 58–63. [Google Scholar]
- Bruce, B.; Spiller, G.A.; Klevay, L.M.; Gallagher, S.K. A diet high in whole and unrefined foods favorably alters lipids, antioxidant defenses, and colon function. J. Am. Coll. Nutr. 2000, 19, 61–67. [Google Scholar] [CrossRef]
- Borgi, L.; Muraki, I.; Satija, A.; Willett, W.C.; Rimm, E.B.; Forman, J.P. Fruit and vegetable consumption and the incidence of hypertension in three prospective cohort studies. Hypertension 2016, 67, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Bays, H.; Weiter, K.; Anderson, J. A randomized study of raisins versus alternative snacks on glycemic control and other cardiovascular risk factors in patients with type 2 diabetes mellitus. Phys. Sportsmed. 2015, 43, 37–43. [Google Scholar] [CrossRef]
- Anderson, J.W.; Weiter, K.M.; Christian, A.L.; Ritchey, M.B.; Bays, H.E. Raisins compared with other snack effects on glycemia and blood pressure: A randomized, controlled trial. Postgrad. Med. 2014, 126, 37–43. [Google Scholar] [CrossRef]
- Storniolo, C.E.; Roselló-Catafau, J.; Pintó, X.; Mitjavila, M.T.; Moreno, J.J. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol. 2014, 2, 971–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Remón, A.; Estruch, R.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. The effect of polyphenol consumption on blood pressure. Mini-Rev. Med. Chem. 2013, 13, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Venn, B.J.; Green, T.J. Glycemic index and glycemic load: Measurement issues and their effect on diet–disease relationships. Eur. J. Clin. Nutr. 2007, 61, S122–S131. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Esfandiari, S.; Bahadoran, Z.; Tohidi, M.; Azizi, F. Dietary insulin load and insulin index are associated with the risk of insulin resistance: A prospective approach in Tehran lipid and glucose study. J. Diabetes Metab. Disord. 2016, 15, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esfahani, A.; Lam, J.; Kendall, C.W.C. Acute effects of raisin consumption on glucose and insulin reponses in healthy individuals. J. Nutr. Sci. 2014, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Hertzler, S.R.; Byrne, H.K.; Mattern, C.O. Raisins are a low to moderate glycemic index food with a correspondingly low insulin index. Nutr. Res. 2008, 28, 304–308. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Wolever, T.M.S.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [Green Version]
- Testa, R.; Bonfigli, A.R.; Genovese, S.; De Nigris, V.; Ceriello, A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients 2016, 8, 310. [Google Scholar] [CrossRef]
- Sarian, M.N.; Ahmed, Q.U.; Mat So’Ad, S.Z.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S.N.A.; Khatib, A.; Latip, J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomed Res. Int. 2017, 2017, 8386065. [Google Scholar] [CrossRef]
- Guo, H.; Xia, M. Anthocyanins and diabetes regulation. In Polyphenols: Mechanisms of Action in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 135–145. ISBN 9780128130063. [Google Scholar]
- Impaired Fasting Glycemia. Diabetes.co.uk. 15 January 2019. Available online: https://www.diabetes.co.uk/impaired-fasting-glycemia.html (accessed on 10 July 2019).
- Byrne, H.K.; Kim, Y.; Hertzler, S.R.; Watt, C.A.; Mattern, C.O. Glycemic and insulinemic responses to different preexercise snacks in participants with impaired fasting glucose. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; Van Dam, R.M.; Sun, Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ 2013, 347, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanellos, P.T.; Kaliora, A.C.; Liaskos, C.; Tentolouris, N.K.; Perrea, D.; Karathanos, V.T. A Study of glycemic response to Corinthian raisins in healthy subjects and in type 2 diabetes mellitus patients. Plant Foods Hum. Nutr. 2013, 68, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Kaliora, A.C.; Kanellos, P.T.; Gioxari, A.; Karathanos, V.T. Regulation of GIP and ghrelin in healthy subjects fed on sun-dried raisins: A pilot study with a crossover trial design. J. Med. Food 2017, 20, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Kanellos, P.T.; Kaliora, A.C.; Tentolouris, N.K.; Argiana, V.; Perrea, D.; Kalogeropoulos, N.; Kountouri, A.M.; Karathanos, V.T. A pilot, randomized controlled trial to examine the health outcomes of raisin consumption in patients with diabetes. Nutrition 2014, 30, 358–364. [Google Scholar] [CrossRef]
- Mennen, L.I.; Sapinho, D.; de Bree, A.; Arnault, N.; Bertrais, S.; Galan, P.; Hercberg, S. Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. J. Nutr. 2004, 134, 923–926. [Google Scholar] [CrossRef]
- Cogolludo, A.; Frazziano, G.; Briones, A.M.; Cobeño, L.; Moreno, L.; Lodi, F.; Salaices, M.; Tamargo, J.; Perez-Vizcaino, F. The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2. Role in vasodilatation. Cardiovasc. Res. 2007, 73, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Spiller, G.A.; Story, J.A.; Lodics, T.A.; Pollack, M.; Monyan, S.; Butterfield, G.; Spiller, M. Effect of sun-dried raisins on bile acid excretion, intestinal transit time, and fecal weight: A dose-response study. J. Med. Food 2003, 6, 87–91. [Google Scholar] [CrossRef]
- Marhuenda-Muñoz, M.; Laveriano-Santos, E.P.; Tresserra-Rimbau, A.; Lamuela-Raventós, R.M.; Martínez-Huélamo, M.; Vallverdú-Queralt, A. Microbial phenolic metabolites: Which molecules actually have an effect on human health? Nutrients 2019, 11, 2725. [Google Scholar] [CrossRef] [Green Version]
- Mandalari, G.; Chessa, S.; Bisignano, C.; Chan, L.; Carughi, A. The effect of sun-dried raisins (Vitis vinifera L.) on the in vitro composition of the gut microbiota. Food Funct. 2016, 7, 4048–4060. [Google Scholar] [CrossRef]
- Scholz, M. Operational Taxonomic Unit (OTU). Available online: https://sites.google.com/site/wiki4metagenomics/pdf/definition/operational-taxonomic-unit-otu (accessed on 14 September 2019).
- Wijayabahu, A.T.; Waugh, S.G.; Ukhanova, M.; Mai, V. Dietary raisin intake has limited effect on gut microbiota composition in adult volunteers. Nutr. J. 2019, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Miquel, S.; Martín, R.; Rossi, O.; Bermúdez-Humarán, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013, 16, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Young, D.A.; Emmanouil, D.E.; Wong, L.M.; Waters, A.R.; Booth, M.T. Raisins and oral health. J. Food Sci. 2013, 78, 26–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utreja, A.; Lingström, P.; Evans, C.A.; Salzmann, L.B.; Wu, C.D. The effect of raisin-containing cereals on the pH of dental plaque in young children. Pediatr. Dent. 2009, 31, 498–503. [Google Scholar] [PubMed]
- Vinotha, T.; Geetha, R.V. Natural remedy to prevent tooth decay: A review. Asian J. Pharm. Clin. Res. 2015, 8, 32–33. [Google Scholar]
- Guerrero, M.L.P.; Pérez-Rodríguez, F. Diet quality indices for nutrition assessment: Types and applications. In Functional Food—Improve Health through Adequate Food; InTech: London, UK, 2017; pp. 283–308. [Google Scholar]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean Diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.P.; Luhovyy, B.; Mollard, R.; Painter, J.E.; Anderson, G.H. A premeal snack of raisins decreases mealtime food intake more than grapes in young children. Appl. Physiol. Nutr. Metab. 2013, 38, 382–389. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Painter, J.; Carughi, A. Association of raisin and raisin-containing food consumption with nutrient intake and diet quality in US children: NHANES 2001–2012. Food Sci. Nutr. 2018, 6, 2162–2169. [Google Scholar] [CrossRef]
- Rehfeld, J.F. The origin and understanding of the incretin concept. Front. Endocrinol. (Lausanne) 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kojima, M.; Kangawa, K. Ghrelin: Structure and function. Physiol. Rev. 2005, 85, 495–522. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Sangiovanni, E.; Fumagalli, M.; Colombo, E.; Frigerio, G.; Colombo, F.; de Sousa, L.P.; Altindisli, A.; Restani, P.; Dell’Agli, M. Evaluation of the anti-inflammatory activity of raisins (Vitis vinifera L.) in human gastric epithelial cells: A comparative study. Int. J. Mol. Sci. 2016, 17, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliora, A.C.; Kountouri, A.M.; Karathanos, V.T.; Koumbi, L.; Papadopoulos, N.G.; Andrikopoulos, N.K. Effect of Greek raisins (Vitis vinifera L.) from different origins on gastric cancer cell growth. Nutr. Cancer 2008, 60, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Kountouri, A.M.; Gioxari, A.; Karvela, E.; Kaliora, A.C.; Karvelas, M.; Karathanos, V.T. Chemopreventive properties of raisins originating from Greece in colon cancer cells. Food Funct. 2013, 4, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi, B.H.; Johnson, C.D.; Campbell, S.C.; Hooshmand, S.; Chai, S.C.; Akhter, M.P. Combining fructooligosaccharide and dried plum has the greatest effect on restoring bone mineral density among select functional foods and bioactive compounds. J. Med. Food 2010, 13, 312–319. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Swelum, A.A.; Perillo, A.; Losacco, C. The vital roles of boron in animal health and production: A comprehensive review. J. Trace Elem. Med. Biol. 2018, 50, 296–304. [Google Scholar] [CrossRef]
- Ghrairi, F. Hypoglycemic and hypolipidemic effects of raisin aqueous extract “Karkni” in Alloxan-induced diabetic rats. J. Diabetes Metab. 2012, 3, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Rohilla, A.; Ali, S. Alloxan induced diabetes: Mechanisms and effects. Int. J. Res. Pharm. Biomed. Sci. 2012, 3, 819–823. [Google Scholar]
- Howard-Alpe, G.M.; Sear, J.W.; Foex, P. Methods of detecting atherosclerosis in non-cardiac surgical patients; the role of biochemical markers. Br. J. Anaesth. 2006, 97, 758–769. [Google Scholar] [CrossRef] [Green Version]
- Ayuob, N.N. Can raisins ameliorate hypercholesterolemia-induced nephropathy? What is the evidence? Egypt. J. Histol. 2014, 37, 677–688. [Google Scholar] [CrossRef]
- Zern, T.L.; Fernandez, M.L. Recent advances in nutritional sciences cardioprotective effects of dietary. J. Nutr. 2005, 135, 2291–2294. [Google Scholar] [CrossRef] [Green Version]
- Gol, M.; Ghorbanian, D.; Soltanpour, N.; Faraji, J.; Pourghasem, M. Protective effect of raisin (currant) against spatial memory impairment and oxidative stress in Alzheimer disease model. Nutr. Neurosci. 2019, 22, 110–118. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Golden Raisins | Dark Raisins | Units |
---|---|---|---|
Proximates | |||
Water | 14.90 | 15.46 | g |
Energy | 301 | 299 | kcal |
Protein | 3.28 | 3.30 | g |
Total lipid | 0.20 | 0.25 | g |
Carbohydrate (by difference) | 80.02 | 79.32 | g |
Fiber (total dietary) | 3.30 | 4.50 | g |
Sugars (total) | 65.70 | 65.18 | g |
Minerals | |||
Calcium | 64 | 62 | mg |
Iron | 0.98 | 1.79 | mg |
Magnesium | 35 | 36 | mg |
Phosphorus | 101 | 98 | mg |
Potassium | 746 | 744 | mg |
Sodium | 24 | 26 | mg |
Zinc | 0.37 | 0.36 | mg |
Vitamins | |||
Vitamin C (total ascorbic acid) | 3.20 | 2.30 | mg |
Thiamin | 0.008 | 0.106 | mg |
Riboflavin | 0.191 | 0.125 | mg |
Niacin | 1.142 | 0.766 | mg |
Vitamin B-6 | 0.323 | 0.174 | mg |
Folate (DFE) 1 | 3 | 5 | µg |
Vitamin B-12 | 0 | 0 | µg |
Vitamin A (RAE) 2 | 0 | 0 | µg |
Vitamin A (IU) 3 | 0 | 0 | µg |
Vitamin E (alpha-tocopherol) | 0.12 | 0.12 | mg |
Vitamin D (D2 + D3) | 0 | 0 | µg |
Vitamin D | 0 | 0 | IU |
Vitamin K (phylloquinone) | 3.5 | 3.5 | µg |
Lipids | |||
Fatty acids (total saturated) | 0.065 | 0.094 | g |
Fatty acids (total monounsaturated) | 0.014 | 0.024 | g |
Fatty acids (total polyunsaturated) | 0.057 | 0.053 | g |
Fatty acids (total trans) | 0 | 0.001 | g |
Cholesterol | 0 | 0 | mg |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmo-Cunillera, A.; Escobar-Avello, D.; Pérez, A.J.; Marhuenda-Muñoz, M.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Is Eating Raisins Healthy? Nutrients 2020, 12, 54. https://doi.org/10.3390/nu12010054
Olmo-Cunillera A, Escobar-Avello D, Pérez AJ, Marhuenda-Muñoz M, Lamuela-Raventós RM, Vallverdú-Queralt A. Is Eating Raisins Healthy? Nutrients. 2020; 12(1):54. https://doi.org/10.3390/nu12010054
Chicago/Turabian StyleOlmo-Cunillera, Alexandra, Danilo Escobar-Avello, Andy J. Pérez, María Marhuenda-Muñoz, Rosa Mª Lamuela-Raventós, and Anna Vallverdú-Queralt. 2020. "Is Eating Raisins Healthy?" Nutrients 12, no. 1: 54. https://doi.org/10.3390/nu12010054
APA StyleOlmo-Cunillera, A., Escobar-Avello, D., Pérez, A. J., Marhuenda-Muñoz, M., Lamuela-Raventós, R. M., & Vallverdú-Queralt, A. (2020). Is Eating Raisins Healthy? Nutrients, 12(1), 54. https://doi.org/10.3390/nu12010054