Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the Prevention of Sarcopenia: Findings from the NU-AGE Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Intake
2.3. Body Composition
2.4. Handgrip Strength and Physical Limitations
2.5. Sarcopenia Risk Score
2.6. Adherence to Physical Activity Guidelines
2.7. Assessment of Metabolic Risk
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodds, R.M.; Roberts, H.C.; Cooper, C.; Sayer, A.A. The Epidemiology of Sarcopenia. J. Clin. Densitom. 2015, 18, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, A.; Montiel Rojas, D.; Kadi, F. Impact of Meeting Different Guidelines for Protein Intake on Muscle Mass and Physical Function in Physically Active Older Women. Nutrients 2018, 10, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, L.; Hu, F.B. Optimal body weight for health and longevity: Bridging basic, clinical, and population research. Aging Cell 2014, 13, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.A.; MacGregor, A.J.; Minihane, A.-M.; Skinner, J.; Valdes, A.A.; Spector, T.D.; Cassidy, A. Dietary Fat and Fatty Acid Profile Are Associated with Indices of Skeletal Muscle Mass in Women Aged 18–79 Years. J. Nutr. 2014, 144, 327–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granic, A.; Mendonça, N.; Sayer, A.A.; Hill, T.R.; Davies, K.; Siervo, M.; Mathers, J.C.; Jagger, C. Effects of dietary patterns and low protein intake on sarcopenia risk in the very old: The Newcastle 85+ study. Clin. Nutr. 2020, 39, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.A. Nutritional influences on age-related skeletal muscle loss. Proc. Nutr. Soc. 2014, 73, 16–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jyväkorpi, S.K.; Urtamo, A.; Kivimäki, M.; Strandberg, T.E. Macronutrient composition and sarcopenia in the oldest-old men. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Campmans-Kuijpers, M.J.E.; Sluijs, I.; Nöthlings, U.; Freisling, H.; Overvad, K.; Weiderpass, E.; Fagherazzi, G.; Kühn, T.; Katzke, V.A.; Mattiello, A.; et al. Isocaloric substitution of carbohydrates with protein: The association with weight change and mortality among patients with type 2 diabetes. Cardiovasc. Diabetol. 2015, 14, 39. [Google Scholar] [CrossRef] [Green Version]
- Skilton, M.R.; Laville, M.; Cust, A.E.; Moulin, P.; Bonnet, F. The association between dietary macronutrient intake and the prevalence of the metabolic syndrome. Br. J. Nutr. 2008, 100, 400–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Alonso, P.; Salas-Salvadó, J.; Ruiz-Canela, M.; Corella, D.; Estruch, R.; Fitó, M.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; Lapetra, J.; et al. High dietary protein intake is associated with an increased body weight and total death risk. Clin. Nutr. 2016, 35, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Flock, M.R.; Fleming, J.A.; Kris-Etherton, P.M. Macronutrient replacement options for saturated fat. Curr. Opin. Lipidol. 2014, 25, 67–74. [Google Scholar] [CrossRef]
- Berendsen, A.; Santoro, A.; Pini, E.; Cevenini, E.; Ostan, R.; Pietruszka, B.; Rolf, K.; Cano, N.; Caille, A.; Lyon-Belgy, N.; et al. Reprint of: A parallel randomized trial on the effect of a healthful diet on inflammageing and its consequences in European elderly people: Design of the NU-AGE dietary intervention study. Mech. Ageing Dev. 2014, 136–137, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Pini, E.; Scurti, M.; Palmas, G.; Berendsen, A.; Brzozowska, A.; Pietruszka, B.; Szczecinska, A.; Cano, N.; Meunier, N.; et al. Combating inflammaging through a Mediterranean whole diet approach: The NU-AGE project’s conceptual framework and design. Mech. Ageing Dev. 2014, 136–137, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Biol. Sci. 2001, 56, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Ostan, R.; Guidarelli, G.; Giampieri, E.; Lanzarini, C.; Berendsen, A.A.M.; Januszko, O.; Jennings, A.; Lyon, N.; Caumon, E.; Gillings, R.; et al. Cross-Sectional Analysis of the Correlation Between Daily Nutrient Intake Assessed by 7-Day Food Records and Biomarkers of Dietary Intake Among Participants of the NU-AGE Study. Front. Physiol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.; van de Rest, O.; Feskens, E.; Santoro, A.; Ostan, R.; Pietruszka, B.; Brzozowska, A.; Stelmaszczyk-Kusz, A.; Jennings, A.; Gillings, R.; et al. Changes in Dietary Intake and Adherence to the NU-AGE Diet Following a One-Year Dietary Intervention among European Older Adults—Results of the NU-AGE Randomized Trial. Nutrients 2018, 10, 1905. [Google Scholar] [CrossRef] [Green Version]
- Santoro, A.; Guidarelli, G.; Ostan, R.; Giampieri, E.; Fabbri, C.; Bertarelli, C.; Nicoletti, C.; Kadi, F.; de Groot, L.C.P.G.M.; Feskens, E.; et al. Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. Eur. Radiol. 2019, 29, 4968–4979. [Google Scholar] [CrossRef] [Green Version]
- Santoro, A.; Bazzocchi, A.; Guidarelli, G.; Ostan, R.; Giampieri, E.; Mercatelli, D.; Scurti, M.; Berendsen, A.; Surala, O.; Jennings, A.; et al. A Cross-Sectional Analysis of Body Composition among Healthy Elderly from the European NU-AGE Study: Sex and Country Specific Features. Front. Physiol. 2018, 9, 9. [Google Scholar] [CrossRef]
- Kim, K.M.; Jang, H.C.; Lim, S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J. Intern. Med. 2016, 31, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, G.; Ponti, F.; Agostini, M.; Amadori, M.; Battista, G.; Bazzocchi, A. The role of DXA in sarcopenia. Aging Clin. Exp. Res. 2016, 28, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Syddall, H.E.; Martin, H.J.; Harwood, R.H.; Cooper, C.; Sayer, A.A. The SF-36: A simple, effective measure of mobility-disability for epidemiological studies. J. Nutr. Heal. Aging 2009, 13, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Montiel Rojas, D.; Nilsson, A.; Ponsot, E.; Brummer, R.J.; Fairweather-Tait, S.; Jennings, A.; de Groot, L.C.P.G.M.; Berendsen, A.; Pietruszka, B.; Madej, D.; et al. Short Telomere Length Is Related to Limitations in Physical Function in Elderly European Adults. Front. Physiol. 2018, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Wåhlin-Larsson, B.; Kadi, F. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women. PLoS ONE 2017, 12, e0175496. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sport. Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Isanejad, M.; Sirola, J.; Mursu, J.; Rikkonen, T.; Kröger, H.; Tuppurainen, M.; Erkkilä, A.T. Association of the Baltic Sea and Mediterranean diets with indices of sarcopenia in elderly women, OSPTRE-FPS study. Eur. J. Nutr. 2018, 57, 1435–1448. [Google Scholar] [CrossRef]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia—What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef]
- Arias-Fernández, L.; Struijk, E.A.; Rodríguez-Artalejo, F.; Lopez-Garcia, E.; Lana, A. Habitual dietary fat intake and risk of muscle weakness and lower-extremity functional impairment in older adults: A prospective cohort study. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Abbatecola, A.M.; Cherubini, A.; Guralnik, J.M.; Lacueva, C.A.; Ruggiero, C.; Maggio, M.; Bandinelli, S.; Paolisso, G.; Ferrucci, L. Plasma Polyunsaturated Fatty Acids and Age-Related Physical Performance Decline. Rejuvenation Res. 2009, 12, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gedmantaite, A.; Celis-Morales, C.A.; Ho, F.; Pell, J.; Ratkevicius, A.; Gray, S.R. Associations between diet and handgrip strength: A cross-sectional study from UK Biobank. Mech. Ageing Dev. 2020, 189, 111269. [Google Scholar] [CrossRef] [PubMed]
- Witard, O.C.; Combet, E.; Gray, S.R. Long-chain n-3 fatty acids as an essential link between musculoskeletal and cardio-metabolic health in older adults. Proc. Nutr. Soc. 2020, 79, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryner, R.W.; Woodworth-Hobbs, M.E.; Williamson, D.L.; Alway, S.E. Docosahexaenoic Acid Protects Muscle Cells from Palmitate-Induced Atrophy. ISRN Obes. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Woodworth-Hobbs, M.E.; Hudson, M.B.; Rahnert, J.A.; Zheng, B.; Franch, H.A.; Price, S.R. Docosahexaenoic acid prevents palmitate-induced activation of proteolytic systems in C2C12 myotubes. J. Nutr. Biochem. 2014, 25, 868–874. [Google Scholar] [CrossRef] [Green Version]
- Hyde, R.; Hajduch, E.; Powell, D.J.; Taylor, P.M.; Hundal, H.S. Ceramide down-regulates System A amino acid transport and protein synthesis in rat skeletal muscle cells. FASEB J. 2005, 19, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, E.; Ponsot, E.; Piehl-Aulin, K.; Falk, G.; Kadi, F. Resistance Training Alone or Combined With N-3 PUFA-Rich Diet in Older Women: Effects on Muscle Fiber Hypertrophy. J. Gerontol. Ser. A 2019, 74, 489–494. [Google Scholar] [CrossRef]
- Gerling, C.J.; Whitfield, J.; Mukai, K.; Spriet, L.L. Variable effects of 12 weeks of omega-3 supplementation on resting skeletal muscle metabolism. Appl. Physiol. Nutr. Metab. 2014, 39, 1083–1091. [Google Scholar] [CrossRef]
- Hengeveld, L.M.; Boer, J.M.A.; Gaudreau, P.; Heymans, M.W.; Jagger, C.; Mendonça, N.; Ocké, M.C.; Presse, N.; Sette, S.; Simonsick, E.M.; et al. Prevalence of protein intake below recommended in community-dwelling older adults: A meta-analysis across cohorts from the PROMISS consortium. J. Cachexia. Sarcopenia Muscle 2020, jcsm.12580. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Service. Physical Activity Guidelines Advisory Committee Scientific Report 2018; U.S. Department of Health and Human Service: Washington, DC, USA, 2018.
- Machado-Fragua, M.D.; Struijk, E.A.; Ballesteros, J.-M.; Ortolá, R.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Habitual coffee consumption and risk of falls in 2 European cohorts of older adults. Am. J. Clin. Nutr. 2019, 109, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
Total | Male | Female | |
---|---|---|---|
n | 986 | 417 | 569 |
Basic Characteristics | |||
Age (years) | 71 ± 4 | 71 ± 4 | 71 ± 4 |
Weight (kg) | 74.7 ± 13.4 | 82.4 ± 12 | 69.1 ± 11.3 * |
Height (cm) | 165 ± 9 | 173 ± 6 | 160 ± 7 * |
BMI (kg/m2) | 27.0 ± 4.0 | 27.2 ± 3.7 | 26.8 ± 4.2 |
SMI (%) | 27.0 ± 4.3 | 30.6 ± 3.2 | 24.4 ± 2.8 * |
Full Education (years) | 13 ± 4 | 13 ± 4 | 12 ± 3 * |
Smoking (% never) | 51.3 | 37.6 | 61.3 * |
Medication (% yes) | 77.6 | 77.5 | 77.7 |
PA Guidelines (% yes) | 54.1 | 63.8 | 46.9 * |
Physical Function | |||
Handgrip Strength (kg/BW) | 0.42 ± 0.11 | 0.49 ± 0.09 | 0.38 ± 0.09 * |
Physical Limitation (% yes) | 33.8 | 22.1 | 42.4 * |
Metabolic Risk Factors | |||
MetS (% yes) | 41.7 | 44.6 | 39.5 |
Waist Circumference (cm) | 92.4 ± 11.7 | 98.0 ± 10.6 | 88.3 ± 10.8 * |
SBP (mmHg) | 140 ± 20 | 141 ± 18 | 139 ± 21 |
DBP (mmHg) | 75 ± 11 | 77 ± 10 | 74 ± 11 * |
Glucose (mmol/L) | 5.57 ± 0.83 | 5.75 ± 0.94 | 5.43 ± 0.71 * |
Triglycerides (mmol/L) | 1.07 ± 0.47 | 1.08 ± 0.49 | 1.06 ± 0.45 |
HDL-cholesterol (mmol/L) | 1.53 ± 0.47 | 1.32 ± 0.36 | 1.71 ± 0.47 * |
LDL-cholesterol (mmol/L) | 3.31 ± 0.96 | 3.13 ± 0.93 | 3.47 ± 0.98 * |
Total | Male | Female | |
---|---|---|---|
n | 986 | 417 | 569 |
Nutritional Intake | |||
Total Energy (kcal) | 1809 ± 419 | 2037 ± 433 | 1642 ± 319 * |
Carbohydrates (g) | 221.1 ± 61.5 | 250.0 ± 66.6 | 200.0 ± 47.6 * |
Fat (g) | 62.7 ± 19.1 | 69.4 ± 20.4 | 57.8 ± 16.4 * |
SFAs (g) | 24.9 ± 9.4 | 27.1 ± 10.0 | 23.3 ± 8.7 * |
MUFAs (g) | 26.1 ± 8.4 | 29.5 ± 9.2 | 23.7 ± 6.9 * |
PUFAs (g) | 11.7 ± 5.1 | 12.8 ± 5.4 | 10.8 ± 4.7 * |
Protein (g) | 74.5 ± 17.7 | 82.1 ± 19.2 | 68.9 ± 14.2 * |
Sarcopenia Risk Score | |||
---|---|---|---|
Model | β-Coeff. | 95% CI | p-Value |
Protein | −0.077 | −0.152 to −0.003 | 0.042 |
Carbohydrates | −0.040 | −0.07 to −0.008 | 0.015 |
Sarcopenia Risk Score | |||
---|---|---|---|
Model | β-Coeff. | 95% CI | p-Value |
Whole Population | |||
MUFAs | −0.012 | −0.121 to 0.097 | 0.829 |
PUFAs | −0.152 | −0.253 to −0.051 | 0.003 |
Protein Intake < 1.1 kg/BW | |||
MUFAs | −0.012 | −0.168 to 0.144 | 0.879 |
PUFAs | −0.162 | −0.303 to −0.020 | 0.025 |
Protein Intake ≥ 1.1 kg/BW | |||
MUFAs | −0.067 | −0.227 to 0.094 | 0.417 |
PUFAs | −0.093 | −0.241 to 0.056 | 0.221 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montiel-Rojas, D.; Santoro, A.; Nilsson, A.; Franceschi, C.; Capri, M.; Bazzocchi, A.; Battista, G.; de Groot, L.C.P.G.M.; Feskens, E.J.M.; Berendsen, A.A.M.; et al. Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the Prevention of Sarcopenia: Findings from the NU-AGE Cohort. Nutrients 2020, 12, 3079. https://doi.org/10.3390/nu12103079
Montiel-Rojas D, Santoro A, Nilsson A, Franceschi C, Capri M, Bazzocchi A, Battista G, de Groot LCPGM, Feskens EJM, Berendsen AAM, et al. Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the Prevention of Sarcopenia: Findings from the NU-AGE Cohort. Nutrients. 2020; 12(10):3079. https://doi.org/10.3390/nu12103079
Chicago/Turabian StyleMontiel-Rojas, Diego, Aurelia Santoro, Andreas Nilsson, Claudio Franceschi, Miriam Capri, Alberto Bazzocchi, Giuseppe Battista, Lisette C. P. G. M. de Groot, Edith J. M. Feskens, Agnes A. M. Berendsen, and et al. 2020. "Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the Prevention of Sarcopenia: Findings from the NU-AGE Cohort" Nutrients 12, no. 10: 3079. https://doi.org/10.3390/nu12103079
APA StyleMontiel-Rojas, D., Santoro, A., Nilsson, A., Franceschi, C., Capri, M., Bazzocchi, A., Battista, G., de Groot, L. C. P. G. M., Feskens, E. J. M., Berendsen, A. A. M., Bialecka-Debek, A., Surala, O., Pietruszka, B., Fairweather-Tait, S., Jennings, A., Capel, F., & Kadi, F. (2020). Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the Prevention of Sarcopenia: Findings from the NU-AGE Cohort. Nutrients, 12(10), 3079. https://doi.org/10.3390/nu12103079