The Role of Micronutrients in Support of the Immune Response against Viral Infections
Abstract
:1. Introduction
2. The Role of Micronutrients against Virus Infection
3. Vitamin A
3.1. Metabolism and Functions
3.2. Vitamin A Status
3.3. Recommended Daily Allowance and Supplementation
3.4. Vitamin A Supplementation against Viral Infections
4. Vitamin C
4.1. Metabolism and Functions
4.2. Vitamin C Status
4.3. Recommended Daily Allowance and Supplementation
4.4. Vitamin C Supplementation against Viral Infection
5. Vitamin D
5.1. Metabolism and Functions
5.2. Vitamin D Status
5.3. Recommended Daily Allowance and Supplementation
5.4. Vitamin D against Lower Respiratory Tract Infections
5.5. New Perspectives: Is There a Potential for Vitamin D Supplementation in Preventing COVID-19?
6. Omega-3 Fatty Acids
6.1. Metabolism and Functions
6.2. Omega-3 Fatty Acids Status
6.3. Recommended Daily Allowance and Supplementation
6.4. Omega-3 Fatty Acids Supplementation against Viral Infection
7. Zinc
7.1. Metabolism and Functions, Recommended Daily Allowances
7.2. Zinc Supplementation in Treating Viral Infections
7.3. Zinc Supplementation in Preventing Viral Infections
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sullivan, K.E.; Buckley, R.H. The T-, B-, and NK-Cell System. In Nelson Textbook of Pediatrics, 21th ed.; Geme, J.W., Blum, N.J., Shah, S.S., Tasker, R.C., Wilson, K.M., Kliegman, R.M., Behrman, R.E., Eds.; Elsevier: Philadelphia, PA, USA, 2019; Volume 1, pp. 1103–1107. [Google Scholar]
- Parkin, J.; Cohen, B. An overview of the immune system. Lancet 2001, 357, 1777–1789. [Google Scholar] [CrossRef]
- Delves, P.J.; Roitt, I.M. The immune system. N. Engl. J. Med. 2000, 343, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Chen, L.; Yin, C.; Liao, Y.; Meng, X.; Lu, C.; Tang, S.; Li, X.; Wang, X. The effect of micro-nutrients on malnutrition, immunity and therapeutic effect in patients with pulmonary tuberculosis: A systematic review and meta-analysis of randomised controlled trials. Tuberculosis (Edinb) 2020, 125, 101994. [Google Scholar]
- Maggini, S.; Maldonado, P.; Cardim, P.; Fernandez Newball, C.; Sota Latino, E.R. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Min. 2017, 6, 1318–2376. [Google Scholar] [CrossRef]
- Calder, P. Conference on “Transforming the nutrition landscape in Africa”. Plenary Session 1: Feeding the immune system. Proc. Nutr. Soc. 2013, 72, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Toubal, A.; Kiaf, B.; Beaudoin, L.; Cagninacci, L.; Rhimi, M.; Fruchet, B.; da Silva, J.; Corbett, A.J.; Simoni, Y.; Lantz, O.; et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun. 2020, 11, 3755. [Google Scholar] [CrossRef]
- Alpert, P. The role of vitamins and minerals on the immune system. Home Health Care Manag. Pract. 2017, 29, 199–202. [Google Scholar] [CrossRef]
- Bresnahan, K.; Tanumihardjo, S. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv. Nutr. 2014, 5, 702–711. [Google Scholar] [CrossRef] [Green Version]
- GBD 2013 Mortality and Causes of Death collaborators. Global, regional, and national age–sex specific all- cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China. N. Engl. J. Med. 2019, 382, 727–733. [Google Scholar] [CrossRef]
- Albers, R.; Bourdet-Sicard, R.; Braun, D.; Calder, P.; Herz, U.; Lambert, C.; Lenoir, W.I.; Meheurst, A.; Ouwehand, A.; Phthirath, P. Monitoring immune modulation by nutrion in the general population: Identifying and substantiating effects on human health. Br. J. Nutr. 2013, 110 (Suppl. S2), S1–S30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katona, P.; Katona-Apte, J. The interaction between nutrition and infection. Clin. Infect. Dis. 2008, 46, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Villamor, E.; Fawzi, W. Effects of Vitamin A Supplementation on Immune Responses and Correlation with Clinical Outcomes. Clin. Microbiol. Rev. 2005, 18, 446–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggini, S.; Pierre, A.; Calder, P.C. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, D.A.; Darlington, L.G.; Bendlich, A. Vitamin A, Diet and Human Immune Function; Springer Science & Business Media: Philadelphia, PA, USA, 2004; pp. 105–131. [Google Scholar] [CrossRef]
- Blomhoff, H.K.; Smeland, E.B.; Erikstein, B. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J. Biol. Chem. 1992, 267, 23988–23992. [Google Scholar]
- Smith, S.M.; Hayes, C.E. Contrasting impairments in IgM and IgG responses of vitamin A-deficient mice. Proc. Natl. Acad. Sci. USA 1987, 84, 5878–5882. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Tian, Q.; Wu, Y.; Peng, X.; Chen, Y.; Li, Q.; Zhang, G.; Tian, X.; Ren, L.; Luo, Z. Vitamin A supplement after neonatal Streptococcus pneumoniae pneumonia inhibits the progression of experimental asthma by altering CD4+T cell subsets. Sci. Rep. 2020, 10, 4214. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, D.M.; Farley, T.K.; Richoz, N.; Yao, C.; Shih, H.Y.; Petermann, F.; Zhang, Y.; Sun, H.W.; Hayes, E.; Mikami, Y.; et al. Retinoic Acid Receptor Alpha Represses a Th9 Transcriptional and Epigenomic Program to Reduce Allergic Pathology. Immunity 2019, 50, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Hoag, K.A.; Nashold, F.E.; Goverman, J.; Hayes, C.E. Retinoic acid enhances the T helper 2 cell development that is essential for robust antibody responses through its action on antigen-presenting cells. J. Nutr 2002, 132, 3736–3739. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCicco, K.L.; Youngdahl, J.D.; Ross, A.C. All-trans-retinoic acid and polyriboinosinic: Polyricocytidylic acid in combination potentitate specific antibody production and cell-mediated immunity. Immunology 2001, 104, 341–348. [Google Scholar] [CrossRef]
- Garbe, A.; Buck, J.; Hammerling, U. Retinoids are important cofactors in T cell activation. J. Exp. Med. 1992, 176, 109–117. [Google Scholar] [CrossRef]
- Rahman, M.; Mahalanabis, D.; Alvarez, J.; Wahed, M.; Islam, M.; Habte, D. Effect of early vitamin A supplementation on cell-mediated immunity in infants younger than 6 mo. Am. J. Clin. Nutr. 1997, 65, 144–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995–2005. WHO Global Database on Vitamin A Deficiency. Available online: http://www.who.int/vmnis/vitamina/en/ (accessed on 5 September 2020).
- Tanumihardjo, S.A. Biomarkers of vitamin A status: What do they mean. In Report: Priorities in the Assessment of Vitamin A and Iron Status in Populations; World Health Organization Geneva: Panama City, Panama, 2012. [Google Scholar]
- Ross, A.C. Vitamin A deficiencies and excess. In Nelson Textbook of Pediatrics, 21th ed.; Geme, J.W., Blum, N.J., Shah, S.S., Tasker, R.C., Wilson, K.M., Kliegman, R.M., Behrman, R.E., Eds.; Elsevier: Philadelphia, PA, USA, 2019; Volume 1, pp. 360–365. [Google Scholar]
- Darlow, B.A.; Graham, P.J. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst. Rev. 2011, 10, CD000501. [Google Scholar] [CrossRef]
- Haider, B.A.; Bhutta, Z.A. Neonatal vitamin A supplementation: Time to move on. Lancet 2015, 385, 1268–1270. [Google Scholar] [CrossRef]
- Awasthi, S.; Peto, R.; Read, S. Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomized trial. Lancet 2013, 381, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Imdad, A.; Mayo-Wilson, E.; Herzer, K.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2017, 3. [Google Scholar] [CrossRef]
- Hester, G.Z.; Nickel, A.J.; Stinchfield, P.A.; Spaulding, A.B. Low use of vitamin A in children hospitalized for measles in the United States. Pediatr. Infect. Dis. J. 2020, 39, e45–e46. [Google Scholar] [CrossRef]
- Strebel, P.M.; Orenstein, W.A. Measles. N. Eng. J. Med. 2019, 381, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Sharma, A.; Das, B.K.; Mishra, S.P.; Singh, U.K. Serum retinol, vitamin D and zinc levels in under five children with acute lower respiratory tract infections. Indian J. Pediatr. 2019, 86, 196–197. [Google Scholar] [CrossRef]
- Kyran, P.Q.; Karen, C.H. Vitamin A and respiratory syncytial virus infection: Serum level and supplementation trial. Arch. Pediatr. Adolesc. Med. 1996, 150, 25–30. [Google Scholar]
- Dowell, S.F.; Papic, Z.; Bresee, J.S.; Larranaga, C.; Mendez, M.; Sowell, A.L.; Gary, H.E.; Anderson, L.J.; Avendano, L.F. Treatment of respiratory syncytial virus infection with vitamin A: A randomized placebo-controlled trial in Santiago, Chile. Pediatr. Infect. Dis. J. 1996, 15, 782–786. [Google Scholar] [CrossRef]
- Bresee, J.S.; Fischer, M.; Dowell, S.F.; Johnston, B.D.; Biggs, V.M.; Levine, R.S.; Lingappa, J.R.; Keyserling, H.L.; Petersen, K.M.; Bak, J.R.; et al. Vitamin A therapy for children with respiratory syncitial virus infection: A multicenter trial in the United States. Pediatr. Infect. Dis. J. 1996, 15, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Fawzi, W.W.; Mbise, R.; Spiegelman, D.; Fataki, M.; Hertzmark, E.; Ndossi, G. Vitamin A supplements and diarrheal and respiratory tract infections among children in Dar es Salaam, Tanzania. J. Pediatr. 2000, 137, 660–667. [Google Scholar] [CrossRef]
- Imdad, A.; Yakoob, M.Y.; Sudfeld, C.; Haider, B.A.; Black, R.E.; Bhutta, Z.A. Impact of vitamin a supplementation on infant and childhood mortality. BMC Public Health 2011, 11, S20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, J.L. Vitamin A supplementation for prophylaxis or therapy in childhood pneumonia: A systematic review of randomized controlled trials. Indian Pediatr 2010, 47, 255–261. [Google Scholar] [CrossRef]
- Chen, H.; Zhuo, Q.; Yuan, W.; Wang, J.; Wu, T. Vitamin A for preventing acute lowe respiratory tract infections in children up to seven years of age. Cochrane Database Syst Rev. 2008, 1, CD006090. [Google Scholar] [CrossRef]
- Shah, D.; Sachdev, H.P.S. Vitamin C (Ascorbic Acid) Deficiency and Excess. In Nelson Textbook of Pediatrics, 21th ed.; Geme, J.W., Blum, N.J., Tasker, R.C., Wilson, K.M., Kliegman, R.M., Behrman, R.E., Eds.; Elsevier: Philadelphia, PA, USA, 2019; Volume 1, pp. 373–375. [Google Scholar]
- Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected vitamins and traces elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98, S29–S35. [Google Scholar] [CrossRef] [PubMed]
- Zhitkovich, A. Nuclear and Cytoplasmic Functions of Vitamin C. Chem. Res. Toxicol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hemilae, H. Vitamin C and infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liugan, M.; Carr, A.C. Vitamin C and neutrophil function: Findings from randomized controlled trials. Nutrients 2019, 11, 2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldschmidt, M.C.; Masin, W.J.; Brown, L.R.; Wyde, P.R. The effect of ascorbic acid deficiency on leukocyte phagocytosis and killing of actynomyces viscosus. Int. J. Vitam. Nutr. Res. 1988, 58, 326–334. [Google Scholar] [PubMed]
- Ganguly, R.; Durieux, M.F.; Waldman, R.H. Macrophage function in vitamin C-deficient guinea pigs. Am. J. Clin. Nutr. 1976, 29, 762–765. [Google Scholar] [CrossRef]
- Demaret, J.; Venet, F.; Friggeri, A.; Cazalis, M.A.; Plassais, J.; Jallades, L.; Malcus, C.; Poitevin-Later, F.; Textoris, J.; Lepape, A. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J. Leukoc. Biol. 2015, 98, 1081–1090. [Google Scholar] [CrossRef]
- Patrone, F.; Dallegri, F.; Bonvini, E.; Minervini, F.; Sacchetti, C. Disorders of neutrophil function in children with recurrent pyogenic infections. Med. Microbiol. Immunol. 1982, 171, 113–122. [Google Scholar] [CrossRef]
- Vohra, K.; Khan, A.J.; Telang, V.; Rosenfeld, W.; Evans, H.E. Improvement of neutrophil migration by systemic vitamin C in neonates. J. Perinatol. 1990, 10, 134–136. [Google Scholar]
- Boxer, L.A.; Watanabe, A.M.; Rister, M.; Besch, H.R.; Allen, J.; Baehner, R.L. Correction of leukocyte function in Chediak-Higashi syndrome by ascorbate. N. Engl. J. Med. 1976, 295, 1041–1045. [Google Scholar] [CrossRef]
- Bozonet, S.M.; Carr, A.C.; Pullar, J.M.; Vissers, M.C.M. Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients 2015, 7, 2574–2588. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, B.M.; Fisher, B.J.; Kraskauskas, D.; Farkas, D.; Brophy, D.F.; Fowler, A.A.; Natarajan, R. Vitamin C: A novel regulator of neutrophil extracellular trap formation. Nutrients 2013, 5, 3131–3150. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Muto, N.; Gohda, E.; Yamamoto, I. Enhancement by ascorbic acid 2-glucoside or repeated addition of ascorbate of mitogen-induced IgM and IgG productions by human peripheral blood lymphocytes. Jpn J. Pharmacol. 1994, 66, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.; Mitchell, B.; Appadurai, D.A.; Shakya, A.; Pierce, L.J.; Wang, H.; Nganga, V.; Swanson, P.C.; May, J.M.; Tantin, D.; et al. Vitamin C promotes maturation of T-Cells. Antioxid. Redox Signal. 2013, 19, 2054–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasidharan, N.V.; Song, M.H.; Oh, K.I. Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J. Immunol. 2016, 196, 2119–2131. [Google Scholar] [CrossRef] [Green Version]
- Nikolouli, E.; Hardtke-Wolenski, M.; Hapke, M.; Beckstette, M.; Geffers, R.; Floess, S.; Jaeckel, E.; Huehn, J. Alloantigen-induced regulatory T-cells generated in presence of vitamin C display enhanced stability of Foxp3 expression and promote skin allograft acceptance. Front. Immunol. 2017, 8, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on dietetic products, nutrition and allergies (NDA). Scientific opinion on dietary reference values for vitamin C. EFSA J. 2013, 11, 3418. [Google Scholar]
- German Nutrition Society (DGE). New reference values for vitamin C intake. Ann. Nutr. Metab. 2015, 67, 13–20. [Google Scholar] [CrossRef]
- Hemilä, H. Vitamin C intake and susceptibility to pneumonia. Pediatr. Infect. Dis. J. 1997, 16, 836–837. [Google Scholar] [CrossRef] [Green Version]
- Hemilä, H.; Louhiala, P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013, 8, CD005532. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.S.; Barkyoumb, G.M.; Schumacher, S.S. Vitamin C Supplementation Slightly Improves Physical Activity Levels and Reduces Cold Incidence in Men with Marginal Vitamin C Status: A Randomized Controlled Trial. Nutrients 2014, 6, 2572–2583. [Google Scholar] [CrossRef]
- Hemilä, H.; Chalker, E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013, 1, CD000980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantini, N.W.; Dubnov-Raz, G.; Eyal, B.; Berry, E.M.; Cohen, A.H.; Hemilä, H. The effect of vitamin C on upper respiratory infections in adolescent swimmers: A randomized trial. Eur. J. Pediatr. 2011, 170, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Garaiova, I.; Muchová, J.; Nagyová, Z.; Wang, D.; Li, J.V.; Országhová, Z.; Michael, D.R.; Plummer, S.F.; Ďuračková, Z. Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: A randomised controlled pilot study. Eur. J. Clin. Nutr. 2015, 69, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Zhao, W.; Wang, J.; Wang, H.; Zhao, Y.; Tseng, Y.; Bu, H. Extra Dose of Vitamin C Based on a Daily Supplementation Shortens the Common Cold: A Meta-Analysis of 9 Randomized Controlled Trials. Biomed. Res. Int. 2018, 2018, 1837634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Rosengrave, P.C.; Bayer, S.; Chamber, S.; Mehrtens, J.; Shaw, G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care 2017, 21, 300. [Google Scholar] [CrossRef] [Green Version]
- Fowler, A.A., 3rd; Truwit, J.D.; Hite, R.D.; Morris, P.E.; DeWilde, C.; Priday, A.; Fisher, B.; Thacker, L.R., 2nd; Natarajan, R.; Brophy, D.F.; et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial. JAMA 2019, 322, 1261–1270. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef]
- Sempértegui, F.; Estrella, B.; Camaniero, V.; Betancourt, V.; Izurieta, R.; Ortiz, W.; Fiallo, E.; Troya, S.; Rodríguez, A.; Griffiths, J.K. The beneficial effects of weekly low-dose vitamin A supplementation on acute lower respiratory infections and diarrhea in Ecuadorian children. Pediatrics 1999, 104, e1. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R.; Bont, L.; Siezen, C.L.; Hodemaekers, H.M.; Ermers, M.J.; Doornbos, G.; van’t Slot, R.; Wijmenga, C.; Goeman, J.J.; Kimpen, J.L.; et al. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J. Infect. Dis. 2007, 196, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.E.; Jones, A.B.; Prosser, C.; Robinson, J.L.; Vohra, S. Vitamin D receptor polymorphisms and the risk of acute lower respiratory tract infection in early childhood. J. Infect. Dis. 2008, 197, 676–680. [Google Scholar] [CrossRef]
- Kresfelder, T.L.; Janssen, R.; Bont, L.; Pretorius, M.; Venter, M. Confirmation of an association between single nucleotide polymorphisms in the VDR gene with respiratory syncytial virus related disease in South African children. J. Med. Virol. 2011, 83, 1834–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossein-nezhad, A.; Holick, M.F. Vitamin D for health: A global perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.Q. Vitamin D, the placenta and pregnancy. Arch. Biochem. Biophys. 2012, 523, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Black, P.N.; Scragg, R. Relationship between serum 25-hydroxyvitamin D and pulmonary function in the third national health and nutrition examination survey. Chest 2005, 128, 3792–3798. [Google Scholar] [CrossRef] [Green Version]
- Gubatan, J.; Mehigan, G.A.; Villegas, F.; Mitsuhashi, S.; Longhi, M.S.; Malvar, G.; Csizmadia, E.; Robson, S.; Moss, A.C. Cathelicidin Mediates a Protective Role of Vitamin D in Ulcerative Colitis and Human Colonic Epithelial Cells. Inflamm. Bowel Dis. 2020, 26, 885–897. [Google Scholar] [CrossRef]
- Wehkamp, J.; Schmid, M.; Stange, E.F. Defensins and other antimicrobial peptides in inflammatory bowel disease. Curr. Opin. Gastroenterol. 2007, 23, 370–378. [Google Scholar] [CrossRef]
- Teymoori-Rad, M.; Shokri, F.; Salimi, V.; Marashi, S.M. The interplay between vitamin D and viral infections. Rev. Med. Virol. 2019, 29, e2032. [Google Scholar] [CrossRef]
- Wang, T.-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting edge: 1, 25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004, 173, 2909–2912. [Google Scholar] [CrossRef] [Green Version]
- Gombart, A.F.; Borregaard, N.; Koeffler, H.P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005, 19, 1067–1077. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.T.; Stenger, S.; Tang, D.H.; Modlin, R.L. Cutting edge: Vitamin D mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 2007, 179, 2060–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telcian, A.G.; Zdrenghea, M.T.; Edwards, M.R.; Laza-Stanca, V.; Mallia, P.; Johnston, S.L.; Stanciu, L.A. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antivir. Res. 2017, 137, 93–101. [Google Scholar] [CrossRef]
- Beard, J.A.; Bearden, A.; Striker, R. Vitamin D and the anti-viral state. J. Clin. Virol. 2011, 50, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Liang, X.; Chen, D.; Mao, X.; Yu, J.; Zheng, P.; He, J.; Huang, Z.; Yu, B. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway. J. Steroid Biochem. Mol. Biol. 2016, 163, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.R.; Spector, S.A. Vitamin D inhibits human immunodeficiency virus type 1 and mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 2012, 8, e1002689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sly, L.M.; Lopez, M.; Nauseef, W.M.; Reiner, N.E. 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J. Biol. Chem. 2001, 276, 35482–35493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enioutina, E.Y.; Bareyan, D.; Daynes, R.A. TLR ligands that stimulate the metabolism of vitamin D3 in activated murine dendritic cells can function as effective mucosal adjuvants to subcutaneously administered vaccines. Vaccine 2008, 26, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Gubatan, J.; Mitsuhashi, S.; Longhi, M.S.; Zenlea, T.; Rosenberg, L.; Robson, S.; Moss, A. Higher serum vitamin D levels are associated with protective serum cytokine profiles in patients with ulcerative colitis. Cytokine 2018, 103, 38–45. [Google Scholar] [CrossRef]
- de Jong, M.D.; Simmons, C.P.; Thanh, T.T.; Hien, V.M.; Smith, G.J.; Chau, T.N.; Hoang, D.M.; Chau, N.V.; Khanh, T.H.; Dong, V.C.; et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Version 2. Nat. Med. 2006, 12, 1203–1207. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Tufan, A.; Avanoğlu, A.; Matucci-Cerinic, M. COVID-19, immune system response, hyperinflammation and repurposing anti-rheumatic drugs. Turk. J. Med. Sci. 2020, 50(SI-1), 620–632. [Google Scholar] [CrossRef]
- Zhao, M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int. J. Antimicrob. Agents 2020, 55, 105982. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O.; et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020, 77, 1059–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khare, D.; Godbole, N.M.; Pawar, S.D.; Mohan, V.; Pandey, G.; Gupta, S.; Kumar, D.; Dhole, T.N.; Godbole, M.M. Calcitriol [1,25[OH]2D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur. J. Nutr. 2013, 52, 1405–1415. [Google Scholar] [CrossRef]
- Hansdottir, S.; Monick, M.M.; Lovan, N.; Powers, L.; Gerke, A.; Hunninghake, G.W. Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J. Immunol. 2010, 184, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, N.J.; Gokhale, S.; Seervi, M.; Patil, P.S.; Alagarasu, K. Immunomodulatory effect of 1, 25 dihydroxy vitamin D3 on the expression of RNA sensing pattern recognition receptor genes and cytokine response in dengue virus infected U937-DC-SIGN cells and THP-1 macrophages. Int. Immunopharmacol. 2018, 62, 237–243. [Google Scholar] [CrossRef]
- Helming, L.; Böse, J.; Ehrchen, J.; Schiebe, S.; Frahm, T.; Geffers, R.; Probst-Kepper, M.; Balling, R.; Lengeling, A. 1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 2005, 106, 4351–4358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Leung, D.Y.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahar-Shany, K.; Ravid, A.; Koren, R. Upregulation of MMP-9 production by TNFα in keratinocytes and its attenuation by vitamin D. J. Cell Physiol. 2010, 222, 729–737. [Google Scholar] [CrossRef]
- Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009, 183, 5458–5467. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.W.; Kim, S.H.; Lee, N.; Lee, W.W.; Hwang, K.A.; Shin, M.S.; Lee, S.H.; Kim, W.U.; Kang, I. 1,25-Dihyroxyvitamin D3 promotes FOXP3 expression via binding to vitamin D response elements in its conserved noncoding sequence region. J. Immunol. 2012, 188, 5276–5282. [Google Scholar] [CrossRef] [Green Version]
- Urry, Z.; Chambers, E.S.; Xystrakis, E.; Dimeloe, S.; Richards, D.F.; Gabryšová, L.; Christensen, J.; Gupta, A.; Saglani, S.; Bush, A.; et al. The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur. J. Immunol. 2012, 42, 2697–2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, G.; Prietl, B.; Mader, J.K.; Höller, E.; Wolf, M.; Pilz, S.; Graninger, W.B.; Obermayer-Pietsch, B.M.; Pieber, T.R. The effect of vitamin D supplementation on peripheral regulatory T cells and β cell function in healthy humans: A randomized controlled trial. Diabetes Metab Res. Rev. 2011, 27, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Saggese, G.; Vierucci, F.; Prodam, F.; Cardinale, F.; Cetin, I.; Chiappini, E.; De’ Angelis, G.L.; Massari, M.; Miraglia Del Giudice, E.; Miraglia Del Giudice, M.; et al. Vitamin D in pediatric age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital. J. Pediatr. 2018, 44, 51. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Stagi, S.; Pelosi, P.; Strano, M.; Poggi, G.; Manoni, C.; de Martino, M.; Seminara, S. Determinants of Vitamin D Levels in Italian Children and Adolescents: A Longitudinal Evaluation of Cholecalciferol Supplementation versus the Improvement of Factors Influencing 25(OH)D Status. Int. J. Endocrinol. 2014, 2014, 583039. [Google Scholar] [CrossRef]
- Vierucci, F.; Del Pistoia, M.; Fanos, M.; Erba, P.; Saggese, G. Prevalence of hypovitaminosis D and predictors of vitamin D status in Italian healthy adolescents. Ital. J. Pediatr. 2014, 40, 54. [Google Scholar] [CrossRef] [Green Version]
- Cadario, F.; Savastio, S.; Magnani, C.; Cena, T.; Pagliardini, V.; Bellomo, G.; Bagnati, M.; Vidali, M.; Pozzi, E.; Pamparana, S.; et al. High Prevalence of Vitamin D Deficiency in Native versus Migrant Mothers and Newborns in the North of Italy: A Call to Act with a Stronger Prevention Program. PLoS ONE 2015, 10, e0129586. [Google Scholar] [CrossRef] [Green Version]
- LSINU. Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione italiana–IV Revisione. Società Italiana di Nutrizione Umana-SINU, 2014. Available online: https://sinu.it/tabelle-larn-2014/ (accessed on 5 September 2020).
- VIS–Vitamine Integratori Supplementi, Consensus SIPPS-FIMP 2017. Available online: https://medicioggi.it/wp-content/uploads/2017/09/SIPPS-FIMP_Consensus-VIS_2017.pdf (accessed on 5 September 2020).
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Grossman, Z.; Hadjipanayis, A.; Stiris, T.; Del Torso, S.; Mercier, J.C.; Valiulis, A.; Shamir, R. Vitamin D in European children-statement from the European Academy of Paediatrics (EAP). Eur. J. Pediatr. 2017, 176, 829–831. [Google Scholar] [CrossRef]
- Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellof, M.; Fewtrell, M.; Hojsak, I.; Mihatsch, W.; Molgaard, C.; Shamir, R.; et al. ESPGHAN Committee on Nutrition. Vitamin D in the healthy European paediatric population. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 692–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenmakers, I.; Pettifor, J.M.; Peña-Rosas, J.P.; Lamberg-Allardt, C.; Shaw, N.; Jones, K.S.; Lips, P.; Glorieux, F.H.; Bouillon, R. Prevention and consequences of vitamin D deficiency in pregnant and lactating women and children: A symposium to prioritise vitamin D on the global agenda. J. Steroid Biochem. Mol. Biol. 2016, 164, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. PHE Publishes New Advice on Vitamin D. Available online: https://www.gov.uk/government/news/phe-publishes-new-advice-onvitamin-d (accessed on 5 September 2020).
- Vidailhet, M.; Mallet, E.; Bocquet, A.; Bresson, J.L.; Briend, A.; Chouraqui, J.P.; Darmaun, D.; Dupont, C.; Frelut, M.L.; Ghisolfi, J.; et al. Comité de nutrition de la Société française de pédiatrie. Vitamin D: Still a topical matter in children and adolescents. A position paper by the Committee on Nutrition of the French Society of Paediatrics. Arch. Pediatr. 2012, 19, 316–328. [Google Scholar] [CrossRef]
- Płudowski, P.; Karczmarewicz, E.; Bayer, M.; Carter, G.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dębski, R.; Decsi, T.; Dobrzańska, A.; Franek, E.; et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe—Recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol. Pol. 2013, 64, 319–327. [Google Scholar] [CrossRef]
- Muhe, L.; Lulseged, S.; Mason, K.E.; Simoes, E.A. Case-control study of the role of nutritional rickets in the risk of developing pneumonia in Ethiopian children. Lancet 1997, 349, 1801–1804. [Google Scholar] [CrossRef]
- Wayse, V.; Yousafzai, A.; Mogale, K.; Filteau, S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur. J. Clin. Nutr. 2004, 58, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najada, A.S.; Habashneh, M.S.; Khader, M. The frequency of nutritional rickets among hospitalized infants and its relation to respiratory diseases. J. Trop. Pediatr. 2004, 50, 364–368. [Google Scholar] [CrossRef]
- McNally, J.D.; Leis, K.; Matheson, L.A.; Karuananyake, C.; Sankaran, K.; Rosenberg, A.M. Vitamin D deficiency in young children with severe acute lower respiratory infection. Pediatr. Pulmonol. 2009, 44, 981–988. [Google Scholar] [CrossRef]
- Banajeh, S.M. Nutritional rickets and vitamin D deficiency--association with the outcomes of childhood very severe pneumonia: A prospective cohort study. Pediatr. Pulmonol. 2009, 44, 1207–1215. [Google Scholar] [CrossRef]
- Roth, D.E.; Jones, A.B.; Prosser, C.; Robinson, J.L.; Vohra, S. Vitamin D status is notassociated with the risk of hospitalization for acute bronchiolitis in early childhood. Eur. J. Clin. Nutr. 2009, 63, 297–299. [Google Scholar] [CrossRef]
- Roth, D.E.; Shah, R.; Black, R.E.; Baqui, A.H. Vitamin D status and acute lower respiratory infection in early childhood in Sylhet, Bangladesh. Acta Paediatr. 2010, 99, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.; Nagi, A.G.; Khan, K.M. Frequency of nutritional rickets in children admitted with severe pneumonia. J. Pak. Med. Assoc. 2010, 60, 729–732. [Google Scholar] [PubMed]
- Oduwole, A.O.; Renner, J.K.; Disu, E.; Ibitoye, E.; Emokpae, E. Relationship between vitamin D levels and outcome of pneumonia in children. West. Afr. J. Med. 2010, 29, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Jartti, T.; Ruuskanen, O.; Mansbach, J.M.; Vuorinen, T.; Camargo, C.A., Jr. Low serum 25-hydroxyvitamin D levels are associated with increased risk of viral coinfections in wheezing children. J. Allergy Clin. Immunol. 2010, 126, 1074–1076. [Google Scholar] [CrossRef]
- Inamo, Y.; Hasegawa, M.; Saito, K.; Hayashi, R.; Ishikawa, T.; Yoshino, Y.; Hashimoto, K.; Fuchigami, T. Serum vitamin D concentrations and associated severity of acute lower respiratory tract infections in Japanese hospitalized children. Pediatr. Int. 2011, 53, 199–201. [Google Scholar] [CrossRef]
- Leis, K.S.; McNally, J.D.; Montgomery, M.R.; Sankaran, K.; Karunanayake, C.; Rosenberg, A.M. Vitamin D intake in young children with acute lower respiratory infection. Transl. Pediatr. 2012, 1, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Sun, B.; Miao, P.; Feng, X. [Correlation between serum vitamin D level and severity of community acquired pneumonia in young children]. Zhongguo Dang Dai Er Ke Za Zhi 2013, 15, 519–521. [Google Scholar]
- Khakshour, A.; Farhat, A.S.; Mohammadzadeh, A.; Zadeh, F.K.; Zhila-Sheikh, K.H.; Kamali, H. The association between 25-dehydroxy vitamin D and lower respiratory infection in children aged less than “5” years in Imam Reza hospital, Bojnurd, Iran. J. Pak. Med. Assoc. 2015, 65, 1153–1155. [Google Scholar]
- Beigelman, A.; Castro, M.; Schweiger, T.L.; Wilson, B.S.; Zheng, J.; Yin-DeClue, H.; Sajol, G.; Giri, T.; Sierra, O.L.; Isaacson-Schmid, M.; et al. Vitamin D Levels Are Unrelated to the Severity of Respiratory Syncytial Virus Bronchiolitis Among Hospitalized Infants. J. Pediatr. Infect. Dis. Soc. 2015, 4, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Narang, G.S.; Arora, S.; Kukreja, S. Association of Vitamin D Deficiency with Acute Lower Respiratory Infection in Toddlers. J. Nepal. Paediatr. Soc. 2016, 36, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Fang, V.J.; Perera, R.A.; Kam, A.M.; Ng, S.; Chan, Y.H.; Chan, K.H.; Ip, D.K.; Peiris, J.M.; Cowling, B.J. Serum 25-Hydroxyvitamin D Was Not Associated with Influenza Virus Infection in Children and Adults in Hong Kong, 2009-2010. J. Nutr. 2016, 146, 2506–2512. [Google Scholar] [CrossRef]
- Mahyar, A.; Ayazi, P.; Abbasi, M.; Dalirani, R.; Taremiha, A.; Javadi, A.; Esmaeily, S. Evaluation of Serum 25-Hydroxy Vitamin D Levels in Children with Acute Bronchiolitis. Arch. Pediatr. Infect. Dis. 2017, 5, e39477. [Google Scholar] [CrossRef] [Green Version]
- Erol, M.; Kaya, H.; Bostan Gayret, Ö.; Yiğit, Ö.; Hamilçıkan, Ş.; Can, E. The Effect of Vitamin D Deficiency on the Severity of Bronchiolitis in Infants. J. Pediatr. Res. 2017, 4, 12–16. [Google Scholar] [CrossRef]
- Vo, P.; Koppel, C.; Espinola, J.A.; Mansbach, J.M.; Celedón, J.C.; Hasegawa, K.; Bair-Merritt, M.; Camargo, C.A., Jr. Vitamin D Status at the Time of Hospitalization for Bronchiolitis and Its Association with Disease Severity. J. Pediatr. 2018, 203, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cheng, X.; Guo, L.; Li, H.; Sun, C.; Cui, X.; Zhang, Q.; Song, G. Association between serum 25-hydroxyvitamin D concentration and pulmonary infection in children. Medicine 2018, 97, e9060. [Google Scholar] [CrossRef] [PubMed]
- Karatekin, G.; Kaya, A.; Salihoğlu, O.; Balci, H.; Nuhoğlu, A. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur. J. Clin. Nutr. 2009, 63, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belderbos, M.E.; Houben, M.L.; Wilbrink, B.; Lentjes, E.; Bloemen, E.M.; Kimpen, J.L.; Rovers, M.; Bont, L. Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics 2011, 127, e1513–e1520. [Google Scholar] [CrossRef]
- Morales, E.; Romieu, I.; Guerra, S.; Ballester, F.; Rebagliato, M.; Vioque, J.; Tardón, A.; Rodriguez Delhi, C.; Arranz, L.; Torrent, M.; et al. INMA Project. Maternal vitamin D status in pregnancy and risk of lower respiratory tract infections, wheezing, and asthma in offspring. Epidemiology 2012, 23, 64–71. [Google Scholar] [CrossRef]
- Mohamed, W.A.; Al-Shehri, M.A. Cord blood 25-hydroxyvitamin D levels and the risk of acute lower respiratory tract infection in early childhood. J. Trop. Pediatr. 2013, 59, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Magnus, M.C.; Stene, L.C.; Håberg, S.E.; Nafstad, P.; Stigum, H.; London, S.J.; Nystad, W. Prospective study of maternal mid-pregnancy 25-hydroxyvitamin D level and early childhood respiratory disorders. Paediatr. Perinat. Epidemiol. 2013, 27, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Łuczyńska, A.; Logan, C.; Nieters, A.; Elgizouli, M.; Schöttker, B.; Brenner, H.; Rothenbacher, D. Cord blood 25(OH)D levels and the subsequent risk of lower respiratory tract infections in early childhood: The Ulm birth cohort. Eur. J. Epidemiol. 2014, 29, 585–594. [Google Scholar] [CrossRef]
- Binks, M.J.; Smith-Vaughan, H.C.; Marsh, R.; Chang, A.B.; Andrews, R.M. Cord blood vitamin D and the risk of acute lower respiratory infection in Indigenous infants in the Northern Territory. Med. J. Aust. 2016, 204, 238. [Google Scholar] [CrossRef]
- Dinlen, N.; Zenciroglu, A.; Beken, S.; Dursun, A.; Dilli, D.; Okumus, N. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J. Matern. Fetal Neonatal Med. 2016, 29, 928–932. [Google Scholar] [CrossRef]
- Lai, S.H.; Liao, S.L.; Tsai, M.H.; Hua, M.C.; Chiu, C.Y.; Yeh, K.W.; Yao, T.C.; Huang, J.L. Low cord-serum 25-hydroxyvitamin D levels are associated with poor lung function performance and increased respiratory infection in infancy. PLoS ONE 2017, 12, e0173268. [Google Scholar] [CrossRef] [PubMed]
- El-Kassas, G.M.; El Wakeel, M.A.; Elabd, M.A.; Kamhawy, A.H.; Atti, M.A.; El-Gaffar, S.A.A.; Hanafy, S.K.; Awadallah, E. Vitamin D Status in Neonatal Pulmonary Infections: Relationship to Inflammatory Indicators. Open Access Maced. J. Med. Sci. 2019, 7, 3970–3974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manaseki-Holland, S.; Qader, G.; Isaq Masher, M.; Bruce, J.; Zulf Mughal, M.; Chandramohan, D.; Walraven, G. Effects of vitamin D supplementation to children diagnosed with pneumonia in Kabul: A randomised controlled trial. Trop. Med. Int. Health 2010, 15, 1148–1555. [Google Scholar] [CrossRef]
- Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010, 91, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, N.; Gupta, P. Vitamin D supplementation for severe pneumonia—A randomized controlled trial. Indian Pediatr. 2012, 49, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Manaseki-Holland, S.; Maroof, Z.; Bruce, J.; Mughal, M.Z.; Masher, M.I.; Bhutta, Z.A.; Walraven, G.; Chandramohan, D. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: A randomised controlled superiority trial. Lancet 2012, 379, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Camargo, C.A., Jr.; Ganmaa, D.; Frazier, A.L.; Kirchberg, F.F.; Stuart, J.J.; Kleinman, K.; Sumberzul, N.; Rich-Edwards, J.W. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics 2012, 130, e561–e567. [Google Scholar] [CrossRef] [Green Version]
- Urashima, M.; Mezawa, H.; Noya, M.; Camargo, C.A., Jr. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: A randomized controlled trial. Food Funct. 2014, 5, 2365–2370. [Google Scholar] [CrossRef] [PubMed]
- Saad, K.; Abd Aziz, N.H.R.; El-Houfey, A.; El-Asheer, O.; Mohamed, S.A.A.; Ahmed, A.E.; Baseer, K.A.; Darwish, M.M. Trial of Vitamin D Supplementation in Infants with Bronchiolitis: A Randomized, Double-Blind, Placebo-Controlled Study. Pediatr. Allergy Immunol. Pulmonol. 2015, 28, 102–106. [Google Scholar] [CrossRef]
- Dhungel, A.; Alam, M. Efficacy of vitamin D in children with pneumonia: A randomized control trial study. Janaki Med. Coll. J. Med. Sci. 2015, 3, 5–13. [Google Scholar] [CrossRef]
- Grant, C.C.; Kaur, S.; Waymouth, E.; Mitchell, E.A.; Scragg, R.; Ekeroma, A.; Stewart, A.; Crane, J.; Trenholme, A.; Camargo, C.A., Jr. Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: A randomised controlled trial. Acta Paediatr. 2015, 104, 396–404. [Google Scholar] [CrossRef]
- Rahmati, M.B.; Rezapour, M.; Shahvari, S.Z. The effects of vitamin d supplementation in respiratory index of severity in children (risc) of hospitalized patients with community-acquired pneumonia: A double-blind randomized clinical trial. Acta Healthmedica 2016, 1, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Dewan, P.; Shah, D.; Sharma, N.; Bedi, N.; Kaur, I.R.; Bansal, A.K.; Madhu, S.V. Vitamin D Supplementation for Treatment and Prevention of Pneumonia in Under-five Children: A Randomized Double-blind Placebo Controlled Trial. Indian Pediatr. 2016, 53, 967–976. [Google Scholar] [CrossRef]
- Somnath, S.H.; Biswal, N.; Chandrasekaran, V.; Jagadisan, B.; Bobby, Z. Therapeutic effect of vitamin D in acute lower respiratory infection: A randomized controlled trial. Clin. Nutr. ESPEN 2017, 20, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Du, J.; Huang, L.; Wang, Y.; Shi, Y.; Lin, H. Preventive Effects of Vitamin D on Seasonal Influenza A in Infants: A Multicenter, Randomized, Open, Controlled Clinical Trial. Pediatr. Infect. Dis. J. 2018, 37, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Xiong, T.; Huang, J.; Wu, Y.; Lin, L.; Zhang, Z.; Huang, L.; Gao, D.; Wang, H.; Kang, C.; et al. Vitamin D Supplementation Associated with Acute Respiratory Infection in Exclusively Breastfed Infants (P11-071-19). Curr. Dev. Nutr. 2019, 3 (Suppl. S1). [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Kamble, D.; Mahantshetti, N.S. Effect of Vitamin D Supplementation in the Prevention of Recurrent Pneumonia in Under-Five Children. Indian J. Pediatr. 2019, 86, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Loeb, M.; Dang, A.D.; Thiem, V.D.; Thanabalan, V.; Wang, B.; Nguyen, N.B.; Tran, H.T.M.; Luong, T.M.; Singh, P.; Smieja, M.; et al. Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. Influenza Other Respir. Viruses 2019, 13, 176–183. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
- Aglipay, M.; Birken, C.S.; Parkin, P.C.; Loeb, M.B.; Thorpe, K.; Chen, Y.; Laupacis, A.; Mamdani, M.; Macarthur, C.; Hoch, J.S.; et al. TARGet Kids! Collaboration. Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children. JAMA 2017, 318, 245–254. [Google Scholar] [CrossRef]
- Das, R.R.; Singh, M.; Naik, S.S. Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. Cochrane Database Syst. Rev. 2018, 7, CD011597. [Google Scholar] [CrossRef] [PubMed]
- Manion, M.; Hullsiek, K.H.; Wilson, E.M.P.; Rhame, F.; Kojic, E.; Gibson, D.; Hammer, J.; Patel, P.; Brooks, J.T.; Baker, J.V.; et al. Study to Understand the Natural History of HIV/AIDS in the Era of Effective Antiretroviral Therapy (the ‘SUN Study’) Investigators. Vitamin D deficiency is associated with IL-6 levels and monocyte activation in HIV-infected persons. PLoS ONE 2017, 12, e0175517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panarese, A.; Shahini, E. Letter: Covid-19, and vitamin D. Aliment. Pharmacol. Ther. 2020, 51, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; Subramanian, S.; Laird, E.; Kenny, R.A. Editorial: Low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment. Pharmacol. Ther. 2020, 52, 412–413. [Google Scholar] [CrossRef]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, humidity and latitude analysis to predict potential spread and seasonality for COVID-19. JAMA Netw. Open 2020, 3, e2011834. [Google Scholar] [CrossRef]
- Marik, P.E.; Kory, P.; Varon, J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med. Drug Discov. 2020, 6, 100041. [Google Scholar] [CrossRef]
- Whittemore, P.B. COVID-19 Fatalities, Latitude, Sunlight, and Vitamin, D. Am. J. Infect. Control. 2020, 48, 1042–1044. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Subramanian, S.; Laird, E.; Griffin, G.; Kenny, R.A. Perspective: Vitamin D deficiency and COVID-19 severity-plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2, and thrombosis (R1). J. Intern. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Ali, N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health 2020, S1876-0341(20)30531-1. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakovac, H. COVID-19 and vitamin D-Is there a link and an opportunity for intervention? Am. J. Physiol. Endocrinol. Metab. 2020, 318, E589. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, M. Vitamin D: A simpler alternative to tocilizumab for trial in COVID-19? Med. Hypotheses. 2020, 140, 109767. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients 2020, 12, 1359. [Google Scholar] [CrossRef]
- Lau, F.H.; Majumder, R.; Torabi, R.; Saeg, F.; Hoffman, R.; Cirillo, J.D.; Greiffenstein, P. Vitamin D Insufficiency is Prevalent in Severe COVID-19. MedRxiv 2020. [Google Scholar] [CrossRef]
- Castillo, M.E.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcalá Díaz, J.F.; Miranda, J.L.; Bouillon, R.; Quesada Gomez, J.M. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef]
- Jones, P.J.H.; Papamandjaris, A.A. Lipids: Cellular metabolism. In Present Knowledge in Nutrition, 10th ed.; Erdman, J.W., Macdonald, I.A., Zeisel, S.H., Eds.; Wiley-Blackwell: Washington, DC, USA, 2012; pp. 132–148. [Google Scholar]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Dalli, J.; Colas, R.A.; Winkler, J.W.; Chiang, N. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta 2015, 1851, 397–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basil, M.C.; Levy, B.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016, 16, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Savill, J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005, 6, 1191–1197. [Google Scholar] [CrossRef]
- Isobe, Y.; Arita, M.; Matsueda, S.; Iwamoto, R.; Fujihara, T.; Nakanishi, H.; Taguchi, R.; Masuda, K.; Sasaki, K.; Urabe, D.; et al. Identification and structure determination of novel anti-inflammatory mediator resolvin E3, 17,18-dihydroxyeicosapentaenoic acid. J. Biol. Chem. 2012, 287, 10525–10534. [Google Scholar] [CrossRef] [Green Version]
- Campbell, E.L.; Louis, N.A.; Tomassetti, S.E.; Canny, G.O.; Arita, M.; Serhan, C.N.; Colgan, S.P. Resolvin E1 promotes mucosal surface clearance of neutrophils: A new paradigm for inflammatory resolution. FASEB J. 2007, 21, 3162–3170. [Google Scholar] [CrossRef] [Green Version]
- Hasturk, H.; Kantarci, A.; Goguet-Surmenian, E.; Blackwood, A.; Andry, C.; Serhan, C.N.; Van Dyke, T.E. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J. Immunol. 2007, 179, 7021–7029. [Google Scholar] [CrossRef] [Green Version]
- Schwab, J.M.; Chiang, N.; Arita, M.; Serhan, C.N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007, 447, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogerio, A.P.; Haworth, O.; Croze, R.; Oh, S.F.; Uddin, M.; Carlo, T.; Pfeffer, M.A.; Priluck, R.; Serhan, C.N.; Levy, B.D. Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. J. Immunol. 2012, 189, 1983–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalli, J.; Serhan, C.N. Specific lipid mediator signatures of human phagocytes: Microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 2012, 120, e60–e72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorén, F.B.; Riise, R.E.; Ousbäck, J.; Della Chiesa, M.; Alsterholm, M.; Marcenaro, E.; Pesce, S.; Prato, C.; Cantoni, C.; Bylund, J.; et al. Human NK Cells induce neutrophil apoptosis via an NKp46- and Fas-dependent mechanism. J. Immunol. 2012, 188, 1668–1674. [Google Scholar] [CrossRef]
- Ariel, A.; Fredman, G.; Sun, Y.P.; Kantarci, A.; Van Dyke, T.E.; Luster, A.D.; Serhan, C.N. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat. Immunol. 2006, 7, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Omega-3 Fatty Acids. National Institutes of Health, Office of Dietary Supplement. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/#en14 (accessed on 10 May 2020).
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef]
- Harris, W.S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 2008, 87, 1997S–2002S. [Google Scholar] [CrossRef]
- Harris, W.S. Omega-3 fatty acids. In Encyclopedia of Dietary Supplements, 2nd ed.; Coates, P.M., Betz, J.M., Blackman, M.R., Cragg Levine, M., Jeffrey, D., White, J.M., Eds.; Informa Healthcare: London, UK; New York, NY, USA, 2010; pp. 577–586. [Google Scholar]
- Nagatake, T.; Kunisawa, J. Emerging roles of metabolites of ω3 and ω6 essential fatty acids in the control of intestinal inflammation. Int. Immunol. 2019, 31, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Kalupahana, N.S.; Goonapienuwala, B.L.; Moustaid-Moussa, N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev. Nutr. 2020, 40, 25–49. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- Imhoff-Kunsch, B.; Stein, A.D.; Martorell, R.; Parra-Cabrera, S.; Romieu, I.; Ramakrishnan, U. Prenatal docosahexaenoic acid supplementation and infant morbidity: Randomized controlled trial. Pediatrics 2011, 128, e505–e512. [Google Scholar] [CrossRef] [PubMed]
- Pastor, N.; Soler, B.; Mitmesser, S.H.; Ferguson, P.; Lifschitz, C. Infants fed docosahexaenoic acid- and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. Clin. Pediatr. 2006, 45, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Atwell, K.; Collins, C.T.; Sullivan, T.R.; Ryan, P.; Gibson, R.A.; Makrides, M.; McPhee, A.J. Respiratory hospitalisation of infants supplemented with docosahexaenoic acid as preterm neonates. J. Paediatr Child. Health 2013, 49, E17–E22. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, H.; Stokholm, J.; Chawes, B.L.; Vissing, N.H.; Bjarnadóttir, E.; Schoos, A.M.; Wolsk, H.M.; Pedersen, T.M.; Vinding, R.K.; Thorsteinsdóttir, S.; et al. Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. N. Engl. J. Med. 2016, 375, 2530–2539. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Eilander, A.; Muthayya, S.; McKay, S.; Thankachan, P.; Theis, W.; Gandhe, A.; Osendarp, S.J.; Kurpad, A.V. The effect of a 1-year multiple micronutrient or n-3 fatty acid fortified food intervention on morbidity in Indian school children. Eur. J. Clin. Nutr. 2012, 66, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Chatchatee, P.; Lee, W.S.; Carrilho, E.; Kosuwon, P.; Simakachorn, N.; Yavuz, Y.; Schouten, B.; Graaff, P.L.; Szajewska, H. Effects of growing-up milk supplemented with prebiotics and LCPUFAs on infections in young children. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 428–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malan, L.; Baumgartner, J.; Calder, P.C.; Zimmermann, M.B.; Smuts, C.M. n-3 Long-chain PUFAs reduce respiratory morbidity caused by iron supplementation in iron-deficient South African schoolchildren: A randomized, double-blind, placebo-controlled intervention. Am. J. Clin. Nutr. 2015, 101, 668–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Thienprasert, A.; Samuhaseneetoo, S.; Popplestone, K.; West, A.L.; Miles, E.A.; Calder, P.C. Fish oil n-3 polyunsaturated fatty acids selectively affect plasma cytokines and decrease illness in Thai schoolchildren: A randomized, double-blind, placebo-controlled intervention trial. J. Pediatr. 2009, 154, 391–395. [Google Scholar] [CrossRef]
- Rice, T.W.; Wheeler, A.P.; Thompson, B.T.; deBoisblanc, B.P.; Steingrub, J.; Rock, P. NIH NHLBI Acute Respiratory Distress Syndrome Network of Investigators. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 2011, 306, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, R.D.; Martin, T.R.; Weiss, N.S.; Crowley, J.J.; Gundel, S.J.; Nathens, A.B.; Akhtar, S.R.; Ruzinski, J.T.; Caldwell, E.; Curtis, J.R.; et al. A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit. Care Med. 2011, 39, 1655–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dushianthan, A.; Cusack, R.; Burgess, V.A.; Grocott, M.P.; Calder, P.C. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst. Rev. 2019, 1, CD012041. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, S.F.; Hao, Y.; Jin, S.W. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome. Chin. Med. J. 2018, 131, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Wang, Q.; Mei, H.X.; Zheng, S.X.; Ali, A.M.; Wu, Q.X.; Ye, Y.; Xu, H.R.; Xiang, S.Y.; Jin, S.W. RvD1 ameliorates LPS-induced acute lung injury via the suppression of neutrophil infiltration by reducing CXCL2 expression and release from resident alveolar macrophages. Int. Immunopharmacol. 2019, 76, 105877. [Google Scholar] [CrossRef] [PubMed]
- Sekheri, M.; El Kebir, D.; Edner, N.; Filep, J.G. 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation. Proc. Natl. Acad. Sci. USA 2020, 117, 7971–7980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammoh, N.Z.; Rink, L. Zinc in infection and inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.P.; Rinaldi, N.A.; Ho, E. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol. Nutr. Food Res. 2015, 59, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Beck, F.W.; Prasad, A.S.; Kaplan, J.; Fitzgerald, J.T.; Brewer, G.J. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am. J. Physiol. 1997, 272, E1002–E1007. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-#B. Nutrition 2011, 27, 816–823. [Google Scholar] [CrossRef]
- Von Bulow, V.; Dubben, S.; Engelhardt, G.; Hebel, S.; Plumakers, B.; Heine, H.; Rink, L.; Haase, H. Zinc dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J. Immunol. 2007, 179, 4180–4186. [Google Scholar] [CrossRef] [Green Version]
- Kahmann, L.; Uciechowski, P.; Warmuth, S.; Plümäkers, B.; Gressner, A.M.; Malavolta, M.; Mocchegiani, E.; Rink, L. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res. 2008, 11, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Biaggio, V.S.; Pérez Chaca, M.V.; Valdéz, S.R.; Gómez, N.N.; Gimenez, M.S. Alteration in the expression of inflammatory parameters as a result of oxidative stress produced by moderate zinc deficiency in rat lung. Exp. Lung Res. 2010, 36, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Besecker, B.Y.; Exline, M.C.; Hollyfield, J.; Phillips, G.; Disilvestro, R.A.; Wewers, M.D.; Knoell, D.L. A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission. Am. J. Clin. Nutr. 2011, 93, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Wessels, I.; Haase, H.; Engelhardt, G.; Rink, L.; Uciechowski, P. Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J. Nutr. Biochem. 2013, 24, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, E.; Hilgers, R.D.; Uciechowski, P.; Petersen, A.; Plümäkers, B.; Rink, L. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects. Eur. J. Nutr. 2017, 56, 557–567. [Google Scholar] [CrossRef]
- Rosenkranz, E.; Maywald, M.; Hilgers, R.D.; Brieger, A.; Clarner, T.; Kipp, M.; Plümäkers, B.; Meyer, S.; Schwerdtle, T.; Rink, L. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration. J. Nutr. Biochem. 2016, 29, 116–123. [Google Scholar] [CrossRef]
- Maywald, M.; Meurer, S.K.; Weiskirchen, R.; Rink, L. Zinc supplementation augments TGF-1-dependent regulatory T cell induction. Mol. Nutr Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Rosenkranz, E.; Metz, C.H.; Maywald, M.; Hilgers, R.; Weßels, I.; Senff, T.; Haase, H.; Jäger, M.; Ott, M.; Aspinall, R. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol. Nutr. Food Res. 2016, 60, 661–671. [Google Scholar] [CrossRef]
- Finamore, A.; Massimi, M.; Conti Devirgiliis, L.; Mengheri, E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J. Nutr. 2008, 138, 1664–1670. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Knoell, D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 291, L1132–L1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roscioli, E.; Jersmann, H.P.; Lester, S.; Badiei, A.; Fon, A.; Zalewski, P.; Hodge, S. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 3503–3510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Kucuk, O.; Sarkar, F.H. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 2004, 37, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Beck, F.W.J.; Bao, B.; Fitzgerald, J.T.; Snell, D.C.; Steinberg, J.D.; Cardozo, L.J. Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007, 85, 837–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Science, M.; Johnstone, J.; Roth, D.E.; Guyatt, G.; Loeb, M. Zinc for the treatment of the common cold: A systematic review and meta-analysis of randomized controlled trials. CMAJ 2012, 184, E551–E561. [Google Scholar] [CrossRef] [Green Version]
- Suara, R.O.; Crowe, J.E., Jr. Effect of zinc salts on respiratory syncytial virus replication. Antimicrob. Agents Chemother. 2004, 48, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Kar, M.; Khan, N.A.; Panwar, A.; Bais, S.S.; Basak, S.; Goel, R.; Sopory, S.; Medigeshi, G.R. Zinc Chelation Specifically Inhibits Early Stages of Dengue Virus Replication by Activation of NF-κB and Induction of Antiviral Response in Epithelial Cells. Front. Immunol. 2019, 10, 2347. [Google Scholar] [CrossRef]
- Te Velthuis, A.J.; van den Worm, S.H.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef]
- Xue, J.; Moyer, A.; Peng, B.; Wu, J.; Hannafon, B.N.; Ding, W.-Q. Chloroquine Is a Zinc Ionophore. PLoS ONE 2014, 9, e109180. [Google Scholar] [CrossRef] [Green Version]
- Saleh, N.Y.; Abo El Fotoh, W.M.M. Low serum zinc level: The relationship with severe pneumonia and survival in critically ill children. Int. J. Clin. Pract. 2018, 72, e13211. [Google Scholar] [CrossRef]
- Mahalanabis, D.; Lahiri, M.; Paul, D.; Gupta, S.; Gupta, A.; Wahed, M.A.; Khaled, M.A. Randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc or vitamin A in infants and young children with severe acute lower respiratory infection. Am. J. Clin. Nutr. 2004, 79, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, A.; Coles, C.L.; Gunavathi John, H.; Moses, P.; Raghupathy, P.; Kirubakaran, C.; Black, R.E.; Brooks, W.A.; Santosham, M. Efficacy of zinc in the treatment of severe pneumonia in hospitalized children <2 y old. Am. J. Clin. Nutr. 2006, 83, 1089–1096. [Google Scholar] [CrossRef]
- Valentiner-Branth, P.; Shrestha, P.S.; Chandyo, R.K.; Mathisen, M.; Basnet, S.; Bhandari, N.; Adhikari, R.K.; Sommerfelt, H.; Strand, T.A. A randomized controlled trial of the effect of zinc as adjuvant therapy in children 2-35 mo of age with severe or nonsevere pneumonia in Bhaktapur, Nepal. Am. J. Clin. Nutr. 2010, 91, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Chakraborty, S.; Datta, K.; Hazra, A.; Datta, S.; Chakraborty, J. A randomized controlled trial of oral zinc in acute pneumonia in children aged between 2 months to 5 years. Indian J. Pediatr. 2011, 78, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Valavi, E.; Hakimzadeh, M.; Shamsizadeh, A.; Aminzadeh, M.; Alghasi, A. The efficacy of zinc supplementation on outcome of children with severe pneumonia. A randomized double-blind placebo-controlled clinical trial. Indian J. Pediatr. 2011, 7, 1079–1084. [Google Scholar] [CrossRef]
- Bansal, A.; Parmar, V.R.; Basu, S. Zinc Supplementation in Severe Acute Lower Respiratory Tract Infection in Children: A Triple-Blind Randomized Placebo Controlled Trial. Indian J. Pediatr. 2011, 78, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Shah, G.S.; Dutta, A.K.; Shah, D.; Mishra, O.P. Role of zinc in severe pneumonia: A randomized double bind placebo controlled study. Ital. J. Pediatr. 2012, 38, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basnet, S.; Shrestha, P.S.; Sharma, A.; Mathisen, M.; Prasai, R.; Bhandari, N.; Adhikari, R.K.; Sommerfelt, H.; Valentiner-Branth, P.; Strand, T.A. Zinc Severe Pneumonia Study Group. A randomized controlled trial of zinc as adjuvant therapy for severe pneumonia in young children. Pediatrics 2012, 129, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, M.G.; Ndeezi, G.; Mboijana, C.K.; Kiguli, S.; Bimenya, G.S.; Nankabirwa, V.; Tumwine, J.K. Zinc adjunct therapy reduces case fatality in severe childhood pneumonia: A randomized double blind placebo-controlled trial. BMC Med. 2012, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, N.; Chandran, A.; Aneja, S.; Lodha, R.; Kabra, S.K.; Chaturvedi, M.K.; Sodhi, J.; Fitzwater, S.P.; Chandra, J.; Rath, B.; et al. Efficacy of zinc given as an adjunct in the treatment of severe and very severe pneumonia in hospitalized children 2-24 mo of age: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2013, 97, 1387–1394. [Google Scholar] [CrossRef] [Green Version]
- Sempértegui, F.; Estrella, B.; Rodríguez, O.; Gómez, D.; Cabezas, M.; Salgado, G.; Sabin, L.L.; Hamer, D.H. Zinc as an adjunct to the treatment of severe pneumonia in Ecuadorian children: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 497–505. [Google Scholar] [CrossRef]
- Yuan, X.; Qian, S.Y.; Li, Z.; Zhang, Z.Z. Effect of zinc supplementation on infants with severe pneumonia. World J. Pediatr. 2016, 12, 166–169. [Google Scholar] [CrossRef]
- Howie, S.; Bottomley, C.; Chimah, O.; Ideh, R.; Ebruke, B.; Okomo, U.; Onyeama, C.; Donkor, S.; Rodrigues, O.; Tapgun, M.; et al. Zinc as an adjunct therapy in the management of severe pneumonia among Gambian children: Randomized controlled trial. J. Glob. Health 2018, 8, 010418. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Murillo, J.A.; García León, M.L.; Firo-Reyes, V.; Santiago-Cordova, J.L.; Gonzalez-Rodriguez, A.P.; Wong-Chew, R.M. Zinc Supplementation Promotes a Th1 Response and Improves Clinical Symptoms in Fewer Hours in Children with Pneumonia Younger Than 5 Years Old. A Randomized Controlled Clinical Trial. Front. Pediatr. 2019, 7, 431. [Google Scholar] [CrossRef] [Green Version]
- Rerksuppaphol, S.; Rerksuppaphol, L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr. Rep. 2019, 11, 7954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.R.; Singh, M.; Shafiq, N. Short-term therapeutic role of zinc in children <5 years of age hospitalised for severe acute lower respiratory tract infection. Paediatr. Respir. Rev. 2012, 13, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Osendarp, S.J.; Santosham, M.; Black, R.E.; Wahed, M.A.; van Raaij, J.M.; Fuchs, G.J. Effect of zinc supplementation between 1 and 6 mo of life on growth and morbidity of Bangladeshi infants in urban slums. Am. J. Clin. Nutr. 2002, 76, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- Baqui, A.H.; Black, R.E.; El Arifeen, S.; Yunus, M.; Chakraborty, J.; Ahmed, S.; Vaughan, J.P. Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: Community randomised trial. BMJ 2002, 325, 1059. [Google Scholar] [CrossRef] [Green Version]
- Baqui, A.H.; Zaman, K.; Persson, L.A.; El Arifeen, S.; Yunus, M.; Begum, N.; Black, R.E. Simultaneous weekly supplementation of iron and zinc is associated with lower morbidity due to diarrhea and acute lower respiratory infection in Bangladeshi infants. J. Nutr. 2003, 133, 4150–4157. [Google Scholar] [CrossRef] [Green Version]
- Brooks, W.A.; Santosham, M.; Naheed, A.; Goswami, D.; Wahed, M.A.; Diener-West, M.; Faruque, A.S.; Black, R.E. Effect of weekly zinc supplements on incidence of pneumonia and diarrhoea in children younger than 2 years in an urban, low-income population in Bangladesh: Randomised controlled trial. Lancet 2005, 366, 999–1004. [Google Scholar] [CrossRef]
- Kurugöl, Z.; Akilli, M.; Bayram, N.; Koturoglu, G. The prophylactic and therapeutic effectiveness of zinc sulphate on common cold in children. Acta Paediatr. 2006, 95, 1175–1181. [Google Scholar] [CrossRef]
- Richard, S.A.; Zavaleta, N.; Caulfield, L.E.; Black, R.E.; Witzig, R.S.; Shankar, A.H. Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2006, 75, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, K.Z.; Montoya, Y.; Hertzmark, E.; Santos, J.I.; Rosado, J.L. A double-blind, randomized, clinical trial of the effect of vitamin A and zinc supplementation on diarrheal disease and respiratory tract infections in children in Mexico City, Mexico. Am. J. Clin. Nutr. 2006, 83, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luabeya, K.K.; Mpontshane, N.; Mackay, M.; Ward, H.; Elson, I.; Chhagan, M.; Tomkins, A.; Van den Broeck, J.; Bennish, M.L. Zinc or multiple micronutrient supplementation to reduce diarrhea and respiratory disease in South African children: A randomized controlled trial. PLoS ONE 2007, 2, e541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazawal, S.; Black, R.E.; Ramsan, M.; Chwaya, H.M.; Dutta, A.; Dhingra, U.; Stoltzfus, R.J.; Othman, M.K.; Kabole, F.M. Effect of zinc supplementation on mortality in children aged 1-48 months: A community-based randomised placebo-controlled trial. Lancet 2007, 369, 927–934. [Google Scholar] [CrossRef]
- Bhandari, N.; Taneja, S.; Mazumder, S.; Bahl, R.; Fontaine, O.; Bhan, M.K. Zinc Study Group. Adding zinc to supplemental iron and folic acid does not affect mortality and severe morbidity in young children. J. Nutr. 2007, 137, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Tielsch, J.M.; Khatry, S.K.; Stoltzfus, R.J.; Katz, J.; LeClerq, S.C.; Adhikari, R.; Mullany, L.C.; Black, R.; Shresta, S. Effect of daily zinc supplementation on child mortality in southern Nepal: A community-based, cluster randomised, placebo-controlled trial. Lancet 2007, 370, 1230–1239. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Taneja, D.K.; Devasenapathy, N.; Rajeshwari, K. Zinc supplementation for prevention of acute respiratory infections in infants: A randomized controlled trial. Indian Pediatr. 2014, 51, 780–784. [Google Scholar] [CrossRef]
- Mandlik, R.; Mughal, Z.; Khadilkar, A.; Chiplonkar, S.; Ekbote, V.; Kajale, N.; Patwardhan, V.; Padidela, R.; Khadilkar, V. Occurrence of infections in schoolchildren subsequent to supplementation with vitamin D-calcium or zinc: A randomized, double-blind, placebo-controlled trial. Nutr. Res. Pract. 2020, 14, 117–126. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sentz, J.; Miller, M.A. Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: A meta-analysis. Pediatrics 2007, 119, 1120–1130. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.E.; Richard, S.A.; Black, R.E. Zinc supplementation for the prevention of acute lower respiratory infection in children in developing countries: Meta-analysis and meta-regression of randomized trials. Int. J. Epidemiol. 2010, 39, 795–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakoob, M.Y.; Theodoratou, E.; Jabeen, A.; Imdad, A.; Eisele, T.P.; Ferguson, J.; Jhass, A.; Rudan, I.; Campbell, H.; Black, R.E.; et al. Preventive zinc supplementation in developing countries: Impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health 2011, 11 (Suppl. S3). [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassi, Z.S.; Moin, A.; Bhutta, Z.A. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst. Rev. 2016, 12, CD005978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Micronutrient | Age Range | Recommended Dietary Allowance (RDA) | Upper Level (UL) |
---|---|---|---|
Vitamin A (μg retinol equivalents per day) | 0–6 m | 400 | 600 |
7–12 m | 500 | 600 | |
1–3 y | 300 | 600 | |
4–8 y | 400 | 900 | |
9–13 y | 600 | 1700 | |
14–18 y | 900 (male), 700 (female) | 2800 | |
Vitamin C (mg per day) | 0–6 m | 40 | ND |
7–12 m | 50 | ND | |
1–3 y | 15 | 400 | |
4–8 y | 25 | 650 | |
9–13 y | 45 | 1200 | |
14–18 y | 75–105 (male), 65–90 (female) | 1800 |
Study | Author | Study Population | Micronutrient (Dosage) | Results |
---|---|---|---|---|
Vitamin A and respiratory syncytial virus infection. Serum level and supplementation trial. | Kyran P 1996 [37] | Children RCT | Vitamin A (100,000 UI) | Lower mean vitamin A levels in RSV-infected children than in healthy control (p < 0.05). No significant difference in improvement in clinical outcomes. |
Treatment of respiratory syncytial virus infection with vitamin A: a randomized placebo-controlled trial in Santiago. | Dowell SF 1996 [38] | Children RCT | Vitamin A (50,000 to 200,000 UI, dosed according to age) | More rapid resolution of tachypnea (p = 0.01). Shorter duration of hospitalization (p = 0.09). |
Vitamin A therapy for children with respiratory syncytial virus infection: a multicenter trial in the United States. | Bresee JS 1996 [39] | Children RCT | Vitamin A (50,000 to 200,000 UI, dosed according to age) | Not significantly different in the number of days during which supplemental oxygen was required. Not significant difference in the number of days required to achieve normal respiratory rates. |
Vitamin A supplements and diarrheal and respiratory tract infections among children in Dar es Salaam, Tanzania. | Fawzi WW 2000 [40] | Children RCT | Vitamin A (100,000 to 200,000 UI, dosed according to age) | Significantly higher risk of cough and rapid respiratory rate (p = 0.004) in treatment group. |
Vitamin A for preventing acute lowe respiratory tract infections in children up to 7 years of age. | Chen H. 2008 [43] | Children from areas or with conditions correlated with a status of vitamin A deficiency. 10 RCTs | Vitamin A (6 studies were large-dose trials (100,000 UI o 200,000 UI) 4 studies were low-dose trials (5000 UI daily or 10,000 UI weekly or 45,000 UI every 2 months) | No significant effect on the incidence or prevalence of ALRI symptoms with vitamin A supplementation. |
Vitamin A supplementation for prophylaxis or therapy in childhood pneumonia: a systematic review of randomized controlled trials. | Mathew JL 2010 [42] | Children 20 RCTs | Vitamin A (prophylaxis trial: >100,000 UI; therapeutic trials: 100,000 UI o 200,000 UI) | Neither prophylactic nor therapeutic benefit for childhood pneumonia. |
Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomized trial. | Awasthi S 2013 [32] | Children RCT | Vitamin A (200,000 UI 6-monthly) | Not significant mortality reduction. |
Vitamin A supplementation for preventing morbidity and mortality in children from 6 months to 5 years of age. | Imdad A 2017 [33] | Children 42 RCTs | Vitamin A (large-dose trials: range of 50,000 UI to 200,000 UI, except for five studies: 3866 UI 3 times a week, 8333 UI once a week, 10,000 UI weekly and 250,000 UI 2 times a week) | 12% reduction in all-cause mortality (RR 0.88 95% CI 0.83 to 0.93) in the interevention group. Not significant difference in ALRI-mortality. Not effect for vitamin A supplementation on ALRI incidence (only 2 trials reported ALRI prevalence, suggesting benefit for vitamin A supplementation). |
Study | Author | Study Population | Micronutrient (Dosage) | Results |
---|---|---|---|---|
The effect of vitamin C on upper respiratory infections in adolescents swimmers: a randomized trial. | Constantini NV 2011 [68] | Children (12–17 years) RCT | Vitamin C (1 g/day for 3 months) | In the male swimmers duration (p = 0.003) and severity (p = 0.003) of URTI episodes were decreased. |
Vitamin C for preventing and treating the common cold. | Hemilä H 2013 [67] | Adults and children 31 RCTs | Vitamin C (>0.2 g/day) | Significant reduction in the duration of common cold episodes. Decreased cold severity in Vitamin C group. |
Vitamin C for preventing and treating pneumonia. | Hemilä H 2013 [65] | Adults 3 RCTs | Vitamin C | Significant reduction in pneumonia risk (>80%). Lower mortality in the vitamin C group vs. placebo group. |
Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: a randomized controlled trial. | Schumacher SS 2014 [66] | Adults RCT | Vitamin C (1 g/day for 8 weeks) | Reduced cold episodes in young men with low to average vitamin C status (p = 0.04). Cold duration was reduced 59% in the vitamin C vs. placebo groups (p = 0.06). |
Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: a randomised controlled pilot study. | Ďuračková Z 2015 [69] | Children RCT | Vitamin C (50 mg/day for 6 months) | Reduced incidence (p = 0.002) and duration (p = 0.006) of URTIs. No significant differences in the duration or incidence of LRTIs. |
Extra dose of vitamin C based on a daily supplementation shortens the common cold: a meta-analysis of 9 randomized controlled trials. | Ran L 2018 [70] | Adults and children 9 RCTs | Vitamin C (4–8 g/day) administrated at the onset of cold | Reduced cold duration (MD = −0.56, p = 0.02). Relieved cold symptoms including chest pain (MD = −0.40, p = 0.03), fever (MD = −0.45, p = 0.009), and chills (MD = −0.36, p = 0.01). |
Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. | Fowler AA 2019 [72] | Adults RCT | Vitamin C (IV 50 mg/kg every 6 h for 96 h) | Significant reduction in 28-day all-cause mortality (p = 0.03), and with significantly increased ICU-free days to day 28 (p = 0.03) and hospital-free days to day 60 (p = 0.04). |
Study | Author | Country | Study Population | Results |
---|---|---|---|---|
Case-control study of the role of nutritional rickets in the risk of developing pneumonia in Ethiopian children. | Muhe et al., 1997 [124] | Ethiopia | 500 children with pneumonia vs. 500 healthy controls | Higher incidence of rickets in children with pneumonia. |
Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 years. | Wayse et al., 2004 [125] | India | Children with severe ALRI vs. controls | Vitamin D levels >22.5 nmol/L associated with lower risk of severe ALRI. |
The frequency of nutritional rickets among hospitalized infants and its relation to respiratory diseases. | Najada et al., 2004 [126] | Jordan | 443 children hospitalized due to different causes | Higher risk of being admitted due to LRTI and significantly more prolonged hospital stay in children with rickets. |
Vitamin D deficiency in young children with severe acute lower respiratory infection. | McNally et al., 2009 [127] | Canada | 105 children <5 years with ALRI vs. healthy controls | Significantly lower vitamin D levels in children admitted to PICU. |
Nutritional rickets and vitamin D deficiency–association with the outcomes of childhood very severe pneumonia: a prospective cohort study. | Banajeh et al., 2009 [128] | Yemen | 152 children aged 2–59 months with pneumonia | Significantly more frequent treatment failure in rachitic children; vitamin D deficiency associated with day 5 hypoxemia <88%. |
Vitamin D status is not associated with the risk of hospitalization for acute bronchiolitis in early childhood. | Roth et al., 2009 [129] | Canada | 64 children aged 1–25 months with ALRI vs. healthy controls | Similar vitamin D concentrations among cases and controls. |
Vitamin D status and acute lower respiratory infection in early childhood in Sylhet, Bangladesh. | Roth et al., 2010 [130] | Bangladesh | 25 children aged 1–18 months with ALRI vs. 25 healthy controls | Significantly lower vitamin D in ALRI cases than in controls. |
Frequency of nutritional rickets in children admitted with severe pneumonia. | Haider et al., 2010 [131] | Pakistan | 137 children with severe pneumonia | High frequency of rickets (74% of cases). |
Relationship between vitamin D levels and outcome of pneumonia in children. | Oduwole et al., 2010 [132] | Nigeria | 24 children with pneumonia vs. healthy controls | Lower vitamin D levels in cases than in controls; increased complications frequency when lower vitamin D levels. |
Low serum 25-hydroxyvitamin D levels are associated with increased risk of viral coinfections in wheezing children. | Jartti et al., 2010 [133] | Finland | children hospitalized for wheezing | Lower vitamin D level linked to higher risk of having a viral infection. |
Serum vitamin D concentrations and associated severity of acute lower respiratory tract infections in Japanese hospitalized children. | Inamo et al., 2011 [134] | Japan | 28 children with ALRI | Vitamin D deficiency (<15 ng/mL) correlates to the need for supplementary oxygen and ventilator management. |
Vitamin D intake in young children with acute lower respiratory infection. | Leis et al., 2012 [135] | Canada | children with ALRI vs. controls | Children reporting a lower vitamin D intake were more likely to have ALRI.s |
Correlation between serum vitamin D level and severity of community acquired pneumonia in young children. | Ren et al., 2013 [136] | China | 103 children with CAP vs. healthy controls | Lower vitamin D levels in severe CAP cases than in mild CAP and controls. |
The association between 25-dehydroxy vitamin D and lower respiratory infection in children aged less than 5 years in Imam Reza hospital, Bojnurd, Iran. | Khakshour et al., 2015 [137] | Iran | 90 children hospitalized either for acute LRTI or for other reasons | Not significantly different vitamin D levels between the two groups. |
Vitamin D Levels Are Unrelated to the Severity of Respiratory Syncytial Virus Bronchiolitis Among Hospitalized Infants. | Beigelman et al., 2015 [138] | USA | Children hospitalized with bronchiolitis | Similar duration of hospitalization and severity of the disease in deficient and non-deficient children. |
Association of Vitamin D Deficiency with Acute Lower Respiratory Infection in Toddlers. | Narang et al., 2016 [139] | India | 50 children hospitalized with ALRI vs. 50 healthy controls | Lower vitamin D levels in cases than in controls (mean level 20.4 ng/mL). |
Serum 25-Hydroxyvitamin D Was Not Associated with Influenza Virus Infection in Children and Adults in Hong Kong, 2009–2010. | Xu et al., 2016 [140] | Hong Kong | Over 3000 children and adults | Vitamin D levels not significantly associated with frequency of influenza infections. |
Evaluation of serum 25-hydroxy vitamin D levels in children with acute bronchiolitis. | Mahyar et al., 2017 [141] | Iran | 57 children with bronchiolitis vs. 57 healthy controls | No significant difference between the 2 groups. |
The effect of vitamin D deficency on the severity of bronchiolitis in infants. | Erol et al., 2017 [142] | Turkey | Children with bronchiolitis | Higher incidence of vitamin D deficiency in children with moderate or severe bronchiolitis. |
Vitamin D Status at the Time of Hospitalization for Bronchiolitis and Its Association with Disease Severity. | Vo et al., 2018 [143] | USA | Over 1000 children hospitalized with bronchiolitis | Vitamin D deficiency correlates to increased risk of intensive care admission and longer hospital stay. |
Association between serum 25-hydroxyvitamin D concentration and pulmonary infection in children. | Li et al., 2018 [144] | China | Children with pneumonia vs. healthy controls | Lower vitamin D levels in the pneumonia group (mean 19 ng/mL), especially in the pneumonia induced sepsis subgroup. |
Study | Authors | Country | Study Population | Results |
---|---|---|---|---|
Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. | Karatekin et al., 2009 [145] | Turkey | 25 newborns with LRTI admitted to NICU vs. healthy controls | Significantly lower vitamin D levels in affected newborns than in controls. |
Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. | Belderbos et al., 2011 [146] | Netherlands | 156 healthy newborns | Lower cord blood vitamin D in neonates who developed RSV infections. |
Maternal vitamin D status in pregnancy and risk of lower respiratory tract infections, wheezing, and asthma in offspring. | Morales et al., 2012 [147] | Spain | 1724 pregnant women | Decreased LRTI in offspring of mothers with higher vitamin D. |
Cord blood 25-hydroxyvitamin D levels and the risk of acute lower respiratory tract infection in early childhood. | Mohameet al., 2013 [148] | Egypt | 206 healthy newborns | Increased risk of developing ALRIs in the first 2 years of life in newborns with lower cord blood vitamin D. |
Prospective study of maternal mid-pregnancy 25-hydroxyvitamin D level and early childhood respiratory disorders. | Magnus et al., 2013 [149] | Norway | Pregnant women | Reduced risk of LRTI in offspring by age 36 months when maternal vitamin D was higher. |
Cord blood 25(OH)D levels and the subsequent risk of lower respiratory tract infections in early childhood: the Ulm birth cohort. | Luczynska et al., 2014 [150] | Germany | 777 healthy newborns | Increased risk of developing LRTIs in the first year of life in infants with vitamin D deficiency in cord blood. |
Cord blood vitamin D and the risk of acute lower respiratory infection in Indigenous infants in the Northern Territory. | Binks et al., 2016 [151] | Australia | 109 mother-infant pairs | Higher risk of hospitalization for ALRI in pairs with lower vitamin D levels in pregnancy, cord blood and infants’ blood. |
Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. | Dinlen et al., 2016 [152] | Turkey | 30 newborns with ALRI and their mothers vs. healthy control pairs | Lower vitamin D levels in ALRI group than in healthy controls. |
Low cord-serum 25-hydroxyvitamin D levels are associated with poor lung function performance and increased respiratory infection in infancy. | Lai et al., 2017 [153] | Taiwan | 122 mother-infant pairs | Higher risk of RTI and poorer lung function in infants with lower vitamin D levels (maternal and cord blood). |
Vitamin D Status in Neonatal Pulmonary Infections: Relationship to Inflammatory Indicators. | El-Kassas et al., 2019 [154] | Egypt | 33 neonates with pneumonia vs. healthy controls | Lower levels of vitamin D in pneumonia patients. |
Study | Author | Country | Study Population | Dosage | Results |
---|---|---|---|---|---|
(a) Vitamin D supplementation for treatment childhood respiratory tract infections | |||||
Effects of vitamin D supplementation to children diagnosed with pneumonia in Kabul: a randomised controlled trial. | Manaseki-Holland et al., 2010 [155] | Afghanistan | 453 children with pneumonia | Single dose 100,000 IU | No significant difference in the number of days needed to recover. Lower risk of recurrence in the intervention group. |
Vitamin D supplementation for severe pneumonia—a randomized controlled trial. | Choudhary et al., 2012 [157] | India | 200 children with severe pneumonia | 1000 IU if <1 y or 2000 IU if >1 y, once a day for 5 days | No beneficial effects on resolution of severe pneumonia. |
Trial of vitamin D supplementation in infants with bronchiolitis: A Randomized, Double-Blind, Placebo-Controlled Study. | Saad et al., 2015 [161] | Egypt | 89 infants with bronchiolitis | 100 IU/kg/day for at least 5 days during hospital stay | Significant improvement in the duration of hospitalization and time taken to improve oral feeding. |
Efficacy of vitamin D in children with pneumonia: a randomized control trial study. | Dhungel et al., 2015 [162] | Pakistan | 200 children with pneumonia | Single dose 100,000 IU | Lower recurrence of pneumonia, similar duration of hospital stay. |
The effects of vitamin D supplementation in respiratory index of severity in children (risc) of hospitalized patients with community-acquired pneumonia: a double-blind randomized clinical trial | Rahmati et al., 2016 [164] | Iran | Children hospitalized with pneumonia. | 50,000 IU per day for 2 days | Lower duration of antibiotic use; other clinical characteristics were similar (fever, retractions, tachypnea, poor feeding, etc.). |
Vitamin D supplementation for treatment and prevention of pneumonia in under-5 children: a randomized double-blind placebo-controlled trial. | Gupta et al., 2016 [165] | India | 324 children with severe pneumonia | Single dose 100,000 IU | No significant difference in duration of hospitalization, complete resolution of symptoms and risk of recurrent pneumonia; slightly quicker resolution of severe respiratory distress (1 h). |
Therapeutic effect of vitamin D in acute lower respiratory infection: A randomized controlled trial. | Somnath et al., 2017 [166] | India | 154 children with ALRI | Single dose 100,000 IU | No significant difference in the duration of hospital stay nor in the secondary outcomes (mortality, PICU admissions, complications, recurrence, etc.). |
Effect of Vitamin D Supplementation in the Prevention of Recurrent Pneumonia in Under-5 Children. | Singh et al., 2019 [169] | India | 100 children with pneumonia | 300,000 IU quarterly | No significant difference in ARI recurrence. |
(b) Vitamin D supplementation for prevention of childhood respiratory tract infections | |||||
Randomized trial vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Influenza children. | Urashima et al., 2010 [156] | Japan | Over 300 schoolchildren | 1200 IU/die during winter months | Reduced influenza A infections. |
Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial. | Manaseki-Holland et al., 2012 [158] | Afghanistan | Over 3000 children | 100,000 IU once every 3 months for 18 months | No decrease in incidence of pneumonia. |
Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. | Camargo et al., 2012 [159] | Mongolia | 247 children | Milk fortified with vitamin D from January to March | Significantly lower ARI episodes during the study period. Baseline serum vitamin D level: 7 ng/mL. |
Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: a randomized controlled trial. | Urashima et al., 2014 [160] | Japan | 247 high school students | 2000 IU/day for 2 months | No decrease in incidence of influenza A infections. |
Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: a randomised controlled trial. | Grant et al., 2015 [163] | New Zealand | Healthy pregnant women and their infants up to 6 months of age | Standard daily dose (1000 IU/400 IU) vs. high dose (2000 IU/800 IU) | Less primary care visits for ARI up to age 18 months. |
Preventive effects of vitamin D on seasonal influenza A in infants: a multicenter, randomized, open, controlled clinical trial. | Zhou et al., 2018 [167] | China | 400 infants | Low dose (400 IU) vs. high dose (1200 IU) daily for 4 months | More frequent influenza A infection in the low dose group. |
Vitamin D Supplementation Associated with Acute Respiratory Infection in Exclusively Breastfed Infants. | Miao Hong et al., 2019 [168] | China | Infants up to 6 months | 400–600 IU/day from birth to 6 months of age | Longer period before the first ARI episode in infants with supplementation. |
Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. | Loeb et al., 2019 [170] | Vietnam | 1330 healthy children and adolescents | 14,000 IU/week for 8 months | Similar incidence of influenza but moderately reduced incidence of other respiratory viral infections. |
Study | Author | Study Population | Omega-3 Fatty Acids (dosage) | Results |
---|---|---|---|---|
Infants fed docosahexaenoic acid- and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. | Pastor et al., 2006 [214] | Infants RCT | DHA (17 mg/100 kcal) | Reduced incidence of bronchiolitis/bronchitis in the DHA+ group at 5 months (p = 0.0001), 7 months (p = 0.01), and 9 months (p = 0.01) |
Fish oil n-3 polyunsaturated fatty acids selectively affect plasma cytokines and decrease illness in Thai schoolchildren: a randomized, double-blind, placebo-controlled intervention trial. | Thienprasert et al., 2009 [221] | Children (9–12 years) RCT | EPA (200 mg) + DHA (1 g) | Fewer episodes (p = 0.014) and shorter duration (p = 0.024) of illness in fish oil group. TGF-β1 concentration was lower in fish oil group (p < 0.001). |
Enteral Omega-3 Fatty Acid, γ-Linolenic Acid, and Antioxidant Supplementation in Acute Lung Injury. | Rice et al., 2011 [222] | Adults within 48 h of ARI onset RCT | EPA (6.84 g) + DHA (3.40 g) daily | Not improving in the primary end point of ventilator-free days in patients with acute lung injury. |
Prenatal Docosahexaenoic Acid Supplementation and Infant Morbidity: Randomized Controlled Trial. | Imhoff-Kunsch et al., 2011 [213] | Pregnant woman; a total of more of 800 infants were included in the trial. RCT | DHA (400 mg) | At 1 month: shorter duration of cough, phlegm, and wheezing, respectively (p < 0.001). At 3 months: 14% less time ill (p < 0.0001). At 6 months: shorter duration of fever, nasal secretion, difficulty breathing, rash, and “other illness,” respectively (all p < 0.05). |
A Phase II Randomized Placebo-Controlled Trial of Omega-3 Fatty Acids for the Treatment of Acute Lung Injury. | Stapleton et al., 2011 [223] | Adults within 48 h of ARI onset RCT | EPA (9.75 g) + DHA (6.75 g) daily | Not reduction of biomarkers of pulmonary or systemic inflammation in patients with ALI. |
Respiratory hospitalisation of infants supplemented with docosahexaenoic acid as preterm neonates. | Atwell et al., 2012 [215] | Infants born <33 weeks’ gestation RCT | High DHA (∼1%) vs. standard DHA (∼0.3%) in breast milk or formula | Not reduced hospitalisation for LRTI problems in the first 18 months. |
The effect of a 1-year multiple micronutrient or n-3 fatty acid fortified food intervention on morbidity in Indian school children. | Thomas et al., 2012 [217] | Children (6–10 years) RCT | α-linolenic acid (900 mg) + DHA (100 mg) vs. α-linolenic acid (140 mg) | Significantly fewer episodes of URTI/child/year (relative risk (RR) = 0.88, 95% confidence interval (CI): 0.79, 0.97) in high consuming n-3 fatty acids group. Significantly shorter duration/episode of URTI (RR = 0.81, 95% CI: 0.78, 0.85), LRTI (RR = 0.91, 95% CI: 0.85, 0.97) in high consuming n-3 fatty acids group. |
Effects of Growing-Up Milk Supplemented with Prebiotics and LCPUFAs on Infections in Young Children. | Chatchatee et al., 2014 [218] | Children (11–29 months) RCT | Growing-up milk with addition of 19.2 mg/100 mL of n-3 LCPUFAs (EPA + DHA, 4:6) | Decreased risk of developing at least 1 infection (p = 0.03) in the active group. Trend toward a reduction (p = 0.07) in the total number of infections in the active group. |
N–3 Long-chain PUFAs reduce respiratory morbidity caused by iron supplementation in iron-deficient South African schoolchildren: a randomized, double-blind, placebo-controlled intervention | Malan et al., 2015 [219] | Children (6–11 years) with iron-deficiency RCT | EPA (80 mg) + DHA (420) + placebo vs Fe + EPA/DHA vs Fe + placebo vs placebo + placebo | Iron supplementation increased morbidity (p = 0.001), mostly respiratory. Increase in morbidity caused by iron supplementation was prevented (p = 0.009) by DHA/EPA. |
Fish Oil–Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring | Bisgaard et al., 2016 [216] | Pregnant women at 24 weeks of gestation; a total of 695 children were included in the trial. RCT | 2.4 g of n−3 LCPUFA (55% EPA and 37% DHA) daily | Lower risk of persistent wheeze or asthma in the treatment group (p = 0.035). Reduced risk of infections of the lower respiratory tract (p = 0.033) in the treatment group |
Study | Author | Country | Study Population | Dosage | Results |
---|---|---|---|---|---|
Randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc or vitamin a in infants and young children with severe acute lower respiratory infection. | Mahalanabis et al., 2004 [253] | India | 153 children hospitalized with severe ALRI | 10 mg twice daily for 5 days | Significantly reduced duration of fever and very ill status in boys, but not in girls. |
Efficacy of zinc in the treatment of severe pneumonia in hospitalized children <2 y old. | Bose et al., 2006 [254] | India | 299 children hospitalized with severe pneumonia | 20 mg/day during hospital stay | No overall effect on the duration of hospitalization or of clinical signs associated with severe infection. |
A randomized controlled trial of the effect of zinc as adjuvant therapy in children 2–35 months of age with severe or nonsevere pneumonia in Bhaktapur, Nepal. | Valentiner-Branth et al., 2010 [255] | Nepal | Over 2000 children with pneumonia | 10 mg if aged 2–11 months, 20 mg if aged > or =12 months, for 14 days | No decrease in risk of treatment failure nor accelerated recovery. |
A randomized controlled trial of oral zinc in acute pneumonia in children aged between 2 months and 5 years. | Ganguly et al., 2011 [256] | India | 98 children with pneumonia | 10 mg/day if <1 year, 20 mg if >1 year of age | No improvement in symptom duration. |
The efficacy of zinc supplementation on outcome of children with severe pneumonia. A randomized double-blind placebo-controlled clinical trial. | Valavi et al., 2011 [257] | Iran | 128 children with severe pneumonia | 2 mg/kg/day, max 20 mg, for 5 days | Shorter time for symptoms resolution and shorter hospital stay. |
Zinc Supplementation in Severe Acute Lower Respiratory Tract Infection in Children: A Triple-Blind Randomized Placebo Controlled Trial. | Bansal et al., 2011 [258] | India | Children hospitalized with ALRI | 20 mg/day for 5 days | No decrease in recovery time or in duration of hospital stay. |
Role of zinc in severe pneumonia: a randomized double bind placebo-controlled study. | Shah et al., 2012 [259] | Nepal | Children hospitalized for severe pneumonia | 20 mg/die for 7 days | No effect on clinical recovery from severe pneumonia. |
A randomized controlled trial of zinc as adjuvant therapy for severe pneumonia in young children. | Basnet et al., 2012 [260] | Nepal | 610 children with severe pneumonia | 10 mg if <11 months, 20 mg/day if >11 months, for 14 days | Slightly faster recovery, slightly lower risk of treatment failure but not statistically significant. |
Zinc adjunct therapy reduces case fatality in severe childhood pneumonia: a randomized double-blind placebo-controlled trial. | Srinivasan et al., 2012 [261] | Uganda | 352 children with severe pneumonia | 20 mg if ≥12 months, 10 mg if <12 months, for 7 days | No significant effect on time to resolution of symptoms; decreased mortality rate. |
Efficacy of zinc given as an adjunct in the treatment of severe and very severe pneumonia in hospitalized children 2–24 months of age: a randomized, double-blind, placebo-controlled trial. | Wadhwa et al., 2013 [262] | India | 550 children hospitalized with severe pneumonia | 20 mg/day during hospital stay | No difference in time to recovery. |
Zinc as an adjunct to the treatment of severe pneumonia in Ecuadorian children: a randomized controlled trial. | Sempertegui et al., 2014 [263] | Ecuador | 450 children hospitalized with pneumonia | 20 mg/day during hospital stay | No effect on time to pneumonia resolution nor in treatment failure rate. Higher basal zinc concentrations associated with faster resolution of chest indrawings. |
Effect of zinc supplementation on infants with severe pneumonia. | Yuan et al., 2016 [264] | China | 73 infants hospitalized for pneumonia | 10 mg/day if <6 mo; 20 mg/day if >6 mo during hospital stay | No improvements on clinical outcomes. |
Zinc as an adjunct therapy in the management of severe pneumonia among Gambian children: randomized controlled trial. | Howie et al., 2018 [265] | Gambia | Over 600 children with severe pneumonia | 10 mg if <12 mo; 20 mg if > 20 mo, for 7 days | No benefit in treatment failure rates or time to recovery from respiratory symptoms; marginal benefit in rapidity of resolution of chest indrawings. |
Zinc supplementation promotes a th1 response and improves clinical symptoms in fewer hours in children with pneumonia younger than 5 years old. A randomized controlled clinical trial. | Acevedo-Murillo et al., 2019 [266] | Mexico | 103 children hospitalized for pneumonia | 10 mg/day if <1 year; 20 mg/day if >1 year during hospital stay | Quicker improvement in clinical status, oxygen saturation and respiratory rate. Patients’ baseline zinc levels were below normal range. |
A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. | Rerksuppaphol et al., 2019 [267] | Thailand | 64 hospitalized children with ALRI | 30 mg/day during hospital stay | Faster symptoms resolution and shorter hospital stay. |
Study | Author | Country | Study Population | Dosage | Results |
---|---|---|---|---|---|
Effect of zinc supplementation between 1 and 6 months of life on growth and morbidity of Bangladeshi infants in urban slums. | Osendarp et al., 2002 [269] | Bangladesh | 300 infants from Dhaka slum area, from 4 weeks to 24 weeks of age | 5 mg/day for 20 weeks | Reduced incidence of ALRI and greater weight gains. |
Effect of zinc supplementation started during diarrhea on morbidity and mortality in Bangladeshi children: community randomised trial. | Baqui et al., 2002 [270] | Bangladesh | 8070 children | 20 mg/day for 14 days in case of diarrhea episodes | Reduced incidence of diarrhea and ALRI. |
Simultaneous weekly supplementation of iron and zinc is associated with lower morbidity due to diarrhea and acute lower respiratory infection in Bangladeshi infants. | Baqui et al., 2003 [271] | Bangladesh | 799 infants | Different micronutrient formulations, some including zinc 20 mg weekly for 6 months | Lower risk of severe ALRI in the group receiving iron + zinc. |
Effect of weekly zinc supplements on incidence of pneumonia and diarrhea in children younger than 2 years in an urban, low-income population in Bangladesh: randomised controlled trial. | Brooks et al., 2005 [272] | Bangladesh | 1621 children aged 60 days to 12 months | 70 mg weekly for 12 months | Reduced pneumonia incidence and mortality. |
The prophylactic and therapeutic effectiveness of zinc sulphate on common cold in children. | Kurugol et al., 2006 [273] | Turkey | 200 children | 15 mg/day for 7 months, increased to 30 mg/day during colds | Significantly lower mean number of colds and duration of symptoms. |
Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. | Richard et al., 2006 [274] | Perù | 855 children | Iron, zinc (20 mg/day), or iron + zinc for 7 months | No statistically significant effect on incidence of respiratory infections. |
A double-blind, randomized, clinical trial of the effect of vitamin A and zinc supplementation on diarrhea and respiratory tract infections in children in Mexico City, Mexico. | Long et al., 2006 [275] | Mexico | 736 children living in a peri-urban area | Vitamin A vs. 20 mg zinc daily vs. vitamin A + zinc vs. placebo for 12 months | No effect on the incidence of respiratory infections. |
Zinc or multiple micronutrient supplementation to reduce diarrhea and respiratory disease in South African children: a randomized controlled trial. | Luabeya et al., 2007 [276] | South Africa | Over 370 children from a rural community | Vitamin A vs. zinc 10 mg/day + vitamin A vs. a multi micronutrients supplement, from 6 to 24 months of age | No reduction in diarrhea and respiratory morbidity. |
Effect of zinc supplementation on mortality in children aged 1–48 months: a community-based randomised placebo-controlled trial. | Sazawal et al., 2007 [277] | Zanzibar | 42,546 children | 10 mg/day (5 mg in children younger than 12 months) until 48 months of age | Non-significant reduction in the relative risk of all-cause mortality. |
Adding zinc to supplemental iron and folic acid does not affect mortality and severe morbidity in young children. | Bhandari et al., 2007 [278] | India | 94,359 children | 10 mg daily for 12 months | No significant difference in death and hospitalization rates. |
Effect of daily zinc supplementation on child mortality in southern nepal: a community-based, cluster randomised, placebo-controlled trial. | Tielsch et al., 2007 [279] | Nepal | Over 40,000 children | zinc 10 mg/day vs. other supplements vs. placebo for 12 months | Not significantly different mortality rate sand frequency of respiratory infections. |
Zinc supplementation for prevention of acute respiratory infections in infants: a randomized controlled trial. | Malik et al., 2014 [280] | India | 272 children with acute respiratory infections | 20 mg/day for 2 weeks | Decrease in duration of the episode, lower frequency of future ALRIs. |
Occurrence of infections in schoolchildren subsequent to supplementation with vitamin D-calcium or zinc: a randomized, double-blind, placebo-controlled trial. | Mandlink et al., 2020 [281] | India | 435 schoolchildren | (Children in the zinc arm)10 mg/day for 7 months | No significant reduction in the occurrence of infections. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecora, F.; Persico, F.; Argentiero, A.; Neglia, C.; Esposito, S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020, 12, 3198. https://doi.org/10.3390/nu12103198
Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020; 12(10):3198. https://doi.org/10.3390/nu12103198
Chicago/Turabian StylePecora, Francesco, Federica Persico, Alberto Argentiero, Cosimo Neglia, and Susanna Esposito. 2020. "The Role of Micronutrients in Support of the Immune Response against Viral Infections" Nutrients 12, no. 10: 3198. https://doi.org/10.3390/nu12103198
APA StylePecora, F., Persico, F., Argentiero, A., Neglia, C., & Esposito, S. (2020). The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients, 12(10), 3198. https://doi.org/10.3390/nu12103198