Dietary Patterns and the Risk of Prediabetes in Taiwan: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2015, 38, S8–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutrition and Health Survey in Taiwan (NAHSIT). Health Promotion Administration, Ministry of Health and Welfare. 2019. Available online: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1077&pid=6201 (accessed on 10 February 2020).
- Hsu, C.C.; Tu, S.T.; Sheu, W.H. 2019 diabetes atlas: Achievements and challenges in diabetes care in Taiwan. J. Formos. Med. Assoc. 2019, 118 (Suppl. S2), S130–S134. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Hwang, S.J.; Chiang, S.S.; Chen, H.F.; Tsai, S.T. The impact of diabetes on economic costs in dialysis patients: Experiences in Taiwan. Diabetes Res. Clin. Pract. 2001, 54 (Suppl. S1), S47–S54. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lin, C.S.; Chang, T.S.; Lee, J.E.; Tani, J.; Chen, H.J.; Sung, J.Y. Early sensory neurophysiological changes in prediabetes. J. Diabetes Investig. 2020, 11, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.C.; Lai, C.H.; Wu, Y.T.; Yang, S.H. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes. Medicine (Baltimore) 2016, 95, e3956. [Google Scholar] [CrossRef]
- Hou, Y.C.; Yang, S.H.; Wu, Y.T.; Lai, C.H. Alterations of neocortico-limbic association fibers and correlation with diet in prediabetes diagnosed by impaired fasting glucose. J. Magn. Reson. Imaging 2016, 43, 1500–1506. [Google Scholar] [CrossRef]
- Braga, T.; Kraemer-Aguiar, L.G.; Docherty, N.G.; Le Roux, C.W. Treating prediabetes: Why and how should we do it? Minerva Med. 2019, 110, 52–61. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [Green Version]
- Ford, C.N.; Weber, M.B.; Staimez, L.R.; Anjana, R.M.; Lakshmi, K.; Mohan, V.; Narayan, K.M.V.; Harish, R. Dietary changes in a diabetes prevention intervention among people with prediabetes: The diabetes community lifestyle improvement program trial. Acta Diabetol. 2019, 56, 197–209. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, C.; Cui, L.; Han, A.; Tu, Q.; Lou, P.; Ding, G.; Qin, Y.; Xiang, Q. A population-based survey for dietary patterns and prediabetes among 7555 Chinese adults in urban and rural areas in Jiangsu Province. Sci. Rep. 2020, 10, 10488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, Y.; Li, P.; Chang, H.; Wang, X.; Liu, W.; Zhang, Y.; Huang, G. Associations between dietary patterns and impaired fasting glucose in Chinese men: A cross-sectional study. Nutrients 2015, 7, 8072–8089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.Y.; Hsu, C.Y.; Lee, H.A.; Wang, W.H.; Kurniawan, A.L.; Chao, J.C. Dietary patterns in relation to components of dyslipidemia and fasting plasma glucose in adults with dyslipidemia and elevated fasting plasma glucose in Taiwan. Nutrients 2019, 11, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary patterns and type 2 diabetes: A systematic literature review and meta-analysis of prospective studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Pan, W.H.; Liu, K.L.; Yu, M.S. Reproducibility and validity of a Chinese food frequency questionnaire used in Taiwan. Asia Pac. J. Clin. Nutr. 2006, 15, 161–169. [Google Scholar] [PubMed]
- Galaviz, K.I.; Weber, M.B.; Straus, A.; Haw, J.S.; Narayan, K.M.V.; Ali, M.K. Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care 2018, 41, 1526–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Park, K. Adherence to a vegetarian diet and diabetes risk: A systematic review and meta-analysis of observational studies. Nutrients 2017, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef] [Green Version]
- Glechner, A.; Keuchel, L.; Affengruber, L.; Titscher, V.; Sommer, I.; Matyas, N.; Wagner, G.; Kien, C.; Klerings, I.; Gartlehner, G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2018, 12, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Rett, K.; Gottwald-Hostalek, U. Understanding prediabetes: Definition, prevalence, burden and treatment options for an emerging disease. Curr. Med. Res. Opin. 2019, 35, 1529–1534. [Google Scholar] [CrossRef]
- Carris, N.W.; Magness, R.R.; Labovitz, A.J. Prevention of diabetes mellitus in patients with prediabetes. Am. J. Cardiol. 2019, 123, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.M.; Cusi, K. Prediabetes: A worldwide epidemic. Endocrinol. Metab. Clin. N. Am. 2016, 45, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L. Prediabetes: Beyond the borderline. Nurs. Clin. N. Am. 2017, 52, 665–677. [Google Scholar] [CrossRef]
- Myles, I.A. Fast food fever: Reviewing the impacts of the Western diet on immunity. Nutr. J. 2014, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Walsh, E.I.; Jacka, F.N.; Butterworth, P.; Anstey, K.J.; Cherbuin, N. The association between Western and Prudent dietary patterns and fasting blood glucose levels in type 2 diabetes and normal glucose metabolism in older Australian adults. Heliyon 2017, 3, e00315. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchi, A.; Leone, L.; Agostoni, C.; Pali-Schöll, I. The secrets of the mediterranean diet. Does [Only] olive oil matter? Nutrients 2019, 11, 2941. [Google Scholar] [CrossRef] [Green Version]
- Wolever, T.M.S.; Mehling, C. Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol and free fatty acid concentrations in subjects with impaired glucose tolerance. Am. J. Clin. Nutr. 2003, 77, 612–621. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Jenkins, D.J.A.; Collier, G.R.; Lee, R.; Wong, G.S.; Josse, R.G. Metabolic response to test meals containing different carbohydrate foods: 1. relationship between rate of digestion and plasma insulin response. Nutr. Res. 1988, 8, 573–581. [Google Scholar] [CrossRef]
- Pourafshar, S.; Akhavan, N.S.; George, K.S.; Foley, E.M.; Johnson, S.A.; Keshavarz, B.; Navaei, N.; Davoudi, A.; Clark, E.A.; Arjmandi, B.H. Egg consumption may improve factors associated with glycemic control and insulin sensitivity in adults with pre- and type II diabetes. Food Funct. 2018, 9, 4469–4479. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Carlström, M.; Bahadoran, Z.; Azizi, F. Long-term effects of coffee and caffeine intake on the risk of pre-diabetes and type 2 diabetes: Findings from a population with low coffee consumption. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
Western | Prudent | Convenience | Asian Traditional | Continental | |
---|---|---|---|---|---|
Deep sea fish | 0.724 | ||||
Meat | 0.670 | ||||
Viscera | 0.667 | ||||
Seafood | 0.483 | 0.347 | |||
Processed meat | 0.434 | 0.326 | |||
Fried pancakes | 0.379 | ||||
Flavoring vegetables | 0.330 | ||||
Vegetables | 0.811 | ||||
Root or stem starch | 0.571 | ||||
Soy bean products | 0.560 | ||||
Fresh fruits | 0.323 | −0.313 | |||
Seed products | 0.304 | ||||
Rice milk | 0.302 | ||||
Savory buns | 0.652 | ||||
Dumplings | 0.615 | ||||
Processed fruits | 0.606 | ||||
Nuts or nut products | 0.574 | ||||
Breakfast grains | 0.529 | ||||
Chinese pastries | 0.686 | ||||
Sticky rice | 0.529 | ||||
Sticky rice sweets | 0.492 | ||||
Congee | 0.479 | ||||
Rice | 0.415 | ||||
Eggs | 0.719 | ||||
Coffee beverages | 0.687 | ||||
Snacks | 0.424 | 0.476 | |||
Milk | 0.317 |
Western | p Trend 2 | |||
---|---|---|---|---|
T1 1 (n = 66) | T2 1 (n = 67) | T3 1 (n = 66) | ||
Age (year) | 51.82 ± 9.02 | 51.15 ± 10.86 | 51.91 ± 9.33 | 0.957 |
BMI (kg/m2) | 23.01 ± 3.11 | 24.27 ± 3.43 | 24.45 ± 3.34 | 0.013 |
Energy (kcal) | 1488.36 ± 370.08 | 1559.25 ± 558.33 | 1558.76 ± 459.16 | 0.390 |
Protein (g) | 53.98 ± 20.05 | 62.07 ± 28.69 | 57.55 ± 18.98 | 0.829 |
Fat (g) | 58.81 ± 44.43 | 71.34 ± 60.42 | 77.79 ± 80.04 | 0.087 |
Carbohydrate (g) | 255.44 ± 112.63 | 266.67 ± 216.31 | 298.60 ± 283.39 | 0.252 |
Fiber (g) | 24.60 ± 176.90 | 3.73 ± 3.65 | 3.59 ± 3.37 | 0.238 |
Cholesterol (g) | 255.90 ± 200.55 | 292.81 ± 181.24 | 257.11 ± 156.82 | 0.969 |
Simple sugar (g) | 14.10 ± 32.93 | 8.85 ± 14.61 | 4.26 ± 7.61 | 0.008 |
Iron (mg) | 11.04 ± 8.77 | 11.90 ± 14.86 | 9.55 ± 4.64 | 0.411 |
Zinc (mg) | 7.55 ± 2.72 | 7.80 ± 2.59 | 33.15 ± 209.70 | 0.225 |
Vitamin E (mg) | 6.53 ± 4.32 | 8.30 ± 16.54 | 5.58 ± 5.14 | 0.599 |
Vitamin B12 (μg) | 2.91 ± 4.66 | 3.45 ± 2.81 | 4.26 ± 3.72 | 0.042 |
Folic acid (μg) | 177.19 ± 241.37 | 108.71 ± 176.99 | 83.26 ± 117.36 | 0.004 |
Vitamin C (mg) | 117.44 ± 81.94 | 135.38 ± 97.97 | 105.64 ± 91.24 | 0.456 |
EPA (mg) | 62.73 ± 100.56 | 58.63 ± 91.01 | 58.98 ± 146.22 | 0.852 |
DHA (mg) | 182.02 ± 534.20 | 127.50 ± 372.88 | 201.56 ± 839.54 | 0.855 |
Fasting glucose (mg/dL) | 94.61 ± 12.91 | 100.94 ± 18.62 | 101.26 ± 14.87 | 0.016 |
HbA1c (%) | 5.54 ± 0.48 | 5.68 ± 0.68 | 5.72 ± 0.55 | 0.069 |
Prudent | p Trend 2 | |||
---|---|---|---|---|
T1 1 (n = 66) | T2 1 (n = 67) | T3 1 (n = 66) | ||
Age (year) | 49.24 ± 10.54 | 51.75 ± 9.11 | 53.88 ± 9.07 | 0.006 |
BMI (kg/m2) | 24.21 ± 3.24 | 23.86 ± 3.23 | 23.67 ± 3.57 | 0.364 |
Energy (kcal) | 1613.44 ± 540.13 | 1534.89 ± 445.62 | 1458.41 ± 402.64 | 0.058 |
Protein (g) | 60.48 ± 23.02 | 56.68 ± 18.89 | 56.45 ± 26.96 | 0.534 |
Fat (g) | 67.70 ± 43.34 | 75.45 ± 87.44 | 64.73 ± 50.71 | 0.789 |
Carbohydrate (g) | 233.57 ± 130.69 | 278.71 ± 205.30 | 308.24 ± 280.67 | 0.047 |
Fiber (g) | 2.32 ± 1.99 | 3.50 ± 2.91 | 26.11 ± 176.74 | 0.181 |
Cholesterol (g) | 316.27 ± 213.13 | 263.13 ± 159.67 | 226.86 ± 153.78 | 0.004 |
Simple sugar (g) | 9.15 ± 13.26 | 7.47 ± 14.16 | 10.62 ± 31.99 | 0.696 |
Iron (mg) | 9.90 ± 5.91 | 9.44 ± 3.79 | 13.17 ± 16.36 | 0.069 |
Zinc (mg) | 7.72 ± 2.88 | 32.78 ± 208.13 | 7.62 ± 2.50 | 0.996 |
Vitamin E (mg) | 6.75 ± 5.15 | 5.77 ± 6.38 | 7.93 ± 16.02 | 0.513 |
Vitamin B12 (μg) | 3.85 ± 4.12 | 3.04 ± 2.78 | 3.74 ± 4.39 | 0.875 |
Folic acid (μg) | 141.35 ± 255.51 | 109.60 ± 135.71 | 118.19 ± 155.25 | 0.483 |
Vitamin C (mg) | 93.16 ± 75.60 | 126.32 ± 84.01 | 139.12 ± 105.92 | 0.004 |
EPA (mg) | 72.55 ± 110.32 | 65.18 ± 134.77 | 42.52 ± 93.82 | 0.133 |
DHA (mg) | 205.05 ± 561.56 | 186.37 ± 827.46 | 118.77 ± 345.89 | 0.419 |
Fasting glucose (mg/dL) | 97.30 ± 13.73 | 100.10 ± 18.84 | 99.41 ± 14.67 | 0.448 |
HbA1c (%) | 5.55 ± 0.63 | 5.65 ± 0.54 | 5.74 ± 0.55 | 0.067 |
Convenience | p Trend 2 | |||
---|---|---|---|---|
T1 1 (n = 66) | T2 1 (n = 67) | T3 1 (n = 66) | ||
Age (year) | 49.24 ± 10.56 | 50.67 ± 9.94 | 54.97 ± 7.66 | 0.001 |
BMI (kg/m2) | 23.91 ± 3.08 | 24.21 ± 3.59 | 23.61 ± 3.35 | 0.614 |
Energy (kcal) | 1529.97 ± 614.33 | 1544.10 ± 383.11 | 1532.54 ± 375.70 | 0.975 |
Protein (g) | 55.04 ± 24.87 | 60.71 ± 25.85 | 57.86 ± 17.76 | 0.373 |
Fat (g) | 79.60 ± 83.54 | 68.22 ± 59.83 | 60.16 ± 38.32 | 0.079 |
Carbohydrate (g) | 316.84 ± 292.05 | 250.38 ± 152.93 | 253.74 ± 172.14 | 0.093 |
Fiber (g) | 2.40 ± 2.45 | 3.64 ± 3.80 | 25.89 ± 176.75 | 0.187 |
Cholesterol (g) | 292.22 ± 212.94 | 289.21 ± 166.11 | 224.45 ± 150.74 | 0.030 |
Simple sugar (g) | 6.22 ± 8.87 | 8.42 ± 12.72 | 12.58 ± 33.82 | 0.090 |
Iron (mg) | 9.03 ± 4.56 | 12.06 ± 15.29 | 11.39 ± 7.88 | 0.189 |
Zinc (mg) | 7.39 ± 2.83 | 33.08 ± 208.09 | 7.64 ± 2.51 | 0.991 |
Vitamin E (mg) | 5.60 ± 4.49 | 6.44 ± 6.99 | 8.40 ± 15.90 | 0.121 |
Vitamin B12 (μg) | 3.05 ± 4.01 | 3.93 ± 3.65 | 3.63 ± 3.80 | 0.379 |
Folic acid (μg) | 156.96 ± 258.13 | 112.76 ± 126.64 | 99.37 ± 154.52 | 0.080 |
Vitamin C (mg) | 105.97 ± 98.74 | 121.06 ± 91.23 | 131.64 ± 81.88 | 0.106 |
EPA (mg) | 73.19 ± 101.92 | 78.95 ± 145.95 | 27.89 ± 79.39 | 0.022 |
DHA (mg) | 164.53 ± 389.06 | 280.78 ± 936.14 | 63.45 ± 262.67 | 0.340 |
Fasting glucose (mg/dL) | 96.00 ± 11.74 | 98.30 ± 19.89 | 102.55 ± 14.37 | 0.018 |
HbA1c (%) | 5.57 ± 0.41 | 5.63 ± 0.73 | 5.74 ± 0.55 | 0.092 |
Asian Traditional | p Trend 2 | |||
---|---|---|---|---|
T1 1 (n = 66) | T2 1 (n = 68) | T3 1 (n = 65) | ||
Age (year) | 51.80 ± 10.58 | 50.93 ± 8.92 | 52.17 ± 9.77 | 0.830 |
BMI (kg/m2) | 23.65 ± 3.47 | 23.70 ± 3.11 | 24.39 ± 3.44 | 0.206 |
Energy (kcal) | 1460.35 ± 413.22 | 1580.85 ± 547.82 | 1564.61 ± 426.22 | 0.203 |
Protein (g) | 56.16 ± 19.81 | 59.12 ± 21.04 | 58.32 ± 28.00 | 0.750 |
Fat (g) | 71.38 ± 63.21 | 72.77 ± 79.80 | 63.63 ± 41.15 | 0.487 |
Carbohydrate (g) | 278.77 ± 257.44 | 284.85 ± 228.60 | 256.39 ± 145.80 | 0.554 |
Fiber (g) | 3.69 ± 4.36 | 3.16 ± 2.18 | 25.42 ± 178.20 | 0.224 |
Cholesterol (g) | 286.41 ± 200.45 | 261.82 ± 163.10 | 258.00 ± 177.39 | 0.370 |
Simple sugar (g) | 10.61 ± 15.22 | 7.19 ± 13.03 | 9.48 ± 31.79 | 0.765 |
Iron (mg) | 10.49 ± 5.61 | 10.53 ± 7.77 | 11.50 ± 15.32 | 0.579 |
Zinc (mg) | 7.59 ± 2.63 | 7.81 ± 2.53 | 33.49 ± 211.32 | 0.221 |
Vitamin E (mg) | 8.05 ± 15.84 | 6.40 ± 5.52 | 5.98 ± 6.53 | 0.257 |
Vitamin B12 (μg) | 3.47 ± 4.59 | 3.97 ± 3.94 | 3.17 ± 2.68 | 0.653 |
Folic acid (μg) | 130.24 ± 125.63 | 140.53 ± 269.22 | 97.24 ± 131.80 | 0.319 |
Vitamin C (mg) | 137.62 ± 104.89 | 113.10 ± 74.24 | 108.00 ± 90.43 | 0.063 |
EPA (mg) | 65.81 ± 101.66 | 56.73 ± 103.92 | 57.86 ± 136.68 | 0.693 |
DHA (mg) | 169.85 ± 471.02 | 150.93 ± 459.20 | 190.55 ± 839.78 | 0.847 |
Fasting glucose (mg/dL) | 97.97 ± 20.29 | 100.35 ± 14.32 | 98.46 ± 12.00 | 0.860 |
HbA1c (%) | 5.62 ± 0.69 | 5.68 ± 0.55 | 5.64 ± 0.48 | 0.830 |
Continental | p Trend 2 | |||
---|---|---|---|---|
T1 1 (n = 67) | T2 1 (n = 66) | T3 1 (n = 66) | ||
Age (year) | 54.52 ± 8.30 | 51.44 ± 9.96 | 48.86 ± 10.15 | 0.001 |
BMI (kg/m2) | 23.58 ± 3.06 | 24.82 ± 3.57 | 23.35 ± 3.24 | 0.692 |
Energy (kcal) | 1475.21 ± 360.19 | 1550.48 ± 557.64 | 1581.95 ± 467.80 | 0.190 |
Protein (g) | 54.28 ± 17.87 | 58.37 ± 21.63 | 61.02 ± 28.46 | 0.239 |
Fat (g) | 64.00 ± 65.13 | 64.74 ± 42.26 | 79.30 ± 77.66 | 0.166 |
Carbohydrate (g) | 250.91 ± 181.67 | 281.80 ± 242.04 | 288.23 ± 220.50 | 0.320 |
Fiber (g) | 4.22 ± 4.42 | 3.17 ± 2.38 | 24.52 ± 176.90 | 0.252 |
Cholesterol (g) | 225.48 ± 145.91 | 299.37 ± 190.77 | 281.99 ± 194.92 | 0.069 |
Simple sugar (g) | 5.61 ± 11.85 | 6.27 ± 11.79 | 15.38 ± 32.65 | 0.008 |
Iron (mg) | 9.19 ± 3.65 | 11.05 ± 8.40 | 12.29 ± 15.38 | 0.084 |
Zinc (mg) | 7.29 ± 2.29 | 33.44 ± 209.67 | 7.78 ± 2.73 | 0.981 |
Vitamin E (mg) | 5.25 ± 3.33 | 6.17 ± 6.81 | 9.03 ± 16.16 | 0.035 |
Vitamin B12 (μg) | 3.07 ± 2.69 | 3.92 ± 3.80 | 3.63 ± 4.72 | 0.402 |
Folic acid (μg) | 71.84 ± 105.50 | 146.05 ± 271.31 | 151.83 ± 140.16 | 0.014 |
Vitamin C (mg) | 122.49 ± 79.81 | 125.64 ± 103.82 | 110.52 ± 88.71 | 0.450 |
EPA (mg) | 51.14 ± 142.07 | 52.02 ± 81.32 | 77.29 ± 111.15 | 0.189 |
DHA (mg) | 215.95 ± 887.38 | 82.12 ± 143.14 | 211.68 ± 550.07 | 0.968 |
Fasting glucose (mg/dL) | 102.01 ± 15.77 | 101.68 ± 18.77 | 93.09 ± 10.56 | 0.001 |
HbA1c (%) | 5.79 ± 0.61 | 5.68 ± 0.61 | 5.47 ± 0.46 | 0.001 |
Dietary Patterns | Crude Model | Multivariate Model 1 1 | Multivariate Model 2 2 | |
---|---|---|---|---|
Western | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 3.11 (1.47 to 6.58) | 3.05 (1.37 to 6.76) | 2.95 (1.33 to 6.57) | |
T3 | 3.61 (1.70 to 7.66) | 3.39 (1.53 to 7.52) | 3.30 (1.48 to 7.35) | |
p trend 4 | 0.001 | 0.003 | 0.004 | |
Prudent | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 1.18 (0.59 to 2.36) | 1.12 (0.53 to 2.36) | 1.17 (0.55 to 2.48) | |
T3 | 1.21 (0.60 to 2.43) | 1.02 (0.48 to 2.19) | 1.11 (0.51 to 2.41) | |
p trend 4 | 0.595 | 0.954 | 0.794 | |
Convenience | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 1.05 (0.51 to 2.14) | 0.89 (0.41 to 1.92) | 0.89 (0.41 to 1.94) | |
T3 | 2.40 (1.19 to 4.86) | 2.04 (0.95 to 4.38) | 2.01 (0.93 to 4.33) | |
p trend 4 | 0.014 | 0.063 | 0.071 | |
Asian traditional | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 1.68 (0.83 to 3.37) | 1.95 (0.92 to 4.16) | 1.85 (0.86 to 3.97) | |
T3 | 1.51 (0.74 to 3.08) | 1.44 (0.67 to 3.09) | 1.38 (0.64 to 2.97) | |
p trend 4 | 0.255 | 0.365 | 0.430 | |
Continental | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 0.91 (0.46 to 1.80) | 0.87 (0.42 to 1.83) | 0.85 (0.40 to 1.78) | |
T3 | 0.36 (0.17 to 0.74) | 0.44 (0.20 to 0.97) | 0.42 (0.19 to 0.92) | |
p trend 4 | 0.006 | 0.044 | 0.032 |
Dietary Patterns | Crude Model | Multivariate Model 1 1 | Multivariate Model 2 2 | |
---|---|---|---|---|
Western | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 1.59 (0.80 to 3.18) | 1.57 (0.75 to 3.32) | 1.54 (0.73 to 3.25) | |
T3 | 1.74 (0.87 to 3.48) | 1.65 (0.78 to 3.47) | 1.61 (0.76 to 3.41) | |
p trend 4 | 0.117 | 0.192 | 0.214 | |
Prudent | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 1.59 (0.80 to 3.18) | 1.50 (0.71 to 3.14) | 1.55 (0.73 to 3.26) | |
T3 | 1.74 (0.87 to 3.48) | 1.42 (0.67 to 3.01) | 1.50 (0.70 to 3.21) | |
p trend 4 | 0.117 | 0.367 | 0.301 | |
Convenience | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 0.81 (0.40 to 1.62) | 0.67 (0.32 to 1.42) | 0.66 (0.31 to 1.41) | |
T3 | 1.96 (0.98 to 3.92) | 1.45 (0.69 to 3.07) | 1.42 (0.67 to 3.02) | |
p trend 4 | 0.056 | 0.327 | 0.351 | |
Asian traditional | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 1.37 (0.69 to 2.72) | 1.58 (0.75 to 3.31) | 1.52 (0.72 to 3.21) | |
T3 | 1.69 (0.84 to 3.38) | 1.70 (0.80 to 3.61) | 1.66 (0.78 to 3.52) | |
p trend 4 | 0.139 | 0.166 | 0.189 | |
Continental | T1 3 | 1.00 | 1.00 | 1.00 |
T2 | 0.76 (0.38 to 1.51) | 0.81 (0.39 to 1.71) | 0.79 (0.38 to 1.67) | |
T3 | 0.29 (0.14 to 0.60) | 0.38 (0.18 to 0.82) | 0.37 (0.17 to 0.79) | |
p trend 4 | 0.001 | 0.014 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.-C.; Feng, H.-C.; Tzeng, I.-S.; Kuo, C.-Y.; Cheng, C.-F.; Wu, J.H.; Yang, S.-H. Dietary Patterns and the Risk of Prediabetes in Taiwan: A Cross-Sectional Study. Nutrients 2020, 12, 3322. https://doi.org/10.3390/nu12113322
Hou Y-C, Feng H-C, Tzeng I-S, Kuo C-Y, Cheng C-F, Wu JH, Yang S-H. Dietary Patterns and the Risk of Prediabetes in Taiwan: A Cross-Sectional Study. Nutrients. 2020; 12(11):3322. https://doi.org/10.3390/nu12113322
Chicago/Turabian StyleHou, Yi-Cheng, Han-Chih Feng, I-Shiang Tzeng, Chan-Yen Kuo, Ching-Feng Cheng, Jing Hui Wu, and Shwu-Huey Yang. 2020. "Dietary Patterns and the Risk of Prediabetes in Taiwan: A Cross-Sectional Study" Nutrients 12, no. 11: 3322. https://doi.org/10.3390/nu12113322
APA StyleHou, Y. -C., Feng, H. -C., Tzeng, I. -S., Kuo, C. -Y., Cheng, C. -F., Wu, J. H., & Yang, S. -H. (2020). Dietary Patterns and the Risk of Prediabetes in Taiwan: A Cross-Sectional Study. Nutrients, 12(11), 3322. https://doi.org/10.3390/nu12113322