Lipidemic Profile Changes over a Two-Year Intervention Period: Who Benefited Most from the Feel4Diabetes Program?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling Procedures
2.2. Ethical Approvals and Consent Forms
2.3. Measurements
2.3.1. Anthropometry
2.3.2. Blood Test
2.3.3. Healthy Diet Score
2.3.4. Socio-Demographic and Behavioral Characteristics
2.3.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C. European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar]
- Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Hormones 2018, 17, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Vergès, B. Pathophysiology of diabetic dyslipidaemia: Where are we? Diabetologia 2015, 58, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Danaei, G.; Ding, E.L.; Mozaffarian, D.; Taylor, B.; Rehm, J.; Murray, C.J.L.; Ezzati, M. The Preventable Causes of Death in the United States: Comparative Risk Assessment of Dietary, Lifestyle, and Metabolic Risk Factors. PLoS Med. 2009, 6, e1000058. [Google Scholar] [CrossRef]
- Kotseva, K.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Abreu, A.; Aguiar, C.; Conde, A.C.; Davletov, K.; et al. Lifestyle and risk factor management in people at high risk of cardiovascular disease. A report from the European Society of Cardiology European Action on Secondary and Primary Prevention by Intervention to Reduce Events (EUROASPIRE) IV cross-sectional survey in 14 European regions. Eur. J. Prev. Cardiol. 2016, 23, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.K.; Simpson, K.; Lloyd, B.; Bauman, A.E.; Singh, M.A.F. Behavioral strategies in diabetes prevention programs: A systematic review of randomized controlled trials. Diabetes Res. Clin. Pract. 2011, 91, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wister, A.; Loewen, N.; Kennedy-Symonds, H.; McGowan, B.; McCoy, B.; Singer, J. One-year follow-up of a therapeutic lifestyle intervention targeting cardiovascular disease risk. Can. Med. Assoc. J. 2007, 177, 859–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, K.M.; Westborg, C.-J.; Eliasson, M.C. A randomized trial of lifestyle intervention in primary healthcare for the modification of cardiovascular risk factors The Björknäs study. Scand. J. Public Health 2006, 34, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Colkesen, E.B.; Ferket, B.S.; Tijssen, J.G.; Kraaijenhagen, R.A.; Van Kalken, C.K.; Peters, R.J.G. Effects on cardiovascular disease risk of a web-based health risk assessment with tailored health advice: A follow-up study. Vasc. Health Risk Manag. 2011, 7, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Haruyama, Y.; Muto, T.; Yamasaki, A.; Tarumi, F. Evaluation of a community intervention program in Japan using Framingham risk score and estimated 10-year coronary heart disease risk as outcome variables: A non-randomized controlled trial. BMC Public Health 2013, 13, 219. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, T.; Jacobsen, R.K.; Toft, U.; Aadahl, M.; Glümer, C.; Pisinger, C. Effect of screening and lifestyle counselling on incidence of ischaemic heart disease in general population: Inter99 randomised trial. BMJ 2014, 348, g3617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feel4Diabetes. Available online: http://feel4diabetes-study.eu (accessed on 25 November 2020).
- Moschonis, G.; Androutsos, O.; Lambrinou, C.-P.; Cardon, G.; Lindstrom, J.; Annemans, L.; Mateo-Gallego, R.; De Sabata, M.S.; Iotova, V.; Kivela, J.; et al. A school- and community-based intervention to promote healthy lifestyle and prevent type 2 diabetes in vulnerable families across Europe: Design and implementation of the Feel4Diabetes-study. Public Health Nutr. 2018, 21, 3281–3290. [Google Scholar] [CrossRef] [Green Version]
- Manios, Y.; Mavrogianni, C.; Lambrinou, C.P.; Cardon, G.; Lindström, J.; Iotova, V.; Tankova, T.; Civeira, F.; Kivelä, J.; Jancsó, Z.; et al. Two-stage, school and community-based population screening successfully identifies individuals and families at high-risk for type 2 diabetes: The Feel4Diabetes-study. BMC Endocr. Disord. 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, J.; Tuomilehto, J. The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Ulijaszek, S.J. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Grundy, S.M.; Becker, D.; Clark, L.T.; Cooper, R.S.; Denke, M.A.; Howard, J.; Hunninghake, D.B.; Illingworth, D.R.; Luepker, R.V.; McBride, P. Detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation 2002, 106, 3143–3421. [Google Scholar]
- Millán, J.; Pintó, X.; Muñoz, A.; Zúñiga, M.; Rubiés-Prat, J.; Pallardo, L.F.; Masana, L.; Mangas, A.; Hernández-Mijares, A.; González-Santos, P.; et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 2009, 5, 757. [Google Scholar]
- Ference, B.A. Mendelian randomization studies: Using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 2015, 26, 566–571. [Google Scholar] [CrossRef]
- Poli, A.; Barbagallo, C.M.; Cicero, A.F.; Corsini, A.; Manzato, E.; Trimarco, B.; Bernini, F.; Zimetti, F.; Bianchi, A.; Canzone, G.; et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol. Res. 2018, 134, 51–60. [Google Scholar] [CrossRef]
- Agardh, E.E.; Allebeck, P.; Hallqvist, J.; Moradi, T.; Sidorchuk, A. Type 2 diabetes incidence and socio-economic position: A systematic review and meta-analysis. Int. J. Epidemiol. 2011, 40, 804–818. [Google Scholar] [CrossRef] [Green Version]
- Shohaimi, S.; Boekholdt, S.M.; Luben, R.; Wareham, N.J.; Khaw, K.-T. Distribution of lipid parameters according to different socio-economic indicators- the EPIC-Norfolk prospective population study. BMC Public Health 2014, 14, 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santo, L.R.E.; Faria, T.O.; Silva, C.S.O.; Xavier, L.A.; Reis, V.C.; Mota, G.A.; Silveira, M.F.; Mill, J.G.; Baldo, M.P. Socioeconomic status and education level are associated with dyslipidemia in adults not taking lipid-lowering medication: A population-based study. Int. Health 2019. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, E. Overweight but unseen: A review of the underestimation of weight status and a visual normalization theory. Obes. Rev. 2017, 18, 1200–1209. [Google Scholar] [CrossRef]
- Duncan, D.T.; Wolin, K.Y.; Scharoun-Lee, M.; Ding, E.L.; Warner, E.T.; Bennett, G.G. Does perception equal reality? Weight misperception in relation to weight-related attitudes and behaviors among overweight and obese US adults. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Cottrell, C.; Chatterton, H.; Hill, J.; Hughes, R.; Wohlgemuth, C.; Holt, R.I.G. Identifying risk and preventing progression to Type 2 diabetes in vulnerable and disadvantaged adults: A pragmatic review. Diabet. Med. 2012, 30, 16–25. [Google Scholar] [CrossRef]
- Appel, L.J.; Clark, J.M.; Yeh, H.-C.; Wang, N.-Y.; Coughlin, J.W.; Daumit, G.; Miller, E.R.; Dalcin, A.; Jerome, G.J.; Geller, S.; et al. Comparative Effectiveness of Weight-Loss Interventions in Clinical Practice. N. Engl. J. Med. 2011, 365, 1959–1968. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.M.; Maher, C.; Vandelanotte, C.; Hingle, M.; Middelweerd, A.; Lopez, M.L.; Desmet, A.; Short, C.E.; Nathan, N.; Hutchesson, M.J.; et al. Physical Activity, Sedentary Behavior, and Diet-Related eHealth and mHealth Research: Bibliometric Analysis. J. Med. Internet Res. 2018, 20, e122. [Google Scholar] [CrossRef]
- Quiñonez, S.G.; Walthouwer, M.J.L.; Schulz, D.N.; De Vries, H.; Morrison, L.; Montagni, I. mHealth or eHealth? Efficacy, Use, and Appreciation of a Web-Based Computer-Tailored Physical Activity Intervention for Dutch Adults: A Randomized Controlled Trial. J. Med. Internet Res. 2016, 18, e278. [Google Scholar] [CrossRef] [Green Version]
Total (n = 1773) | |
---|---|
Age (years) | 40.8 (5.7) |
Sex | |
Males (%) | 35.0 |
Females (%) | 65.0 |
Region | |
Northern Europe (%) | 29.3 |
Southeastern Europe (%) | 70.7 |
Education | |
<12 years of education (%) | 25.3 |
>12 years of education (%) | 74.7 |
Anthropometrics | |
BMI (kg/m2) | 28.6 (5.5) |
Waist circumference | |
Males (cm) | 103.6 (12.0) |
Females (cm) | 90.2 (13.5) |
Health behaviors | |
Screen time (h/day) | 3.6 (1.8) |
MVPA (min/day) | 15.2 (39.3) |
Healthy Diet Score | 49.2 (12.6) |
Current smokers (%) | 26.1 |
Biochemical indices | |
Total cholesterol (mg/dL) | 195.1 (37.9) |
LDL cholesterol (mg/dL) | 120.9 (33.2) |
HDL cholesterol (mg/dL) | 53.1 (14.2) |
Triglycerides (mg/dL) | 112.9 (96.5) |
Total cholesterol/HDL | 3.9 (1.3) |
LDL/HDL | 2.5 (0.9) |
AIP | 0.3 (0.3) |
Proportion of participants benefiting at the first year of intervention for: | |
Total cholesterol (%) | 33.3 |
LDL cholesterol (%) | 39.6 |
HDL cholesterol (%) | 37.6 |
Triglycerides (%) | 40.1 |
Total cholesterol/HDL (%) | 37.4 |
LDL/HDL (%) | 41.5 |
AIP (%) | 53.2 |
TOTAL CHOLESTEROL | LDL CHOLESTEROL | HDL CHOLESTEROL | TRIGLYCERIDES | |||||
---|---|---|---|---|---|---|---|---|
Odds of Benefiting in First Year OR, 95% CI | Odds of Benefiting in Second Year OR, 95% CI | Odds of Benefiting in First Year OR, 95% CI | Odds of Benefiting in Second Year OR, 95% CI | Odds of Benefiting in First Year OR, 95% CI | Odds of Benefiting in Second Year OR, 95% CI | Odds of Benefiting in First Year OR, 95% CI | Odds of Benefiting in Second Year OR, 95% CI | |
Group | ||||||||
More intensive intervention | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Standard care | 0.92 (0.74, 1.13) | 1.00 (0.79, 1.26) | 0.90 (0.73, 1.11) | 1.09 (0.86, 1.37) | 1.28 (1.05, 1.58) | 1.03 (0.81, 1.32) | 1.01 (0.82, 1.23) | 1.18 (0.94, 1.48) |
Age (years) | ||||||||
<45 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
>45 | 0.84 (0.66, 1.07) | 0.90 (0.69, 1.17) | 0.88 (0.69, 1.11) | 1.06 (0.82, 1.38) | 1.15 (0.91, 1.46) | 1.16 (0.88, 1.53) | 0.82 (0.64, 1.04) | 0.79 (0.61, 1.02) |
Sex | ||||||||
Male (%) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Female (%) | 1.04 (0.82, 1.32) | 1.16 (0.90, 1.50) | 1.02 (0.81, 1.29) | 1.24 (0.95, 1.61) | 1.36 (1.06, 1.74) | 1.35 (1.01, 1.81) | 1.36 (1.06, 1.74) | 1.16 (0.98, 1.52) |
Region | ||||||||
Central/Northern Europe (%) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Southeastern Europe (%) | 1.22 (0.97, 1.53) | 1.21 (0.94, 1.57) | 1.28 (1.02, 1.61) | 1.10 (0.85, 1.42) | 1.25 (0.10, 1.56) | 1.02 (0.78, 1.34) | 0.96 (0.78, 1.20) | 1.42 (1.11, 1.83) |
Education | ||||||||
<12 years of education (%) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
>12 years of education (%) | 0.80 (0.61, 1.05) | 1.32 (0.97, 1.80) | 0.90 (0.69, 1.18) | 1.05 (0.77, 1.43) | 1.13 (0.86, 1.48) | 0.83 (0.60, 1.16) | 1.11 (0.85, 1.46) | 1.43 (1.04, 1.95) |
Occupation | ||||||||
Unemployed | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Employed | 0.72 (0.56, 0.94) | 0.89 (0.66, 1.19) | 0.76 (0.59, 0.98) | 0.91 (0.68, 1.23) | 1.07 (0.82, 1.40) | 0.92 (0.66, 1.27) | 0.84 (0.65, 1.09) | 0.91 (0.68, 1.23) |
Marital status | ||||||||
One-parent families | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Two-parent families | 1.01 (0.66, 1.56) | 0.95 (0.59, 1.54) | 1.01 (0.67, 1.53) | 0.96 (0.59, 1.56) | 1.01 (0.66, 1.54) | 1.03 (0.62, 1.70) | 1.06 (0.70, 1.60) | 1.70 (1.03, 2.79) |
Income status | ||||||||
It is difficult to cover my expenses | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
It is easy to cover my expenses | 1.06 (0.84, 1.33) | 1.02 (0.79, 1.31) | 0.89 (0.71, 1.11) | 0.91 (0.71, 1.17) | 1.06 (0.85, 1.33) | 1.22 (0.93, 1.59) | 1.03 (0.83, 1.28) | 1.42 (1.11, 1.83) |
Anthropometrics | ||||||||
BMI | ||||||||
<25 kg/m2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
>25 kg/m2 | 0.94 (0.74, 1.20) | 0.96 (0.74, 1.26) | 0.88 (0.69, 1.11) | 0.88 (0.67, 1.14) | 0.75 (0.59, 0.96) | 0.83 (0.61, 1.12) | 0.87 (0.69, 1.11) | 0.77 (0.59, 1.01) |
Waist circumference | ||||||||
<80 cm F, <94 cm M | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
>80 cm F, >94 cm M | 0.78 (0.56, 1.00) | 1.02 (0.77, 1.36) | 0.76 (0.59, 0.97) | 0.90 (0.68, 1.20) | 0.57 (0.46, 0.78) | 0.70 (0.51, 0.96) | 0.78 (0.60, 1.01) | 0.79 (0.54, 1.05) |
Health behaviors | ||||||||
Screen time | ||||||||
<2 h/day | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
>2 h/day | 0.85 (0.68, 1.06) | 1.01 (0.79, 1.29) | 0.93 (0.75, 1.15) | 0.91 (0.71, 1.16) | 1.24 (1.01, 1.54) | 0.86 (0.66, 1.11) | 1.04 (0.84, 1.28) | 0.85 (0.67, 1.08) |
MVPA | ||||||||
<60 min/day | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
>60 min/day | 0.94 (0.71, 1.25) | 0.67 (0.48, 0.91) | 0.94 (0.72, 1.24) | 0.79 (0.58, 1.09) | 1.17 (0.89, 1.53) | 1.15 (0.83, 1.60) | 0.94 (0.72, 1.22) | 0.92 (0.67, 1.25) |
Healthy Diet Score | ||||||||
<Fourth quartile | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
>Fourth quartile | 1.07 (0.81, 1.42) | 0.93 (0.68, 1.27) | 1.12 (0.85, 1.46) | 0.93 (0.68, 1.28) | 1.50 (1.15, 1.96) | 1.33 (0.96, 1.84) | 1.03 (0.79, 1.35) | 0.79 (0.58, 1.07) |
Smoking | ||||||||
Non- or former smokers | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Current smokers | 1.00 (0.77, 1.30) | 0.94 (0.71, 1.26) | 1.04 (0.81, 1.34) | 0.88 (0.65, 1.18) | 1.03 (0.80, 1.33) | 0.78 (0.57, 1.07) | 0.98 (0.76, 1.26) | 0.79 (0.59, 1.05) |
Health and eating perceptions | ||||||||
I believe health is determined by destiny | ||||||||
Disagree | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Agree | 1.21 (0.81, 1.80) | 0.86 (0.55, 1.36) | 1.09 (0.74, 1.61) | 1.11 (0.71, 1.74) | 0.97 (0.65, 1.44) | 1.21 (0.76, 1.93) | 0.96 (0.65, 1.43) | 0.83 (0.52, 1.31) |
I have little power for disease prevention | ||||||||
Disagree | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Agree | 0.94 (0.67, 1.32) | 0.90 (0.62, 1.31) | 0.83 (0.59, 1.15) | 1.01 (0.70, 1.47) | 0.82 (0.59, 1.15) | 0.80 (0.53, 1.22) | 1.11 (0.80, 1.55) | 0.73 (0.50, 1.08) |
I choose food without thinking | ||||||||
Disagree | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Agree | 0.94 (0.73, 1.22) | 0.95 (0.72, 1.26) | 0.83 (0.65, 1.08) | 0.87 (0.65, 1.16) | 0.92 (0.71, 1.18) | 0.85 (0.63, 1.15) | 0.93 (0.72, 1.19) | 1.00 (0.76, 1.32) |
Weight status perception | ||||||||
Accurate weight status perception | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Weight status is perceived as lower than actual weight | 0.85 (0.66, 1.10) | 1.03 (0.77, 1.38) | 0.75 (0.59, 0.97) | 0.96 (0.72, 1.28) | 0.72 (0.56, 0.93) | 0.91 (0.66, 1.25) | 0.97 (0.76, 1.25) | 1.02 (0.76, 1.36) |
TOTAL CHOLESTEROL/HDL | LDL CHOLESTEROL/HDL | AIP | ||||
---|---|---|---|---|---|---|
Odds of Benefiting in First Year OR, 95% CI | Odds of Benefiting in Second Year OR, 95% CI | Odds of Benefiting in First Year OR, 95% CI | Odds of Benefiting in Second Year OR, 95% CI | Odds of Benefiting in First Year OR, 95% CI | Odds of Benefiting in Second Year OR, 95% CI | |
Group | ||||||
More intensive intervention | 1 | 1 | 1 | 1 | 1 | 1 |
Standard care | 1.10 (0.90, 1.36) | 0.98 (0.77, 1.25) | 1.07 (0.87, 1.31) | 1.06 (0.84, 1.35) | 1.11 (0.92, 1.34) | 1.15 (0.93, 1.43) |
Age (years) | ||||||
<45 | 1 | 1 | 1 | 1 | 1 | 1 |
>45 | 1.10 (0.86, 1.39) | 1.16 (0.88, 1.52) | 1.02 (0.80, 1.29) | 1.02 (0.78, 1.34) | 1.01 (0.81, 1.27) | 1.17 (0.91, 1.49) |
Sex | ||||||
Males (%) | 1 | 1 | 1 | 1 | 1 | 1 |
Females (%) | 1.04 (0.80, 1.34) | 1.11 (0.83, 1.49) | 0.98 (0.77, 1.26) | 1.03 (0.78, 1.36) | 1.27 (1.00, 1.61) | 1.31 (1.01, 1.71) |
Region | ||||||
Central/Northern Europe (%) | 1 | 1 | 1 | 1 | 1 | 1 |
Southeastern Europe (%) | 1.64 (1.30, 2.07) | 1.25 (0.95, 1.64) | 1.57 (1.25, 1.96) | 1.00 (0.77, 1.30) | 1.05 (0.85, 1.29) | 0.97 (0.77, 1.22) |
Education | ||||||
<12 years of education (%) | 1 | 1 | 1 | 1 | 1 | 1 |
>12 years of education (%) | 1.02 (0.77, 1.33) | 1.10 (0.79, 1.52) | 0.87 (0.67, 1.14) | 1.07 (0.78, 1.47) | 1.27 (0.99, 1.63) | 1.33 (1.00, 1.78) |
Occupation | ||||||
Unemployed | 1 | 1 | 1 | 1 | 1 | 1 |
Employed | 0.89 (0.68, 1.16) | 0.84 (0.61, 1.15) | 0.95 (0.73, 1.23) | 0.86 (0.63, 1.17) | 0.86 (0.67, 1.10) | 1.02 (0.78, 1.35) |
Marital status | ||||||
One-parent families | 1 | 1 | 1 | 1 | 1 | 1 |
Two-parents families | 1.14 (0.74, 1.75) | 0.85 (0.52, 1.40) | 1.25 (0.82, 1.91) | 0.81 (0.50, 1.31) | 1.35 (0.91, 2.00) | 1.62 (1.03, 2.54) |
Income status | ||||||
It is difficult to cover my expenses | 1 | 1 | 1 | 1 | 1 | 1 |
It is easy to cover my expenses | 1.02 (0.81, 1.28) | 1.09 (0.84, 1.42) | 0.93 (0.74, 1.16) | 1.04 (0.81, 1.35) | 1.16 (0.94, 1.43) | 1.37 (1.08, 1.74) |
Anthropometrics | ||||||
BMI | ||||||
<25 kg/m2 | 1 | 1 | 1 | 1 | 1 | 1 |
>25 kg/m2 | 0.88 (0.69, 1.13) | 0.87 (0.65, 1.17) | 0.83 (0.65, 1.06) | 0.85 (0.64, 1.13) | 0.62 (0.49, 0.78) | 0.72 (0.56, 0.93) |
Waist circumference | ||||||
<80 cm F, <94 cm M | 1 | 1 | 1 | 1 | 1 | 1 |
>80 cm F, >94 cm M | 0.72 (0.55, 0.95) | 0.78 (0.57, 1.07) | 0.76 (0.59, 0.98) | 0.75 (0.56, 1.01) | 0.63 (0.49, 0.80) | 0.80 (0.61, 1.06) |
Health behaviors | ||||||
Screen time | ||||||
<2 h/day | 1 | 1 | 1 | 1 | 1 | 1 |
>2 h/day | 1.00 (0.80, 1.24) | 0.86 (0.67, 1.11) | 1.08 (0.87, 1.34) | 0.87 (0.68, 1.12) | 0.76 (0.62, 0.93) | 0.88 (0.70, 1.10) |
MVPA | ||||||
<60 min/day | 1 | 1 | 1 | 1 | 1 | 1 |
>60 min/day | 0.96 (0.72, 1.26) | 0.67 (0.48, 0.96) | 0.92 (0.70, 1.20) | 0.78 (0.56, 1.09) | 0.53 (0.92, 1.19) | 0.89 (0.67, 1.18) |
Healthy Diet Score | ||||||
<Fourth quartile | 1 | 1 | 1 | 1 | 1 | 1 |
>Fourth quartile | 1.20 (0.91, 1.58) | 1.33 (0.96, 1.84) | 1.12 (0.86, 1.47) | 1.30 (0.95, 1.79) | 0.93 (0.72, 1.19) | 0.86 (0.65, 1.15) |
Smoking | ||||||
Non- or former smokers | 1 | 1 | 1 | 1 | 1 | 1 |
Current smokers | 1.06 (0.82, 1.37) | 0.95 (0.70, 1.30) | 0.93 (0.72, 1.20) | 0.82 (0.61, 1.12) | 1.00 (0.79, 1.27) | 0.78 (0.59, 1.02) |
Health and eating perceptions | ||||||
I believe health is determined by destiny | ||||||
Disagree | 1 | 1 | 1 | 1 | 1 | 1 |
Agree | 0.99 (0.66, 1.48) | 1.13 (0.71, 1.79) | 1.04 (0.70, 1.54) | 1.46 (0.934, 2.28) | 1.08 (0.74, 1.56) | 1.00 (0.66, 1.53) |
I have little power for disease prevention | ||||||
Disagree | 1 | 1 | 1 | 1 | 1 | 1 |
Agree | 0.71 (0.50, 1.01) | 0.84 (0.56, 1.26) | 0.98 (0.71, 1.37) | 0.97 (0.66, 1.42) | 0.97 (0.71, 1.32) | 0.73 (0.51, 1.04) |
I choose food without thinking | ||||||
Disagree | 1 | 1 | 1 | 1 | 1 | 1 |
Agree | 0.76 (0.59, 0.99) | 0.93 (0.69, 1.26) | 0.82 (0.64, 1.06) | 1.05 (0.79, 1.40) | 0.86 (0.68, 1.09) | 0.95 (0.73, 1.23) |
Weight status perception | ||||||
Accurate weight status perception | 1 | 1 | 1 | 1 | 1 | 1 |
Weight status is perceived as lower than actual weight | 0.75 (0.58, 0.97) | 0.93 (0.68, 1.27) | 0.74 (0.58, 0.95) | 0.91 (0.67, 1.23) | 0.78 (0.61, 0.99) | 0.78 (0.59, 1.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatzi, K.; Moschonis, G.; Botsi, E.; Liatis, S.; Tsochev, K.; De Miguel-Etayo, P.; Kivelä, J.; Wikström, K.; Dimova, R.; Antal, E.; et al. Lipidemic Profile Changes over a Two-Year Intervention Period: Who Benefited Most from the Feel4Diabetes Program? Nutrients 2020, 12, 3736. https://doi.org/10.3390/nu12123736
Karatzi K, Moschonis G, Botsi E, Liatis S, Tsochev K, De Miguel-Etayo P, Kivelä J, Wikström K, Dimova R, Antal E, et al. Lipidemic Profile Changes over a Two-Year Intervention Period: Who Benefited Most from the Feel4Diabetes Program? Nutrients. 2020; 12(12):3736. https://doi.org/10.3390/nu12123736
Chicago/Turabian StyleKaratzi, Kalliopi, George Moschonis, Eirini Botsi, Stavros Liatis, Kaloyan Tsochev, Pilar De Miguel-Etayo, Jemina Kivelä, Katja Wikström, Roumyana Dimova, Emese Antal, and et al. 2020. "Lipidemic Profile Changes over a Two-Year Intervention Period: Who Benefited Most from the Feel4Diabetes Program?" Nutrients 12, no. 12: 3736. https://doi.org/10.3390/nu12123736
APA StyleKaratzi, K., Moschonis, G., Botsi, E., Liatis, S., Tsochev, K., De Miguel-Etayo, P., Kivelä, J., Wikström, K., Dimova, R., Antal, E., Lamiquiz-Moneo, I., Rurik, I., Cardon, G., Iotova, V., Makrilakis, K., Manios, Y., & on behalf of the Feel4Diabetes-Study Group. (2020). Lipidemic Profile Changes over a Two-Year Intervention Period: Who Benefited Most from the Feel4Diabetes Program? Nutrients, 12(12), 3736. https://doi.org/10.3390/nu12123736