Serum Vitamins D, B9 and B12 in Greek Patients with Inflammatory Bowel Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Assessment
2.3.1. Medical History
2.3.2. Quality of Life Assessment
2.3.3. Blood Sample Collection
2.3.4. Stool Sampling
2.3.5. Anthropometric Measurements
2.3.6. Dietary Intake
2.3.7. Biochemical Analyses
2.4. Statistical Analysis
3. Results
3.1. Analyses in Overall IBD Population
3.1.1. Serum 25(OH)D
3.1.2. Serum Vitamin B9
3.1.3. Serum Vitamin B12
3.1.4. Linear Regression Analysis
3.2. Analyses in CD and UC Patients Separately
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tontini, G.E.; Vecchi, M.; Pastorelli, L.; Neurath, M.F.; Neumann, H. Differential diagnosis in inflammatory bowel disease colitis: State of the art and future perspectives. World J. Gastroenterol. 2015, 21, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review. Lancet 2018, 390, 2769–2778. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, J.E.; Cho, M.L. Immunological pathogenesis of inflammatory bowel disease. Intestig. Res. 2018, 16, 26–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pinto, R.; Pietropaoli, D.; Chandar, A.K.; Ferri, C.; Cominelli, F. Association between inflammatory bowel disease and vitamin D deficiency: A systematic review and meta-analysis. Inflamm. Bowel Dis. 2015, 21, 2708–2717. [Google Scholar] [CrossRef] [Green Version]
- Mouzaoui, S.; Djerdjouri, B.; Makhezer, N.; Kroviarski, Y.; El-Benna, J.; Dang, P.M.-C. Tumor necrosis factor-α-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: Preventive effect of apocynin. Mediat. Inflamm. 2014, 2014, 312484. [Google Scholar] [CrossRef] [Green Version]
- Bernklev, T.; Jahnsen, J.; Aadland, E.; Sauar, J.; Schulz, T.; Lygren, I.; Henriksen, M.; Stray, N.; Kjellevold, O.; Vatn, M.; et al. IBSEN Study Group. Health-related quality of life in patients with inflammatory bowel disease five years after the initial diagnosis. Scand. J. Gastroenterol. 2004, 39, 365–373. [Google Scholar] [CrossRef]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.P.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Devalia, V.; Hamilton, M.S.; Molloy, A.M. British Committee for Standards in Haematology. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014, 166, 496–513. [Google Scholar] [CrossRef]
- Martin, J.; Radeke, H.H.; Dignass, A.; Stein, J. Current evaluation and management of anemia in patients with inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Kunisawa, J.; Hashimoto, E.; Ishikawa, I.; Kiyono, H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS ONE 2012, 7, e32094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oussalah, A.; Guéant, J.L.; Peyrin-Biroulet, L. Meta-analysis: Hyperhomocysteinaemia in inflammatory bowel diseases. Aliment. Pharm. Ther. 2011, 34, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Herbert, Y. Absorption of vitamin B12 and folic acid. Gastroenterology 1968, 54, 110–115. [Google Scholar] [CrossRef]
- Milman, N. Intestinal absorption of folic acid-New physiologic & molecular aspects. Indian J. Med. Res. 2012, 136, 725–728. [Google Scholar]
- Li, Y.C.; Chen, Y.; Du, J. Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. J. Steroid Biochem. Mol. Biol. 2015, 148, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Ooi, J.H.; Li, Y.; Rogers, C.J.; Cantorna, M.T. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J. Nutr. 2013, 143, 1679–1686. [Google Scholar] [CrossRef]
- Lewis, J.D.; Chuai, S.; Nessel, L.; Lichtenstein, G.R.; Aberra, F.N.; Ellenberg, J.H. Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.F.; Bradshaw, J.M. A simple index of Crohn’s-disease activity. Lancet 1980, 1, 514. [Google Scholar] [CrossRef]
- Guyatt, G.; Mitchell, A.; Irvine, E.J.; Singer, J.; Williams, N.; Goodacre, R.; Tompkins, C. A new measure of health status for clinical trials in inflammatory bowel disease. Gastroenterology 1989, 96, 804–810. [Google Scholar] [CrossRef]
- WHO. Global Database on Body Mass Index (BMI). Available online: https://www.who.int/nutrition/databases/bmi/en (accessed on 26 April 2019).
- Esterbauer, H.; Jurgens, G. Mechanistic and genetic aspects of susceptibility of LDL to oxidation. Curr. Opin. Lipidol. 1993, 4, 114–124. [Google Scholar] [CrossRef]
- Ndrepepa, G. Uric acid and cardiovascular disease. Clin. Chim. Acta 2018, 484, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Sitar, M.E.; Aydin, S.; Cakatay, U. Human serum albumin and its relation with oxidative stress. Clin. Lab. 2013, 59, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Parodi, O.; De Chiara, B.; Baldassarre, D.; Parolini, M.; Caruso, R.; Pustina, L.; Parodi, G.; Campolo, J.; Sedda, V.; Baudo, F.; et al. Plasma cysteine and glutathione are independent markers of postmethionine load endothelial dysfunction. Clin. Biochem. 2007, 40, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Papada, E.; Torović, L.; Amerikanou, C.; Kalogeropoulos, N.; Smyrnioudis, I.; Kaliora, A.C. Modulation of free amino acid profile in healthy humans administered with Mastiha terpenes. An Open-Label Trial. Nutrients 2018, 10, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. Vitamin D status: Measurement, interpretation, and clinical application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Scotti, G.B.; Afferri, M.T.; De Carolis, A.; Vaiarello, V.; Fassino, V.; Ferrone, F.; Minisola, S.; Nieddu, L.; Vernia, P. Factors affecting vitamin D deficiency in active inflammatory bowel diseases. Dig. Liver Dis. 2019, 51, 657–662. [Google Scholar] [CrossRef]
- Lu, C.; Yang, J.; Yu, W.; Li, D.; Xiang, Z.; Lin, Y.; Yu, C. Association between D level, ultraviolet exposure, geographical location, and inflammatory bowel disease activity: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0132036. [Google Scholar] [CrossRef]
- Jaimea, F.; Riutorta, M.C.; Alvarez-Lobosb, M.; Hoyos-Bachiloglu, R.; Camargo, C.A., Jr.; Borzutzky, A. Solar radiation is inversely associated with inflammatory bowel disease admissions. Scand. J. Gastroenterol. 2017, 52, 730–737. [Google Scholar] [CrossRef]
- Fu, Y.T.; Chatur, N.; Cheong-Lee, C.; Salh, B. Hypovitaminosis D in adults with inflammatory bowel disease: Potential role of ethnicity. Dig. Dis. Sci. 2012, 57, 2144–2148. [Google Scholar] [CrossRef]
- Fletcher, J.; Cooper, S.C.; Ghosh, S.; Hewison, M. The role of vitamin D in inflammatory bowel disease: Mechanism to management. Nutrients 2019, 11, 1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhoury, H.M.A.; Kvietys, P.R.; AlKattan, W.; Al Anouti, F.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105663. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Ardehali, S.H.; Hajimohammadebrahim-Ketabforoush, M.; Shariatpanahi, Z.V. Association of intestinal permeability with admission vitamin D deficiency in patients who are critically ill. J. Investig. Med. 2020, 68, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Gubatan, J.; Chou, N.D.; Nielsen, O.H.; Moss, A.C. Systematic review with meta-analysis: Association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease. Aliment. Pharm. Ther. 2019, 50, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Kilby, K.; Mathias, H.; Boisvenue, L.; Heisler, C.; Jones, J.L. Micronutrient absorption and related outcomes in people with inflammatory bowel disease: A review. Nutrients 2019, 11, 1388. [Google Scholar] [CrossRef] [Green Version]
- Shu, W.; Pang, Z.; Xu, C.; Lin, J.; Li, G.; Wu, W.; Sun, S.; Li, J.; Li, X.; Liu, Z. Anti-TNF-α monoclonal antibody therapy improves anemia through downregulating hepatocyte hepcidin expression in inflammatory bowel disease. Mediat. Inflamm. 2019, 2019, 4038619. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, F.; Duca, L.; Pisani, L.F.; Rigolini, R.; Spina, L.; Tontini, G.E.; Munizio, N.; Costa, E.; Cappellini, M.D.; Vecchi, M.; et al. Anti-TNF-mediated modulation of prohepcidin improves iron availability in inflammatory bowel disease, in an IL-6-mediated fashion. Can. J. Gastroenterol. Hepatol. 2017, 2017, 6843976. [Google Scholar] [CrossRef]
- Fialho, A.; Fialho, A.; Kochhar, G.; Shen, B. Association between vitamin D deficiency and anemia in inflammatory bowel disease patients with ileostomy. J. Coloproctol. 2015, 35, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Syed, S.; Michalski, E.S.; Tangpricha, V.; Chesdachai, S.; Kumar, A.; Prince, J.; Ziegler, T.R.; Suchdev, P.S.; Kugathasan, S.; Ms, S.S.M. Vitamin D status is associated with hepcidin and hemoglobin concentrations in children with inflammatory bowel disease. Inflamm. Bowel Dis. 2017, 2, 1650–1658. [Google Scholar] [CrossRef] [Green Version]
- Mechie, N.C.; Mavropoulou, E.; Ellenrieder, V.; Petzold, G.; Kunsch, S.; Neesse, A.; Amanzada, A. Serum vitamin D but not zinc levels are associated with different disease activity status in patients with inflammatory bowel disease. Medicine 2019, 98, e15172. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hirota, K.; Nagahama, K.; Ohkawa, K.; Takahashi, T.; Nomura, T.; Sakaguchi, S. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 2007, 27, 145–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.H.; Huang, T.C.; Lin, B.F. Folate deficiency affects dendritic cell function and subsequent T helper cell differentiation. J. Nutr. Biochem. 2017, 41, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Ghishan, F.K.; Kiela, P.R. Vitamins and minerals in inflammatory bowel disease. Gastroenterol. Clin. N. Am. 2017, 46, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Naderi, N.; House, J.D. Recent developments in folate nutrition. Adv. Food Nutr. Res. 2018, 83, 195–213. [Google Scholar]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Liu, Y.; Guo, H.; Jabir, M.S.; Liu, X.; Cui, W.; Li, D. Associations between folate and vitamin B12 levels and inflammatory bowel disease: A meta-analysis. Nutrients 2017, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Battat, R.; Kopylov, U.; Szilagyi, A.; Saxena, A.; Rosenblatt, D.S.; Warner, M.; Bessissow, T.; Seidman, E.; Bitton, A. Vitamin B12 deficiency in inflammatory bowel disease: Prevalence, risk factors, evaluation, and management. Inflamm. Bowel Dis. 2014, 20, 1120–1128. [Google Scholar] [CrossRef]
- Erzin, Y.; Uzun, H.; Celik, A.F.; Aydin, S.; Dirican, A.; Uzunismail, H. Hyperhomocysteinemia in inflammatory bowel disease patients without past intestinal resections: Correlations with cobalamin, pyridoxine, folate concentrations, acute phase reactants, disease activity, and prior thromboembolic complications. J. Clin. Gastroenterol. 2008, 42, 481–486. [Google Scholar] [CrossRef]
- Lambert, D.; Benhayoun, S.; Adjalla, C.; Gelot, M.A.; Renkes, P.; Felden, F.; Gerard, P.; Belleville, F.; Gaucher, P.; Guéant, J.-L.; et al. Crohn’s disease and vitamin B12 metabolism. Dig. Dis. Sci. 1996, 41, 1417–1422. [Google Scholar] [CrossRef]
All (N = 87) | CD (N = 54) | UC (N = 33) | p | |
---|---|---|---|---|
Sex (N) | 46 F/41 M | 26 F/28 M | 15 F/18 M | |
Age (mean ± SD) | 39.6 ± 13.1 years | 39.1 ± 13.5 years | 40.3 ± 12.4 years | 0.64 |
Smoking (N) | 55 NO/31 YES/1 NA | 19 NO/35 YES | 20 NO/12 YES/1 NA | |
BMI (mean ± SD) | 24.6 ± 4.9 kg/m2 | 24.8 ± 5.2 kg/m2 | 24.4 ± 4.3 kg/m2 | 0.79 |
Disease duration (mean ± SD) | 9.3 ± 7.0 years | 9.5 ± 7.1 years | 9.1 ± 6.8 years | 0.87 |
Disease location (N) | ||||
Colonic | 5 (5.8%) | 3 (5.5%) | 2 (6.1%) | |
Ileal-colonic | 19 (21.8%) | 19 (35.2%) | 0 (0.0%) | |
Ileal | 16 (18.4%) | 16 (29.6%) | 0 (0.0%) | |
Left-sided | 8 (9.2%) | 1 (1.9%) | 7 (21.2%) | |
Pancolitis | 20 (23.0%) | 0 (0.0%) | 20 (60.6%) | |
Other | 19 (21.8%) | 15 (27.8%) | 4 (12.1%) | |
Disease activity (N) | ||||
Relapse | 38 (43.7%) | 21 (38.9%) | 17 (51.5%) | |
Remission | 49 (56.3%) | 33 (61.1%) | 16 (48.5%) | |
HBI | 4.1 ± 2.8 | 4.1 ± 2.8 | - | |
PMS | 2.5 ± 2.1 | - | 2.5 ± 2.1 | |
IBDQ score | 162.0 ± 30.7 | 161.0 ± 30.3 | 163.7 ± 31.9 | 0.56 |
Serum Vitamins | All (N = 87) | CD (N = 54) | UC (N = 33) | p |
---|---|---|---|---|
25(OH)D (ng/mL) (N = 74) | 20.7 ± 7.5 | 20.4 ± 6.8 | 20.8 ± 7.7 | 0.79 |
<20 ng/mL (N = 32) | 14.2 ± 3.1 | 14.7 ± 3.2 | 13.1 ± 2.9 | 0.16 |
≥20 ng/mL (N = 42) | 25.5 ± 5.2 | 25.4 ± 4.9 | 25.5 ± 5.6 | 0.93 |
Vitamin B9 (ng/mL) (N = 74) | 5.3 ± 2.7 | 5.3 ± 2.5 | 5.8 ± 2.9 | 0.54 |
<3 ng/mL (N = 16) | 2.5 ± 0.4 | 2.4 ± 0.5 | 2.5 ± 0.2 | 0.91 |
≥3 ng/mL (N = 58) | 6.3 ± 2.4 | 6.2 ± 2.2 | 6.5 ± 2.8 | 0.80 |
Vitamin B12 (pg/mL) (N = 87) | 447.1 ± 244.1 | 450.4 ± 286.4 | 430.3 ± 113.4 | 0.25 |
<200 pg/mL (N = 5) | 155.2 ± 18.6 | 160.8 ± 16.0 | 133.0 | - |
≥200 pg/mL (N = 82) | 460.3 ± 231.2 | 473.6 ± 285.2 | 439.6 ± 101.7 | 0.37 |
Dietary Intake | 25(OH)D < 20 ng/mL (N = 32) | 25(OH)D ≥ 20 ng/mL (N = 42) | p | Vitamin B9 < 3 ng/mL (N = 16) | Vitamin B9 ≥ 3 ng/mL (N = 58) | p |
---|---|---|---|---|---|---|
Vitamin D (µg) | 1.4 ± 1.2 | 1.5 ± 1.4 | 0.89 | 1.4 ± 1.2 | 1.5 ± 1.4 | 0.95 |
Vitamin B9 total (µg) | 310.7 ± 173.4 | 351.1 ± 209.5 | 0.50 | 250.2 ± 198.0 | 305.1 ± 152.5 | 0.038 |
DFE intake (µg) | 313.3 ± 155.8 | 424.9 ± 284.1 | 0.88 | 235.8 ± 90.1 | 358.5 ± 192.2 | 0.015 |
Vitamin B12 (µg) | 4.2 ± 4.6 | 4.0 ± 4.5 | 0.78 | 4.1 ± 4.5 | 3.9 ± 4.1 | 0.37 |
Serum Vitamins | Unadjusted | Model 1 | Model 2 | |||
---|---|---|---|---|---|---|
Beta | p | Beta | p | Beta | p | |
25(OH)D (ng/mL) | ||||||
DFE dietary intake (µg) | 0.008 | 0.033 | 0.008 | 0.040 | 0.005 | 0.45 |
Serum Fe (μg/dL) | 0.070 | 0.010 | 0.058 | 0.032 | 0.083 | 0.005 |
Vitamin B9 (ng/mL) | ||||||
Vitamin B9 total dietary intake (µg) | 0.000 | 0.16 | 0.000 | 0.20 | 0.000 | 0.67 |
DFE dietary intake (µg) | 0.000 | 0.018 | 0.000 | 0.016 | 0.000 | 0.59 |
Serum IL-6 (pg/mL) | −0.006 | 0.027 | −0.006 | 0.052 | −0.004 | 0.23 |
IBDQ | 0.002 | 0.020 | 0.002 | 0.032 | 0.000 | 0.73 |
HBI | −0.034 | 0.002 | −0.037 | 0.001 | −0.028 | 0.17 |
Total antioxidant capacity (lag time, sec) | −5.533 × 10−5 | 0.06 | −5.066 × 10−5 | 0.09 | 1.100 × 10−5 | 0.75 |
Vitamin B12 (pg/mL) | ||||||
Serum TBIL (mg/dL) | 0.273 | 0.033 | 0.317 | 0.018 | 0.357 | 0.020 |
Serum DBIL (mg/dL) | 0.558 | 0.039 | 0.723 | 0.015 | 0.727 | 0.033 |
Serum albumin (g/dL) | 0.015 | 0.039 | 0.012 | 0.11 | 0.011 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioxari, A.; Amerikanou, C.; Papada, E.; Zioga, E.; Georgoulis, A.D.; Bamias, G.; Kaliora, A.C. Serum Vitamins D, B9 and B12 in Greek Patients with Inflammatory Bowel Diseases. Nutrients 2020, 12, 3734. https://doi.org/10.3390/nu12123734
Gioxari A, Amerikanou C, Papada E, Zioga E, Georgoulis AD, Bamias G, Kaliora AC. Serum Vitamins D, B9 and B12 in Greek Patients with Inflammatory Bowel Diseases. Nutrients. 2020; 12(12):3734. https://doi.org/10.3390/nu12123734
Chicago/Turabian StyleGioxari, Aristea, Charalampia Amerikanou, Efstathia Papada, Evangelia Zioga, Andreas D. Georgoulis, George Bamias, and Andriana C. Kaliora. 2020. "Serum Vitamins D, B9 and B12 in Greek Patients with Inflammatory Bowel Diseases" Nutrients 12, no. 12: 3734. https://doi.org/10.3390/nu12123734
APA StyleGioxari, A., Amerikanou, C., Papada, E., Zioga, E., Georgoulis, A. D., Bamias, G., & Kaliora, A. C. (2020). Serum Vitamins D, B9 and B12 in Greek Patients with Inflammatory Bowel Diseases. Nutrients, 12(12), 3734. https://doi.org/10.3390/nu12123734