Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms
Abstract
:1. Introduction
2. Methods
3. Discussion
3.1. Prevalence
3.1.1. Prevalence and Severity Measurement of Tobacco Use Disorder
3.1.2. Prevalence and Severity Measurement of Food Addiction
3.1.3. Theories of Food Addiction
3.2. Biology
3.2.1. Neurobiological Parallels between Food Addiction and Tobacco Use Disorder
3.2.2. Neurobiology Unique to Tobacco Use Disorder
3.2.3. Neurobiology Unique to Food Addiction
3.3. Role of the Gut Microbiome
3.3.1. Parallels in the Role of Gut Microbiome in Both Tobacco Use Disorder and Food Addiction
3.3.2. Tobacco Use Disorder and the Gut Microbiome
3.3.3. Food Addiction and the Gut Microbiome
3.4. Psychological
3.4.1. Childhood Adversity
3.4.2. Overlap in Childhood Adversity of Tobacco Use Disorder and Food Addiction
3.4.3. Childhood Adversity and Tobacco Use Disorder
3.4.4. Childhood Adversity and Food Addiction
3.4.5. Attachment Insecurity
3.4.6. Overlap in Attachment Insecurity of Tobacco Use Disorder and Food Addiction
3.4.7. Attachment Insecurity and Tobacco Use Disorder
3.4.8. Attachment Insecurity and Food Addiction
3.5. Treatment
3.5.1. Treating Tobacco Use Disorder
3.5.2. Treatment Options for Food Addiction
4. Current and Future Research Directions
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdelaal, M.; Le Roux, C.W.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017, 5, 161. [Google Scholar] [CrossRef] [Green Version]
- Jamal, A.; Phillips, E.; Gentzke, A.S.; Homa, D.M.; Babb, S.D.; King, B.A.; Neff, L.J. Current Cigarette Smoking Among Adults — United States, 2016. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 53–59. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Press: Washington, DC, USA, 2013. [Google Scholar]
- Schulte, E.M.; Joyner, M.A.; Potenza, M.N.; Grilo, C.M.; Gearhardt, A.N. Current Considerations Regarding Food Addiction. Curr. Psychiatry Rep. 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Randolph, T.G. The Descriptive Features of Food Addiction. Addictive Eating and Drinking. Q. J. Stud. Alcohol 1956, 17, 198–224. [Google Scholar] [CrossRef]
- Meule, A.; Gearhardt, A.N. Food Addiction in the Light of DSM-5. Nutrients 2014, 6, 3653–3671. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Preliminary validation of the Yale Food Addiction Scale. Appetite 2009, 52, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Lang, J.J.; Drucker, A.M.; Gotay, C.; Kozloff, N.; Mate, K.; Patten, S.; Orpana, H.M.; Afshin, A.; Cahill, L.E. Assessment of the burden of diseases and injuries attributable to risk factors in Canada from 1990 to 2016: An analysis of the Global Burden of Disease Study. CMAJ Open 2019, 7, E140–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criscitelli, K.; Avena, N.M. The neurobiological and behavioral overlaps of nicotine and food addiction. Prev. Med. 2016, 92, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Government of Canada. Canadian Tobacco, Alcohol and Drugs Survey (CTADS): Summary of Results for 2017. 2018. Available online: https://www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugs-survey/2017-summary.html (accessed on 4 September 2020).
- Government of Canada. Summary of Results for the Canadian Student Tobacco, Alcohol and Drugs Survey 2018–2019. Available online: https://www.canada.ca/en/health-canada/services/canadian-student-tobacco-alcohol-drugs-survey/2018-2019-summary.html (accessed on 4 September 2020).
- Spindle, T.R.; Hiler, M.M.; Cooke, M.E.; Eissenberg, T.; Kendler, K.S.; Dick, D.M. Electronic cigarette use and uptake of cigarette smoking: A longitudinal examination of U.S. college students. Addict. Behav. 2017, 67, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Tobacco-Related Mortality. 2020. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/tobacco_related_mortality/index.htm (accessed on 4 September 2020).
- Ward, R.C.; Tanner, N.T.; A Silvestri, G.; Gebregziabher, M. Impact of Tobacco Dependence in Risk Prediction Models for Lung Cancer Diagnoses and Deaths. JNCI Cancer Spectr. 2019, 3, pkz014. [Google Scholar] [CrossRef]
- Pomerleau, C.S.; Carton, S.M.; Lutzke, M.L.; Flessland, K.A.; Pomerleau, O.F. Reliability of the fagerstrom tolerance questionnaire and the fagerstrom test for nicotine dependence. Addict. Behav. 1994, 19, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Borland, R.; Yong, H.-H.; O’Connor, R.J.; Hyland, A.; Thompson, M.E. The reliability and predictive validity of the Heaviness of Smoking Index and its two components: Findings from the International Tobacco Control Four Country study. Nicotine Tob. Res. 2010, 12, S45–S50. [Google Scholar] [CrossRef] [Green Version]
- Penzenstadler, L.; Soares, C.; Karila, L.; Khazaal, Y. Systematic Review of Food Addiction as Measured with the Yale Food Addiction Scale: Implications for the Food Addiction Construct. Curr. Neuropharmacol. 2019, 17, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Meule, A.; Gearhardt, A.N. Five years of the Yale Food Addiction Scale: Taking stock and moving forward. Curr. Addict. Rep. 2014, 1, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Mies, G.W.; Treur, J.L.; Larsen, J.K.; Halberstadt, J.; Pasman, J.A.; Vink, J.M. The prevalence of food addiction in a large sample of adolescents and its association with addictive substances. Appetite 2017, 118, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Lemeshow, A.R.; Gearhardt, A.N.; Genkinger, J.M.; Corbin, W.R. Assessing the psychometric properties of two food addiction scales. Eat. Behav. 2016, 23, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Supplemental Material for Development of the Yale Food Addiction Scale Version 2.0. Psychol. Addict. Behav. 2016, 30, 113–121. [CrossRef] [Green Version]
- Burrows, T.L.; Kay-Lambkin, F.; Pursey, K.; Skinner, J.; Dayas, C. Food addiction and associations with mental health symptoms: A systematic review with meta-analysis. J. Hum. Nutr. Diet. 2018, 31, 544–572. [Google Scholar] [CrossRef]
- Pursey, K.M.; Stanwell, P.; Gearhardt, A.N.; Collins, C.; Burrows, T. The Prevalence of Food Addiction as Assessed by the Yale Food Addiction Scale: A Systematic Review. Nutr. 2014, 6, 4552–4590. [Google Scholar] [CrossRef] [Green Version]
- Goluza, I.; Borchard, J.P.; Kiarie, E.; Mullan, J.; Pai, N. Exploration of food addiction in people living with schizophrenia. Asian J. Psychiatry 2017, 27, 81–84. [Google Scholar] [CrossRef]
- Ayaz, A.; Nergiz-Unal, R.; Dedebayraktar, D.; Akyol, A.; Pekcan, A.G.; Besler, H.T.; Büyüktuncer, Z. How does food addiction influence dietary intake profile? PLoS ONE 2018, 13, e0195541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemeshow, A.R.; Rimm, E.B.; Hasin, D.S.; Gearhardt, A.N.; Flint, A.J.; Field, A.E.; Genkinger, J.M. Food and beverage consumption and food addiction among women in the Nurses’ Health Studies. Appetite 2018, 121, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Ifland, J.; Preuss, H.; Marcus, M.; Rourke, K.; Taylor, W.; Burau, K.; Jacobs, W.; Kadish, W.; Manso, G. Refined food addiction: A classic substance use disorder. Med Hypotheses 2009, 72, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Bassareo, V.; Di Chiara, G. Differential Influence of Associative and Nonassociative Learning Mechanisms on the Responsiveness of Prefrontal and Accumbal Dopamine Transmission to Food Stimuli in Rats FedAd Libitum. J. Neurosci. 1997, 17, 851–861. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, L.; Hoebel, B.G. Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci. 1988, 42, 1705–1712. [Google Scholar] [CrossRef]
- Roitman, M.F.; Stuber, G.D.; Phillips, P.E.M.; Wightman, R.M.; Carelli, R.M. Dopamine Operates as a Subsecond Modulator of Food Seeking. J. Neurosci. 2004, 24, 1265–1271. [Google Scholar] [CrossRef]
- Baik, J.-H. Dopamine signaling in food addiction: Role of dopamine D2 receptors. BMB Rep. 2013, 46, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-J.; Volkow, N.D.; Logan, J.; Pappas, N.R.; Wong, C.T.; Zhu, W.; Netusll, N.; Fowler, J.S. Brain dopamine and obesity. Lancet 2001, 357, 354–357. [Google Scholar] [CrossRef]
- Martinez, D.; Broft, A.; Foltin, R.W.; Slifstein, M.; Hwang, D.-R.; Huang, Y.; Perez, A.; Frankel, W.G.; Cooper, T.; Kleber, H.D.; et al. Cocaine Dependence and D2 Receptor Availability in the Functional Subdivisions of the Striatum: Relationship with Cocaine-Seeking Behavior. Neuropsychopharmacol. 2004, 29, 1190–1202. [Google Scholar] [CrossRef] [Green Version]
- Martinez, D.; Gil, R.; Slifstein, M.; Hwang, D.-R.; Huang, Y.; Perez, A.; Kegeles, L.; Talbot, P.; Evans, S.; Krystal, J.; et al. Alcohol Dependence Is Associated with Blunted Dopamine Transmission in the Ventral Striatum. Biol. Psychiatry 2005, 58, 779–786. [Google Scholar] [CrossRef]
- Martinez, D.; Saccone, P.A.; Liu, F.; Slifstein, M.; Orlowska, D.; Grassetti, A.; Cook, S.H.; Broft, A.; Van Heertum, R.; Comer, S.D. Deficits in Dopamine D2 Receptors and Presynaptic Dopamine in Heroin Dependence: Commonalities and Differences with Other Types of Addiction. Biol. Psychiatry 2012, 71, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Fehr, C.; Yakushev, I.; Hohmann, D.P.N.; Buchholz, H.-G.; Landvogt, M.D.C.; Deckers, H.; Eberhardt, A.; Kläger, M.; Smolka, M.D.M.N.; Scheurich, A.; et al. Association of Low Striatal Dopamine D2Receptor Availability With Nicotine Dependence Similar to That Seen with Other Drugs of Abuse. Am. J. Psychiatry 2008, 165, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Bassareo, V.; Di Chiara, G. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neurosci. 1999, 89, 637–641. [Google Scholar] [CrossRef]
- Pontieri, F.E.; Tanda, G.; Orzi, F.; Di Chiara, G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nat. Cell Biol. 1996, 382, 255–257. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Thanos, P.K.; Fowler, J.S. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. J. Addict. Dis. 2004, 23, 39–53. [Google Scholar] [CrossRef]
- Brody, A.L.; Olmstead, R.E.; London, E.D.; Farahi, J.; Meyer, J.H.; Grossman, P.; Lee, G.S.; Huang, J.; Hahn, E.L.; Mandelkern, M.A. Smoking-Induced Ventral Striatum Dopamine Release. Am. J. Psychiatry 2004, 161, 1211–1218. [Google Scholar] [CrossRef]
- Barrett, S.P.; Boileau, I.; Okker, J.; Pihl, R.; Dagher, A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse 2004, 54, 65–71. [Google Scholar] [CrossRef]
- Scott, D.J.; Domino, E.F.; Heitzeg, M.M.; Koeppe, R.A.; Ni, L.; Guthrie, S.; Zubieta, J. Smoking modulation of mu-opioid and dopamine D2 receptor-mediated neurotransmission in humans. Neuropsychopharmacology 2007, 32, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, A.J.; Lingford-Hughes, A.R.; Egerton, A.; Nutt, D.; Grasby, P.M. The effect of nicotine on striatal dopamine release in man: A [11C]raclopride PET study. Synapse 2007, 61, 637–645. [Google Scholar] [CrossRef]
- Takahashi, H.; Fujimura, Y.; Hayashi, M.; Takano, H.; Kato, M.; Okubo, Y.; Kanno, I.; Ito, H.; Suhara, T. Enhanced dopamine release by nicotine in cigarette smokers: A double-blind, randomized, placebo-controlled pilot study. Int. J. Neuropsychopharmacol. 2007, 11, 413–417. [Google Scholar] [CrossRef]
- Gallezot, J.-D.; Kloczynski, T.; Weinzimmer, D.; Labaree, D.; Zheng, M.-Q.; Lim, K.; Rabiner, E.A.; Ridler, K.; Pittman, B.; Huang, Y.; et al. Imaging Nicotine- and Amphetamine-Induced Dopamine Release in Rhesus Monkeys with [11C]PHNO vs [11C]raclopride PET. Neuropsychopharmacology 2014, 39, 866–874. [Google Scholar] [CrossRef]
- Le Foll, B.; Guranda, M.; A Wilson, A.; Houle, S.; Rusjan, P.M.; Wing, V.C.; Zawertailo, L.; E Busto, U.; Selby, P.; Brody, A.L.; et al. Elevation of Dopamine Induced by Cigarette Smoking: Novel Insights from a [11C]-(+)-PHNO PET Study in Humans. Neuropsychopharmacology 2014, 39, 415–424. [Google Scholar] [CrossRef]
- Di Ciano, P.; Tyndale, R.F.; Mansouri, E.; Hendershot, C.S.; A Wilson, A.; Lagzdins, D.; Houle, S.; Boileau, I.; Le Foll, B. Influence of Nicotine Metabolism Ratio on [11C]-(+)-PHNO PET Binding in Tobacco Smokers. Int. J. Neuropsychopharmacol. 2018, 21, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Chiuccariello, L.; Boileau, I.; Guranda, M.; Rusjan, P.M.; Wilson, A.A.; Zawertailo, L.; Houle, S.; Busto, U.; Le Foll, B. Presentation of Smoking-Associated Cues Does Not Elicit Dopamine Release after One-Hour Smoking Abstinence: A [11C]-(+)-PHNO PET Study. PLoS ONE 2013, 8, e60382. [Google Scholar] [CrossRef]
- Dagher, A. The neurobiology of appetite: Hunger as addiction. Int. J. Obes. 2009, 33, S30–S33. [Google Scholar] [CrossRef] [Green Version]
- Pelchat, M.L. Food Addiction in Humans. J. Nutr. 2009, 139, 620–622. [Google Scholar] [CrossRef]
- Tang, D.; Fellows, L.K.; Small, D.M.; Dagher, A. Food and drug cues activate similar brain regions: A meta-analysis of functional MRI studies. Physiol. Behav. 2012, 106, 317–324. [Google Scholar] [CrossRef]
- Blumenthal, D.M.; Gold, M.S. Neurobiology of food addiction. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 359–365. [Google Scholar] [CrossRef]
- Small, D.M.; Zatorre, R.J.; Dagher, A.; Evans, A.C.; Jones-Gotman, M. Changes in brain activity related to eating chocolate: From pleasure to aversion. Brain 2001, 124, 1720–1733. [Google Scholar] [CrossRef] [Green Version]
- Small, D.M.; Jones-Gotman, M.; Daghera, A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage 2003, 19, 1709–1715. [Google Scholar] [CrossRef]
- Stein, E.A.; Pankiewicz, J.; Harsch, H.H.; Cho, J.-K.; Fuller, S.A.; Hoffmann, R.G.; Hawkins, M.; Rao, S.M.; Bandettini, P.A.; Bloom, A.S. Nicotine-Induced Limbic Cortical Activation in the Human Brain: A Functional MRI Study. Am. J. Psychiatry 1998, 155, 1009–1015. [Google Scholar] [CrossRef]
- Heishman, S.J.; Kleykamp, B.A.; Singleton, E.G. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 2010, 210, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Due, D.L.; Huettel, S.A.; Hall, W.G.; Rubin, D.C. Activation in Mesolimbic and Visuospatial Neural Circuits Elicited by Smoking Cues: Evidence from Functional Magnetic Resonance Imaging. Am. J. Psychiatry 2002, 159, 954–960. [Google Scholar] [CrossRef]
- David, S.P.; Munafò, M.R.; Johansen-Berg, H.; Smith, S.; Rogers, R.D.; Matthews, P.M.; Walton, R. Ventral Striatum/Nucleus Accumbens Activation to Smoking-Related Pictorial Cues in Smokers and Nonsmokers: A Functional Magnetic Resonance Imaging Study. Biol. Psychiatry 2005, 58, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Azizian, A.; Monterosso, J.; O’Neill, J.; London, E.D. Magnetic Resonance Imaging Studies of Cigarette Smoking. Bone Regul. Osteoporos. Ther. 2009, 192, 113–143. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Zoli, M.; Rimondini, R.; Léna, C.; Marubio, L.M.; Pich, E.M.; Fuxe, K.; Changeux, J.P. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998, 391, 173–177. [Google Scholar] [CrossRef]
- Epping-Jordan, M.P.; Picciotto, M.R.; Changeux, J.-P.; Pich, E.M. Assessment of nicotinic acetylcholine receptor subunit contributions to nicotine self-administration in mutant mice. Psychopharmacology 1999, 147, 25–26. [Google Scholar] [CrossRef]
- Koranda, J.L.; Cone, J.J.; McGehee, D.S.; Roitman, M.F.; Beeler, J.A.; Zhuang, X. Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J. Neurophysiol. 2013, 111, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, K.P.; Esterlis, I.; McKee, S.; Bois, F.; Alagille, D.; Tamagnan, G.D.; Seibyl, J.P.; Krishnan-Sarin, S.; Staley, J.K. Beta2* nicotinic acetylcholine receptors modulate pain sensitivity in acutely abstinent tobacco smokers. Nicotine Tob. Res. 2010, 12, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Brunzell, D.H.; Boschen, K.E.; Hendrick, E.S.; Beardsley, P.M.; McIntosh, J.M. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine. Neuropsychopharmacology 2010, 35, 665–673. [Google Scholar] [CrossRef]
- Perry, D.C.; Xiao, Y.; Nguyen, H.N.; Musachio, J.L.; Dávila-García, M.I.; Kellar, K.J. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J. Neurochem. 2002, 82, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Mamede, M.; Ishizu, K.; Ueda, M.; Mukai, T.; Iida, Y.; Fukuyama, H.; Saga, T.; Saji, H. Quantification of human nicotinic acetylcholine receptors with 123I-5IA SPECT. J. Nucl. Med. 2004, 45, 1458–1470. [Google Scholar] [PubMed]
- Ding, Y.S.; Gatley, S.J.; Fowler, J.S.; Volkow, N.D.; Aggarwal, D.; Logan, J.; Dewey, S.L.; Liang, F.; Carroll, F.I.; Kuhar, M.J. Mapping nicotinic acetylcholine receptors with PET. Synapse 1996, 24, 403–407. [Google Scholar] [CrossRef]
- Brody, A.L. Functional brain imaging of tobacco use and dependence. J. Psychiatr. Res. 2006, 40, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Imperato, A.; Mulas, A.; Di Chiara, G. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur. J. Pharmacol. 1986, 132, 337–338. [Google Scholar] [CrossRef]
- Dani, J.A.; De Biasi, M. Cellular mechanisms of nicotine addiction. Pharmacol. Biochem. Behav. 2001, 70, 439–446. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Thanos, P.K.; Fowler, J.S. Imaging of brain dopamine pathways: Implications for understanding obesity. J. Addict. Med. 2009, 3, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Brody, A.L. In vivo Brain Imaging of Human Exposure to Nicotine and Tobacco. Handb. Exp. Pharmacol. 2009, 145–171. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, K.P.; Esterlis, I.; Sandiego, C.; Petrulli, R.; Morris, E.D. Imaging Tobacco Smoking with PET and SPECT. Behav. Neurobiol. Anxiety Treat. 2015, 24, 1–17. [Google Scholar] [CrossRef]
- Staley, J.K.; Krishnan-Sarin, S.; Cosgrove, K.P.; Krantzler, E.; Frohlich, E.; Perry, E.; Dubin, J.A.; Estok, K.; Brenner, E.; Baldwin, R.M.; et al. Human Tobacco Smokers in Early Abstinence Have Higher Levels of beta2* Nicotinic Acetylcholine Receptors than Nonsmokers. J. Neurosci. 2006, 26, 8707–8714. [Google Scholar] [CrossRef] [Green Version]
- Rourke, S.B.; Dupont, R.M.; Grant, I.; Lehr, P.P.; Lamoureux, G.; Halpern, S.; Yeung, D.W. Reduction in cortical IMP-SPET tracer uptake with recent cigarette consumption in a young group of healthy males. San Diego HIV Neurobehavioral Research Center. S. Diego HIV Neurobehav. Res. Cent. Eur. J. Nucl. Med. 1997, 24, 422–427. [Google Scholar]
- Yamamoto, Y.; Nishiyama, Y.; Monden, T.; Satoh, K.; Ohkawa, M. A study of the acute effect of smoking on cerebral blood flow using 99mTc-ECD SPET. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 612–614. [Google Scholar] [CrossRef] [PubMed]
- Brašić, J.R.; Zhou, Y.; Musachio, J.L.; Hilton, J.; Fan, H.; Crabb, A.; Endres, C.J.; Reinhardt, M.J.; Dogan, A.S.; Alexander, M.; et al. Single photon emission computed tomography experience with (S)-5-[123I]iodo-3-(2-azetidinylmethoxy)pyridine in the living human brain of smokers and nonsmokers. Synapse 2009, 63, 339–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.Z.; Tomasi, D.; Rajaram, S.; Cottone, L.A.; Zhang, L.; Maloney, T.; Telang, F.; Alia-Klein, N.; Volkow, N.D. Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience 2007, 144, 1153–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feil, J.; Sheppard, D.; Fitzgerald, P.B.; Yücel, M.; Lubman, D.I.; Bradshaw, J.L. Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neurosci. Biobehav. Rev. 2010, 35, 248–275. [Google Scholar] [CrossRef]
- Breese, C.R.; Marks, M.J.; Logel, J.; Adams, C.E.; Sullivan, B.; Collins, A.C.; Leonard, S. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J. Pharmacol. Exp. Ther. 1997, 282, 7–13. [Google Scholar]
- Brody, A.L.; Mandelkern, M.A.; London, E.D.; Olmstead, R.E.; Farahi, J.; Scheibal, D.; Jou, J.; Allen, V.; Tiongson, E.; Chefer, S.I.; et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch. Gen. Psychiatry 2006, 63, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Jasinska, A.J.; Zorick, T.; Brody, A.L.; Stein, E.A. Dual role of nicotine in addiction and cognition: A review of neuroimaging studies in humans. Neuropharmacology 2014, 84, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Gearhardt, A.N. Neural Correlates of Food Addiction. Arch. Gen. Psychiatry 2011, 68, 808–816. [Google Scholar] [CrossRef]
- Schulte, E.M.; Yokum, S.; Jahn, A.; Gearhardt, A.N. Food cue reactivity in food addiction: A functional magnetic resonance imaging study. Physiol. Behav. 2019, 208, 112574. [Google Scholar] [CrossRef] [PubMed]
- Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central nervous system control of food intake and body weight. Nat. Cell Biol. 2006, 443, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Osadchiy, V.; Mayer, E.A. Brain-gut-microbiome interactions in obesity and food addiction. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 655–672. [Google Scholar] [CrossRef] [PubMed]
- Morganstern, I.; Barson, J.R.; Leibowitz, S.F. Regulation of drug and palatable food overconsumption by similar peptide systems. Curr. Drug Abus. Rev. 2011, 4, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.-J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, H.-N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiraly, D.D.; Walker, D.M.; Calipari, E.S.; LaBonte, B.; Issler, O.; Pena, C.J.; Ribeiro, E.A.; Russo, S.J.; Nestler, E.J. Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci. Rep. 2016, 6, 35455. [Google Scholar] [CrossRef]
- Kang, M.; Mischel, R.A.; Bhave, S.; Komla, E.; Cho, A.; Huang, C.; Dewey, W.L.; Akbarali, H.I. The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci. Rep. 2017, 7, srep42658. [Google Scholar] [CrossRef] [Green Version]
- E Volpe, G.; Ward, H.; Mwamburi, M.; Dinh, D.; Bhalchandra, S.; Wanke, C.; Kane, A.V. Associations of Cocaine Use and HIV Infection with the Intestinal Microbiota, Microbial Translocation, and Inflammation. J. Stud. Alcohol Drugs 2014, 75, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Temko, J.E.; Bouhlal, S.; Farokhnia, M.; Lee, M.R.; Cryan, J.F.; Leggio, L. The Microbiota, the Gut and the Brain in Eating and Alcohol Use Disorders: A ’Menage a Trois’? Alcohol Alcohol. 2017, 52, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Roy, S. Gut Homeostasis, Microbial Dysbiosis, and Opioids. Toxicol. Pathol. 2016, 45, 150–156. [Google Scholar] [CrossRef]
- Hillemacher, T.; Bachmann, O.; Kahl, K.G.; Frieling, H. Alcohol, microbiome, and their effect on psychiatric disorders. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2018, 85, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Hofford, R.S.; Russo, S.J.; Kiraly, D.D. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur. J. Neurosci. 2019, 50, 2562–2573. [Google Scholar] [CrossRef] [PubMed]
- Cussotto, S.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Psychotropics and the Microbiome: A Chamber of Secrets …. Psychopharmacology 2019, 236, 1411–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biedermann, L.; Zeitz, J.; Mwinyi, J.; Sutter-Minder, E.; Rehman, A.; Ott, S.J.; Steurer-Stey, C.; Frei, A.; Frei, P.; Scharl, M.; et al. Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE 2013, 8, e59260. [Google Scholar] [CrossRef]
- Kaufmann, S. Faculty Opinions recommendation of Microbial ecology: Human gut microbes associated with obesity. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2007, 444, 1022–1023. [Google Scholar] [CrossRef]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.J.; Auchtung, T.A.; Ajami, N.J.; Velasquez, K.; Smith, D.P.; De La Garza, R., 2nd; Salas, R.; Petrosino, J.F. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: A pilot study. PeerJ 2018, 6, e4693. [Google Scholar] [CrossRef]
- Biedermann, L.; Brülisauer, K.; Zeitz, J.; Frei, P.; Scharl, M.; Vavricka, S.R.; Fried, M.; Loessner, M.J.; Rogler, G.; Schuppler, M. Tu1771 Smoking Cessation Alters Intestinal Microbiota: Further Insights from Quantitative Investigations on Human Fecal Samples Using FISH and qPCR. Gastroenterology 2014, 146, 1496–1501. [Google Scholar] [CrossRef]
- Skibicka, K.P.; Dickson, S.L. Ghrelin and food reward: The story of potential underlying substrates. Peptides 2011, 32, 2265–2273. [Google Scholar] [CrossRef]
- Steinert, R.E.; Poller, B.; Castelli, M.C.; Drewe, J.; Beglinger, C. Oral administration of glucagon-like peptide 1 or peptide YY 3-36 affects food intake in healthy male subjects. Am. J. Clin. Nutr. 2010, 92, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Bagarolli, R.A.; Tobar, N.; Oliveira, A.G.; Araújo, T.G.; Carvalho, B.M.; Rocha, G.Z.; Vecina, J.F.; Calisto, K.; Guadagnini, D.; Prada, P.O.; et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J. Nutr. Biochem. 2017, 50, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Osadchiy, V.; Labus, J.S.; Gupta, A.; Jacobs, J.; Ashe-McNalley, C.; Hsiao, E.Y.; Mayer, E.A. Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS ONE 2018, 13, e0201772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, T.S.; Mayer, E.A.; Osadchiy, V.; Chang, C.; Katzka, W.; Lagishetty, V.; Gonzalez, K.; Kalani, A.; Stains, J.; Jacobs, J.P.; et al. A Distinct Brain-Gut-Microbiome Profile Exists for Females with Obesity and Food Addiction. Obesity 2020, 28, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Giles, W.H.; Felitti, V.J.; Dube, S.R.; Williams, J.E.; Chapman, D.P.; Anda, R.F. Insights into causal pathways for ischemic heart disease: Adverse childhood experiences study. Circulation 2004, 110, 1761–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anda, R.F.; Brown, D.W.; Dube, S.R.; Bremner, J.D.; Felitti, V.J.; Giles, W.H. Adverse Childhood Experiences and Chronic Obstructive Pulmonary Disease in Adults. Am. J. Prev. Med. 2008, 34, 396–403. [Google Scholar] [CrossRef]
- Brown, D.W.; Anda, R.F.; Felitti, V.J.; Edwards, V.J.; Malarcher, A.; Croft, J.B.; Giles, W.H. Adverse childhood experiences are associated with the risk of lung cancer: A prospective cohort study. BMC Public Heal. 2010, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. REPRINT OF: Relationship of Childhood Abuse and Household Dysfunction to Many of the Leading Causes of Death in Adults: The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 2019, 56, 774–786. [Google Scholar] [CrossRef]
- Dube, S.R.; Felitti, V.J.; Dong, M.; Chapman, D.P.; Giles, W.H.; Anda, R.F. Childhood Abuse, Neglect, and Household Dysfunction and the Risk of Illicit Drug Use: The Adverse Childhood Experiences Study. Pediatrics 2003, 111, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Cronholm, P.F.; Fokre, C.M.; Wade, R.; Bair-Merritt, M.H.; Davis, M.; Harkins-Schwarz, M.; Pachter, L.M.; Fein, J.A. Adverse Childhood Experiences: Expanding the Concept of Adversity. Am. J. Prev. Med. 2015, 49, 354–361. [Google Scholar] [CrossRef]
- Anda, R.F.; Croft, J.B.; Felitti, V.J.; Nordenberg, D.; Giles, W.H.; Williamson, D.F.; Giovino, G.A. Adverse Childhood Experiences and Smoking During Adolescence and Adulthood. JAMA 1999, 282, 1652–1658. [Google Scholar] [CrossRef] [Green Version]
- Dube, S.R.; Anda, R.F.; Felitti, V.J.; Edwards, V.J.; Croft, J.B. Adverse childhood experiences and personal alcohol abuse as an adult. Addict. Behav. 2002, 27, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Dube, S.R.; Cook, M.L.; Edwards, V.J. Health-Related Outcomes of Adverse Childhood Experiences in Texas, 2002. Prev. Chronic Dis. 2010, 7, 52. [Google Scholar]
- Mason, S.M.; Flint, A.J.; Field, A.E.; Austin, S.B.; Rich-Edwards, J.W. Abuse victimization in childhood or adolescence and risk of food addiction in adult women. Obesity 2013, 21, E775–E781. [Google Scholar] [CrossRef] [PubMed]
- Smolak, L.; Murnen, S.K. A meta-analytic examination of the relationship between child sexual abuse and eating disorders. Int. J. Eat. Disord. 2002, 31, 136–150. [Google Scholar] [CrossRef]
- Kinzl, J.F.; Traweger, C.; Guenther, V.; Biebl, W. Family background and sexual abuse associated with eating disorders. Am. J. Psychiatry 1994, 151, 1127–1131. [Google Scholar] [CrossRef]
- Smyth, J.M.; Heron, K.E.; Wonderlich, S.A.; Crosby, R.D.; Thompson, K.M. The influence of reported trauma and adverse events on eating disturbance in young adults. Int. J. Eat. Disord. 2008, 41, 195–202. [Google Scholar] [CrossRef]
- Johnson, J.G.; Cohen, P.; Kasen, S.; Brook, J.S. Eating Disorders During Adolescence and the Risk for Physical and Mental Disorders During Early Adulthood. Arch. Gen. Psychiatry 2002, 59, 545–552. [Google Scholar] [CrossRef]
- Wise, M.H.; Weierbach, F.; Cao, Y.; Phillips, K. Tobacco Use and Attachment Style in Appalachia. Issues Ment. Heal. Nurs. 2017, 38, 562–569. [Google Scholar] [CrossRef]
- Mikulincer, M. Adult attachment style and affect regulation: Strategic variations in self-appraisals. J. Pers. Soc. Psychol. 1998, 75, 420–435. [Google Scholar] [CrossRef]
- Griffin, D.; Bartholomew, K. Models of the self and other: Fundamental dimensions underlying measures of adult attachment. J. Personal. Soc. Psychol. 1994, 67, 430–445. [Google Scholar] [CrossRef]
- Fowler, J.C.; Allen, J.; Oldham, J.M.; Frueh, B.C. Exposure to interpersonal trauma, attachment insecurity, and depression severity. J. Affect. Disord. 2013, 149, 313–318. [Google Scholar] [CrossRef]
- Mikulincer, M.; Shaver, P.R.; Pereg, D. Attachment Theory and Affect Regulation: The Dynamics, Development, and Cognitive Consequences of Attachment-Related Strategies. Motiv. Emot. 2003, 27, 77–102. [Google Scholar] [CrossRef]
- Gross, J.J. The emerging field of emotion regulation: An integrative review. Rev. Gen. Psychol. 1998, 2, 271–299. [Google Scholar] [CrossRef]
- Kobak, R.R.; Cole, H.E.; Ferenz-Gillies, R.; Fleming, W.S.; Gamble, W. Attachment and Emotion Regulation during Mother-Teen Problem Solving: A Control Theory Analysis. Child Dev. 1993, 64, 231. [Google Scholar] [CrossRef] [PubMed]
- Maunder, R.G.; Hunter, J.J. Attachment and Psychosomatic Medicine: Developmental Contributions to Stress and Disease. Psychosom. Med. 2001, 63, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Faber, A.; Dubé, L.; Knäuper, B. Attachment and eating: A meta-analytic review of the relevance of attachment for unhealthy and healthy eating behaviors in the general population. Appetite 2018, 123, 410–438. [Google Scholar] [CrossRef] [Green Version]
- Shakory, S.; Van Exan, J.; Mills, J.S.; Sockalingam, S.; Keating, L.; Taube-Schiff, M. Binge eating in bariatric surgery candidates: The role of insecure attachment and emotion regulation. Appetite 2015, 91, 69–75. [Google Scholar] [CrossRef]
- Fauconnier, M.; Rousselet, M.; Brunault, P.; Thiabaud, E.; Lambert, S.; Rocher, B.; Challet-Bouju, G.; Grall-Bronnec, M. Food Addiction among Female Patients Seeking Treatment for an Eating Disorder: Prevalence and Associated Factors. Nutrients 2020, 12, 1897. [Google Scholar] [CrossRef]
- Ahrens, K.R.; Ciechanowski, P.; Katon, W. Associations between adult attachment style and health risk behaviors in an adult female primary care population. J. Psychosom. Res. 2012, 72, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M.L.; Shaver, P.R.; Collins, N.L. Attachment styles, emotion regulation, and adjustment in adolescence. J. Pers. Soc. Psychol. 1998, 74, 1380–1397. [Google Scholar] [CrossRef]
- Kassel, J.D.; Wardle, M.; Roberts, J.E. Adult attachment security and college student substance use. Addict. Behav. 2007, 32, 1164–1176. [Google Scholar] [CrossRef] [PubMed]
- McNally, A.M.; Palfai, T.P.; Levine, R.V.; Moore, B.M. Attachment dimensions and drinking-related problems among young adults: The mediational role of coping motives. Addict. Behav. 2003, 28, 1115–1127. [Google Scholar] [CrossRef]
- Le, T.L.; Mann, R.E.; Levitan, R.D.; George, T.P.; Maunder, R.G. Sex differences in the relationships between childhood adversity, attachment anxiety and current smoking. Addict. Res. Theory 2017, 25, 146–153. [Google Scholar] [CrossRef]
- Pipová, H.; Kaščáková, N.; Fürstová, J.; Tavel, P. Development of the Modified Yale Food Addiction Scale Version 2.0 summary version in a representative sample of Czech population. J. Eat. Disord. 2020, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.G.; Roth, D.M. Attachment and separation difficulties in eating disorders: A preliminary investigation. Int. J. Eat. Disord. 1989, 8, 141–155. [Google Scholar] [CrossRef]
- Broberg, A.G.; Hjalmers, I.; Nevonen, L. Eating disorders, attachment and interpersonal difficulties: A comparison between 18- to 24-year-old patients and normal controls. Eur. Eat. Disord. Rev. 2001, 9, 381–396. [Google Scholar] [CrossRef]
- Chassler, L. Understanding Anorexia Nervosa and Bulimia Nervosa from an Attachment Perspective. Clin. Soc. Work. J. 1997, 25, 407–423. [Google Scholar] [CrossRef]
- Kenny, M.; Hart, K. Relationship between parental attachment and eating disorders in an inpatient and a college sample. J. Couns. Psychol. 1992, 39, 521–526. [Google Scholar] [CrossRef]
- Latzer, Y.; Hochdorf, Z.; Bachar, E.; Canetti, L. Attachment Style and Family Functioning as Discriminating Factors in Eating Disorders. Contemp. Fam. Ther. 2002, 24, 581–599. [Google Scholar] [CrossRef]
- Orzolek-Kronner, C. The Effect of Attachment Theory in the Development of Eating Disorders: Can Symptoms Be Proximity-Seeking? Child Adolesc. Soc. Work. J. 2002, 19, 421–435. [Google Scholar] [CrossRef]
- Ward, A.; Ramsay, R.; Treasure, J. Attachment research in eating disorders. Br. J. Med Psychol. 2000, 73, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Illing, V.; Tasca, G.A.; Balfour, L.; Bissada, H. Attachment Insecurity Predicts Eating Disorder Symptoms and Treatment Outcomes in a Clinical Sample of Women. J. Nerv. Ment. Dis. 2010, 198, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Taube-Schiff, M.; Van Exan, J.; Tanaka, R.; Wnuk, S.; Hawa, R.; Sockalingam, S. Attachment style and emotional eating in bariatric surgery candidates: The mediating role of difficulties in emotion regulation. Eat. Behav. 2015, 18, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, L.L.; Rowe, A.C.; Sheldon, C.; Johnson, A.; Brunstrom, J.M. Disinhibited eating mediates differences in attachment insecurity between bariatric surgery candidates/recipients and lean controls. Int. J. Obes. 2017, 41, 1831–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Connock, M.; Barton, P.; Fry-Smith, A.; Aveyard, P.; Moore, D. ‘Cut down to quit’ with nicotine replacement therapies in smoking cessation: A systematic review of effectiveness and economic analysis. Heal. Technol. Assess. 2008, 12. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Aveyard, P.; Connock, M.; Wang, D.; Fry-Smith, A.; Barton, P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-analysis. BMJ 2009, 338, b1024. [Google Scholar] [CrossRef] [Green Version]
- Lindson, N.; Chepkin, S.C.; Ye, W.; Fanshawe, T.R.; Bullen, C.; Hartmann-Boyce, J. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. Cochrane Database Syst. Rev. 2019, 4, CD013308. [Google Scholar] [CrossRef]
- Cahill, K.; Stevens, S.; Perera, R.; Lancaster, T. Pharmacological interventions for smoking cessation: An overview and network meta-analysis. Cochrane Database Syst. Rev. 2013, 5, CD009329. [Google Scholar] [CrossRef]
- Cahill, K.; Lindson-Hawley, N.; Thomas, K.H.; Fanshawe, T.R.; Lancaster, T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst. Rev. 2016, 2016, CD006103. [Google Scholar] [CrossRef] [Green Version]
- Howes, S.; Hartmann-Boyce, J.; Livingstone-Banks, J.; Hong, B.; Lindson, N. Antidepressants for smoking cessation. Cochrane Database Syst. Rev. 2020, 4, CD000031. [Google Scholar] [CrossRef]
- Stead, L.F.; Perera, R.; Bullen, C.; Mant, D.; Hartmann-Boyce, J.; Cahill, K.; Lancaster, T. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst. Rev. 2012, 11, CD000146. [Google Scholar] [CrossRef] [PubMed]
- Aveyard, P.; Begh, R.; Parsons, A.; West, R. Brief opportunistic smoking cessation interventions: A systematic review and meta-analysis to compare advice to quit and offer of assistance. Addiction 2012, 107, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Heckman, C.J.; Egleston, B.L.; Hofmann, M.T. Efficacy of motivational interviewing for smoking cessation: A systematic review and meta-analysis. Tob. Control. 2010, 19, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Hartmann-Boyce, J.; McRobbie, H.; Lindson, N.; Bullen, C.; Begh, R.; Theodoulou, A.; Notley, C.; A Rigotti, N.; Turner, T.; Butler, A.R.; et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst. Rev. 2020, 10, CD010216. [Google Scholar] [CrossRef] [PubMed]
- Hajek, P.; Phillips-Waller, A.; Przulj, D.; Pesola, F.; Smith, K.M.; Bisal, N.; Li, J.; Parrott, S.; Sasieni, P.; Dawkins, L.; et al. A Randomized Trial of E-Cigarettes versus Nicotine-Replacement Therapy. N. Engl. J. Med. 2019, 380, 629–637. [Google Scholar] [CrossRef]
- Treasure, J.; Leslie, M.; Chami, R.; Fernández-Aranda, F. Are trans diagnostic models of eating disorders fit for purpose? A consideration of the evidence for food addiction. Eur. Eat. Disord. Rev. 2018, 26, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Miller-Matero, L.R.; Brescacin, C.; Clark, S.M.; Troncone, C.L.; Tobin, E.T. Why WAIT? Preliminary evaluation of the weight assistance and intervention techniques (WAIT) group. Psychol. Heal. Med. 2019, 24, 1029–1037. [Google Scholar] [CrossRef]
- Cassin, S.; Sijercic, I.; Montemarano, V. Psychosocial Interventions for Food Addiction: A Systematic Review. Curr. Addict. Rep. 2020, 7, 9–19. [Google Scholar] [CrossRef]
- Luigjes, J.; Segrave, R.; De Joode, N.; Figee, M.; Denys, D. Efficacy of Invasive and Non-Invasive Brain Modulation Interventions for Addiction. Neuropsychol. Rev. 2019, 29, 116–138. [Google Scholar] [CrossRef] [Green Version]
- Sauvaget, A.; Etrojak, B.; Ebulteau, S.; Ejiménez-Murcia, S.; Efernandez-Aranda, F.; Ewolz, I.; Menchón, J.M.; Eachab, S.; Evanelle, J.-M.; Egrall-Bronnec, M. Transcranial direct current stimulation (tDCS) in behavioral and food addiction: A systematic review of efficacy, technical, and methodological issues. Front. Neurosci. 2015, 9, 349. [Google Scholar] [CrossRef]
- Aubin, H.-J.; Farley, A.; Lycett, D.; Lahmek, P.; Aveyard, P. Weight gain in smokers after quitting cigarettes: Meta-analysis. BMJ 2012, 345, e4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Venn, A.; Otahal, P.; Gall, S. The association between quitting smoking and weight gain: A systematic review and meta-analysis of prospective cohort studies. Obes. Rev. 2015, 16, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.M.; Hurt, R.D.; Croghan, I.T.; A Patten, C.; Novotny, P.; Sloan, J.A.; Dakhil, S.R.; Croghan, G.A.; Wos, E.J.; Rowland, K.M.; et al. The prevalence of weight concerns in a smoking abstinence clinical trial. Addict. Behav. 2006, 31, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.M.; Decker, P.A.; Offord, K.P.; A Patten, C.; Vickers, K.S.; Croghan, I.T.; Schaff, H.V.; Hurt, R.D.; Dale, L.C. Weight concerns among male smokers. Addict. Behav. 2004, 29, 1637–1641. [Google Scholar] [CrossRef]
- Owari, Y.; Miyatake, N.; Suzuki, H. Relationship between Food Dependence and Nicotine Dependence in Smokers: A Cross-Sectional Study of Staff and Students at Medical Colleges. Medicina 2019, 55, 202. [Google Scholar] [CrossRef] [Green Version]
- Blum, K.; Bailey, J.; Gonzalez, A.M.; Oscar-Berman, M.; Liu, Y.; Giordano, J.; Braverman, E.; Gold, M. Neuro-genetics of reward deficiency syndrome (RDS) as the root cause of “addiction transfer”: A new phenomenon common after bariatric surgery. J. Genet. Syndr. Gene Ther. 2011, S2-001. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. Cell Biol. 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Fletcher, P.C.; Kenny, P.J. Food addiction: A valid concept? Neuropsychopharmacology 2018, 43, 2506–2513. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawertailo, L.; Attwells, S.; deRuiter, W.K.; Le, T.L.; Dawson, D.; Selby, P. Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms. Nutrients 2020, 12, 3834. https://doi.org/10.3390/nu12123834
Zawertailo L, Attwells S, deRuiter WK, Le TL, Dawson D, Selby P. Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms. Nutrients. 2020; 12(12):3834. https://doi.org/10.3390/nu12123834
Chicago/Turabian StyleZawertailo, Laurie, Sophia Attwells, Wayne K. deRuiter, Thao Lan Le, Danielle Dawson, and Peter Selby. 2020. "Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms" Nutrients 12, no. 12: 3834. https://doi.org/10.3390/nu12123834
APA StyleZawertailo, L., Attwells, S., deRuiter, W. K., Le, T. L., Dawson, D., & Selby, P. (2020). Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms. Nutrients, 12(12), 3834. https://doi.org/10.3390/nu12123834