Novel Insights on Intake of Fish and Prevention of Sarcopenia: All Reasons for an Adequate Consumption
Abstract
:1. Introduction
2. Omega-3 Polyunsaturated Fatty Acids Effects on Skeletal Muscle Mass
3. Vitamin E in Farmed Fish
4. Fish Proteins Function on Muscle Mass
5. Fish Consumption Increases Vitamin D Levels
6. Central Role of Magnesium in Maintaining Muscle Mass
7. Creatine Monohydrate
8. L-Carnitine and Muscle Mass
9. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Marzetti, E.; Calvani, R.; Tosato, M.; Cesari, M.; Di Bari, M.; Cherubini, A.; Collamati, A.; D’Angelo, E.; Pahor, M.; Bernabei, R.; et al. Sarcopenia: An overview. Aging Clin. Exp. Res. 2017, 29, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Miccheli, A.; Landi, F.; Bossola, M.; Cesari, M.L.C.; Sieber, C.C.; Bernabei, R.M.E. Tools in the assessment of sarcopenia. J. Frailty Aging 2013, 2, 201–210. [Google Scholar]
- Koopman, R. Dietary protein and exercise training in ageing. Proc. Nutr. Soc. 2011, 70, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biolo, G. Protein metabolism and requirements. World Rev. Nutr. Diet. 2013, 105, 12–20. [Google Scholar]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- R, B.R.; A, M.M.; K, A.; R, C.C.; Bischof, A.L.; Carroll, M.D.; Johnson, C.L. Total energy intake of the US population: The third National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 1995, 62, 1072S–1080S. [Google Scholar]
- Kerstetter, J.E.; O’Brien, K.O.; Insogna, K.L. Low Protein Intake: The Impact on Calcium and Bone Homeostasis in Humans. J. Nutr. 2018, 133, 855S–861S. [Google Scholar] [CrossRef] [Green Version]
- Calvani, R.; Miccheli, A.; Landi, F.; Bossola, M.; Cesari, M.L.C.; Sieber, C.C.; Bernabei, R.M.E. Novel Insights on Intake of Meat and Prevention of Sarcopenia: All Reasons for an Adequate Consumption. J. Frailty Aging 2013, 2, 2136–2143. [Google Scholar]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Calvani, R.; Miccheli, A.; Landi, F.; Bossola, M.; Cesari, M.L.C.; Sieber, C.C.; Bernabei, R.M.E. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J. Frailty Aging 2013, 2, 38. [Google Scholar]
- Calvani, R.; Miccheli, A.; Landi, F.; Bossola, M.; Cesari, M.L.C.; Sieber, C.C.; Bernabei, R.M.E. Nutritional interventions in sarcopenia: Where do we stand? J. Frailty Aging 2013, 2, 19–23. [Google Scholar]
- Rodríguez-Martín, C.; Garcia-Ortiz, L.; Rodriguez-Sanchez, E.; Martin-Cantera, C.; Soriano-Cano, A.; Arietaleanizbeaskoa, M.S.; Magdalena-Belio, J.F.; Menendez-Suarez, M.; Maderuelo-Fernandez, J.A.; Lugones-Sanchez, C.; et al. The relationship of the atlantic diet with cardiovascular risk factors and markers of arterial stiffness in adults without cardiovascular disease. Nutrients 2019, 11, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simione, M.; Harshman, S.G.; Castro, I.; Linnemann, R.; Roche, B.; Ajami, N.J.; Petrosino, J.F.; Raspini, B.; Portale, S.; Camargo, C.A.; et al. Maternal Fish Consumption in Pregnancy Is Associated with a Bifidobacterium-Dominant Microbiome Profile in Infants. Curr. Dev. Nutr. 2020, 4, 133. [Google Scholar] [CrossRef] [PubMed]
- Rampelli, S.; Candela, M.; Turroni, S.; Biagi, E.; Collino, S.; Franceschi, C.; O’Toole, P.W.; Brigidi, P. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 2013, 5, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Enck, P.; Zimmermann, K.; Rusch, K.; Schwiertz, A.; Klosterhalfen, S.; Frick, J.-S. The effects of ageing on the colonic bacterial microflora in adults. Z. Gastroenterol. 2009, 47, 653–658. [Google Scholar] [CrossRef]
- Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Bucci, L.; Pini, E.; Nikkïla, J.; Monti, D.; Satokari, R.; Franceschi, C.; et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 2010, 5, e10667. [Google Scholar] [CrossRef]
- Grosicki, G.J.; Fielding, R.A.; Lustgarten, M.S. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif. Tissue Int. 2018, 102, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and Lifestyle Recommendations Revision 2006. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, K.S. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharmacol. 2003, 38, 336–344. [Google Scholar] [CrossRef]
- Mozaffarian, D. Fish and nϪ3 fatty acids for the prevention of fatal coronary heart disease and sudden cardiac death 1–4 OBSERVATIONAL STUDIES. Am. J. Clin. Nutr. 2008, 87, 1991–1996. [Google Scholar] [CrossRef] [Green Version]
- Gaziano, J.M.; Buring, J.E.; Lee, I.; Djousse, L. Dietary omega-3 fatty acids and fish consumption and risk of. Am. J. Clin. Nutr. 2011, 93, 143–150. [Google Scholar]
- Gonzalez, C.A.; Riboli, E. Diet and cancer prevention: Where we are, where we are going. Nutr. Cancer 2006, 56, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, N.V.; Eelderink, C.; Singh-Povel, C.M.; Navis, G.J.; Bakker, S.J.L.; Corpeleijn, E. Dietary Protein Sources and Muscle Mass over the Life Course: The Lifelines Cohort Study. Nutrients 2018, 10, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, J.J.; Mula, J.; Miyazaki, M.; Erfani, R.; Garrison, K.; Farooqui, A.B.; Srikuea, R.; Lawson, B.A.; Grimes, B.; Keller, C.; et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 2011, 138, 3657–3666. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.M.; Lawson, J.A.; Mathew, S.J.; Hutcheson, D.A.; Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. J. Cell Sci. 2011, 138, 3625–3637. [Google Scholar]
- Fry, C.S.; Lee, J.D.; Jackson, J.R.; Kirby, T.J.; Stasko, S.A.; Liu, H.; Dupont-Versteegden, E.E.; McCarthy, J.J.; Peterson, C.A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J. 2014, 28, 1654–1665. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Tachtsis, B.; Camera, D.; Lacham-Kaplan, O. Potential roles of n-3 PUFAs during skeletal muscle growth and regeneration. Nutrients 2018, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Burdge, G.C.; Jones, A.E.; Wootton, S.A. Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men. Br. J. Nutr. 2002, 88, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Burdge, G.C.; Wootton, S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002, 88, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, C.; Charbonneau, L.; Ouellet, N.; Ouellet, H.; Blier, P.U.; Dufresne, F.; Fortin, S. Eicosapentaenoic acid monoglyceride resolves inflammation in an ex vivo model of human peripheral blood mononuclear cell. Eur. J. Pharmacol. 2017, 807, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jeromson, S.; Gallagher, I.J.; Galloway, S.D.R.; Hamilton, D.L. Omega-3 fatty acids and skeletal muscle health. Mar. Drugs 2015, 13, 6977–7004. [Google Scholar] [CrossRef] [PubMed]
- Mcglory, C.; Wardle, S.L.; Macnaughton, L.S.; Witard, O.C.; Scott, F.; Dick, J.; Bell, J.G.; Phillips, S.M.; Galloway, S.D.R.; Hamilton, D.L.; et al. Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiol. Rep. 2016, 4, e12715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahor, M.; Anton, S.D.; Beavers, D.P.; Cauley, J.A.; Fielding, R.A.; Kritchevsky, S.B.; Leeuwenburgh, C.; Lewis, K.H.; Liu, C.K.; Lovato, L.C.; et al. Effect of losartan and fish oil on plasma IL-6 and mobility in older persons.The ENRGISe pilot randomized clinical trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Smith, G.I.; Kelly, S.C.; Julliand, S.; Reeds, D.N.; Mittendorfer, B. Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol. Rep. 2016, 4, e12785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodacki, C.L.N.; Rodacki, A.L.F.; Pereira, G.; Naliwaiko, K.; Coelho, I.; Pequito, D.; Fernandes, L.C. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012, 95, 428–436. [Google Scholar] [CrossRef]
- Da Boit, M.; Sibson, R.; Sivasubramaniam, S.; Meakin, J.R.; A Greig, C.; Aspden, R.M.; Thies, F.; Jeromson, S.; Hamilton, D.L.; Speakman, J.R.; et al. Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 105, 151–158. [Google Scholar] [CrossRef]
- Phillips, S.M.; Tipton, K.D.; Aarsland, A.; Wolf, S.E.; Wolfe, R.R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am. J. Physiol. 1997, 273, E99–E107. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Gingras, A.A.; White, P.J.; Chouinard, P.Y.; Julien, P.; Davis, T.A.; Dombrowski, L.; Couture, Y.; Dubreuil, P.; Myre, A.; Bergeron, K.; et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 2007, 579, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Mcglory, C.; Wardle, S.L.; Macnaughton, L.S.; Witard, O.C.; Scott, F.; Dick, J.; Bell, J.G.; Phillips, S.M.; Galloway, S.D.R.; Hamilton, D.L.; et al. Fatty Acids on Exercise Performance. Eur. J. Appl. Physiol. 2016, 3, 206–214. [Google Scholar]
- Menoyo, D.; Sanz-Bayón, C.; Nessa, A.H.; Esatbeyoglu, T.; Faizan, M.; Pallauf, K.; De Diego, N.; Wagner, A.E.; Ipharraguerre, I.; Stubhaug, I.; et al. Atlantic salmon (Salmo salar L.) as a marine functional source of gamma-tocopherol. Mar. Drugs 2014, 12, 5944–5959. [Google Scholar] [CrossRef] [Green Version]
- Faizan, M.; Stubhaug, I.; Menoyo, D.; Esatbeyoglu, T.; Wagner, A.E.; Struksnæs, G.; Koppe, W.; Rimbach, G. Dietary alpha-tocopherol affects tissue vitamin e and malondialdehyde levels but does not change antioxidant enzymes and fatty acid composition in farmed Atlantic salmon (Salmo salar L.). Int. J. Vitam. Nutr. Res. 2013, 83, 238–245. [Google Scholar] [CrossRef]
- Rimbach, G.; Moehring, J.; Huebbe, P.; Lodge, J.K. Gene-regulatory activity of alpha-tocopherol. Molecules 2010, 15, 1746–1761. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 2001, 74, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Deer, R.R.; Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Symons, T.B.; E Schutzler, S.; Cocke, T.L.; Chinkes, D.L.; Wolfe, R.R.; Paddon-Jones, U. Aging does not impair the anabolic response to a protein-rich meal. Am. J. Clin. Nutr. 2007, 86, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Morisasa, M.; Goto-Inoue, N.; Sato, T.; Machida, K.; Fujitani, M.; Kishida, T.; Uchida, K.; Mori, T. Investigation of the Lipid Changes That Occur in Hypertrophic Muscle due to Fish Protein-feeding Using Mass Spectrometry Imaging. J. Oleo Sci. 2019, 68, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Sarcopenia, I.W.G. On Sarcopenia: An undiagnosed conditon in older adults.Current consensus dedinition:prevalance.etiology, and consequence. J. Am. Med. Dir. Assoc. 2012, 12, 249–256. [Google Scholar]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; A Tylavsky, F.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B.; et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.-Y.; Yang, K.-C.; Chang, H.-H.; Lee, L.-T.; Lu, C.-W.; Huang, K.-C. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan. Nutrients 2016, 8, 373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Beynen, A.C. Influence of dietary fish proteins on plasma and liver cholesterol concentrations in rats. Br. J. Nutr. 1993, 69, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Bettzieche, A.; Hirche, F.; Brandsch, C.; Stangl, G.I.; Eder, K. Dietary fish protein alters blood lipid concentrations and hepatic genes involved in cholesterol homeostasis in the rat model. Br. J. Nutr. 2006, 96, 674–682. [Google Scholar] [PubMed]
- Kawabata, F.; Mizushige, T.; Uozumi, K.; Hayamizu, K.; Han, L.; Tsuji, T.; Kishida, T. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats. Biosci. Biotechnol. Biochem. 2015, 79, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizushige, T.; Kawabata, F.; Uozumi, K.; Tsuji, T.; Kishida, T.; Ebihara, K. Fast-twitch muscle hypertrophy partly induces lipid accumulation inhibition with Alaska pollack protein intake in rats. Biomed. Res. 2010, 31, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Bradlee, M.L.; Mustafa, J.; Singer, M.R.; Moore, L.L. High-protein foods and physical activity protect against age-related muscle loss and functional decline. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 88–94. [Google Scholar] [CrossRef]
- DeLuca, H.F. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014, 3, 1–8. [Google Scholar] [CrossRef]
- Holick, M.F.; Manuscript, A. Vitamin D: A d-lightful solution for health. J. Investig. Med. 2011, 59, 872–880. [Google Scholar] [CrossRef]
- Wintermeyer, E.; Ihle, C.; Ehnert, S.; Stöckle, U.; Ochs, G.; de Zwart, P.; Flesch, I.; Bahrs, C.; Nussler, A.K. Crucial role of vitamin D in the musculoskeletal system. Nutrients 2016, 8, 319. [Google Scholar] [CrossRef]
- Heath, K.M.; Elovic, E.P. Vitamin D deficiency: Implications in the rehabilitation setting. Am. J. Phys. Med. Rehabil. 2006, 85, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, E.; Cunningham, J.; Sherriff, J.L.; Lucas, R.M.; Greenfield, H.; Arcot, J.; Strobel, N.; Black, L.J. Vitamin D3 and 25-hydroxyvitamin D3 content of retail white fish and eggs in Australia. Nutrients 2017, 9, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.H.; Kim, S.H.; Kim, J.H.; Shin, Y.H.; Yoon, J.P.; Oh, C.H. The level of vitamin D in the serum correlates with fatty degeneration of the muscles of the rotator cuff. J. Bone Jt. Surg. Br. 2009, 91, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Holiack, M.F. Vitamin D-effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 2013, 5, 111–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuler, F.D.; Wingate, M.K.; Moore, G.H.; Giangarra, C. Sports Health Benefits of Vitamin, D. Sports Health 2012, 4, 496–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff-Ferrari, H.; Borchers, M.; Gudat, F.; Dürmüller, U.; Stahelin, H.; Dick, W. Vitamin D Receptor Expression in Human Muscle Tissue Decreases with Age. J. Bone Miner. Res. 2004, 19, 265–269. [Google Scholar] [CrossRef]
- Simpson, R.U.; Franceschi, R.T.; DeLuca, H.F. Characterization of a specific, high affinity binding macromolecule for 1 alpha, 25-dihydroxyvitamin D3 in cultured chick kidney cells. J. Biol. Chem. 1980, 255, 10160–10166. [Google Scholar]
- Lehmann, U.; Gjessing, H.R.; Hirche, F.; Mueller-Belecke, A.; Gudbrandsen, O.A.; Ueland, P.M.; Mellgren, G.; Lauritzen, L.; Lindqvist, H.; Hansen, A.L.; et al. Efficacy of fish intake on Vitamin D status: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2015, 102, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Granic, A.; Hil, T.R.; Davies, K.; Jagger, C.; Adamson, A.; Siervo, M.; Kirkwood, T.B.L.; Mathers, J.C.; Sayer, A.A. Vitamin d status, muscle strength and physical performance decline in very old adults: A prospective study. Nutrients 2017, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Baek, K.H.; Song, K.H.; Il Kang, M.; Park, C.Y.; Lee, W.Y.; Won Oh, K. Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: The fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. J. Clin. Endocrinol. Metab. 2011, 96, 3250–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knutsen, K.V.; Brekke, M.; Gjelstad, S.; Lagerløv, P. Vitamin D status in patients with musculoskeletal pain, fatigue and headache: A cross-sectional descriptive study in a multi-ethnic general practice in Norway. Scand. J. Prim. Health Care 2010, 28, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijder, M.B.; Van Schoor, N.M.; Pluijm, S.M.F.; Van Dam, R.M.; Visser, M.; Lips, P. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J. Clin. Endocrinol. Metab. 2006, 91, 2980–2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 36th International Symposium on Intensive Care and Emergency Medicine, Brussels, Belgium, 15–18 March 2016-PubMed –NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/?term=Vitamin+D+Status+according+to+the+Diseases+in+Hospitalized+Rehabilitation+Patients%3A+Single+Center+Study (accessed on 13 December 2019).
- Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; John Orav, E.; Staehelin, H.B.; Meyer, O.W.; Theiler, R.; Dick, W.; Willett, W.C.; Egli, A. Monthly high-dose Vitamin D treatment for the prevention of functional decline a randomized clinical trial. JAMA Intern. Med. 2016, 176, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Jahnen-dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [Green Version]
- Reis, M.A.B.; Reyes, F.G.R.; Saad, J.A. Biochemical and Molecular Action of Nutrients Magnesium Deficiency Modulates the Insulin Signaling Pathway in Liver but Not Muscle of Rats. J. Nutr. 2000, 130, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Barbagallo, M.; Dominguez, L.J. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch. Biochem. Biophys. 2007, 458, 40–47. [Google Scholar] [CrossRef]
- Cunningham, J.; Rodríguez, M.; Messa, P. Magnesium in chronic kidney disease Stages 3 and 4 and in dialysis patients. Clin. Kidney J. 2012, 5, i39–i51. [Google Scholar] [CrossRef]
- Cinar, V.; Polat, Y.; Baltaci, A.K.; Mogulkoc, R. Effects of magnesium supplementation on testosterone levels of athletes and sedentary subjects at rest and after exhaustion. Biol. Trace Elem. Res. 2011, 140, 18–23. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Waters, D.L.; Gallagher, D.; Morley, J.E.; Garry, P.J. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 1999, 107, 123–136. [Google Scholar] [CrossRef]
- Morley, J.E.; Kaiser, F.E.; Perry, H.M.; Patrick, P.; Morley, P.M.K.; Stauber, P.M.; Vellas, B.; Baumgartner, R.N.; Garry, P.J. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 1997, 46, 410–413. [Google Scholar] [CrossRef]
- Jodral-Segado, A.M.; Navarro-Alarcón, M.; López-Ga De La Serrana, H.; López-Martínez, M.C. Magnesium and calcium contents in foods from SE Spain: Influencing factors and estimation of daily dietary intakes. Sci. Total Environ. 2003, 312, 47–58. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Barbagallo, M.; Lauretani, F.; Bandinelli, S.; Bos, A.; Corsi, A.M.; Simonsick, E.M.; Ferrucci, L. Magnesium and muscle performance in older persons: The InCHIANTI study. Am. J. Clin. Nutr. 2006, 84, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.A.; Kelaiditi, E.; Jennings, A.; Steves, C.J.; Spector, T.D.; Macgregor, A. Dietary magnesium is positively associated with skeletal muscle power and incides of muscle mass and May Attenuate the Association Between Circulating C-Reactive Protein and Muscle Mass in Women. J. Bone Miner. Res. 2016, 31, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.A. Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. Nutrients 2017, 9, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayhoe, R.P.G.; Lentjes, M.A.H.; Mulligan, A.A.; Luben, R.N.; Khaw, K.; Welch, A.A. Cross-sectional associations of dietary and circulating magnesium with skeletal muscle mass in the EPIC-Norfolk cohort. Clin. Nutr. 2019, 38, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Yu, P.H.; Deng, Y. Potential cytotoxic effect of chronic administration of creatine, a nutrition supplement to augment athletic performance. Med. Hypotheses 2000, 54, 726–728. [Google Scholar] [CrossRef]
- Möller, P.; Bergström, J.; Fürst, P.; Hellström, K. Effect of aging on energy-rich phosphagens in human skeletal muscles. Clin. Sci. 1980, 58, 553–555. [Google Scholar] [CrossRef] [Green Version]
- Candow, D.G.; Little, J.P.; Chilibeck, P.D.; Abeysekara, S.; Zello, G.A.; Kazachkov, M.; Cornish, S.M.; Yu, P.H. Low-dose creatine combined with protein during resistance training in older men. Med. Sci. Sports Exerc. 2008, 40, 1645–1652. [Google Scholar] [CrossRef]
- Chilibeck, P.D.; Kaviani, M.; Candow, D.G.; Zello, G.A. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. Open Access J. Sport. Med. 2017, 8, 213–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antona, G.; Nabavi, S.M.; Micheletti, P.; Di Lorenzo, A.; Aquilani, R.; Nisoli, E.; Rondanelli, M.; Daglia, M. Creatine, L-Carnitine, and ω 3 Polyunsaturated Fatty Acid Supplementation from Healthy to Diseased Skeletal Muscle. BioMed Res. Int. 2014, 2014, 613890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezkorovainy, A. Carnosine, carnitine, and Vladimir Gulevich. J. Chem. Educ. 1974, 51, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Winter, B.K.; Fiskum, G.; Galo, L.L. Ml’i mml dC Effects of L-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br. J. Cancer 1995, 72, 1173–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicka, A.K.; Hartmane, D.; Lipinska, P.; Wojtowicz, E.; Lysiak-Szydlowska, W.; Olek, R.A. L-carnitine supplementation in older women. A pilot study on aging skeletal muscle mass and function. Nutrients 2018, 10, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaguarnera, M.; Cammalleri, L.; Gargante, M.P.; Vacante, M.; Colonna, V.; Motta, M. L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. Am. J. Clin. Nutr. 2007, 86, 1738–1744. [Google Scholar] [CrossRef]
- Craig, W.J. Health effects of vegan diets. Am. J. Clin. Nutr. 2009, 89, 1627S–1633S. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q. Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy. Adv. Nutr. 2017, 8, 850–867. [Google Scholar] [CrossRef]
- Slater, G.; Phillips, S.M. Sprinting, Weightlifting, Throwing, and Bodybuilding. J. Sports Sci. 2011, 29 (Suppl. 1), S67–S77. [Google Scholar] [CrossRef] [Green Version]
- Crowe, F.L.; Steur, M.; Allen, N.E.; Appleby, P.N.; Travis, R.C.; Key, T.J.; Plasma Crowe, F.L.; Steur, M.; Allen, N.E.; Appleby, P.N.; et al. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC-Oxford study. Public Health Nutr. 2011, 14, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Dietary Reference Intakes for Calcium and Vitamin D: What Dietetics Practitioners Need to Know. J. Am. Diet. Assoc. 2011, 111, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Harridge, S.D.R.; Lazarus, N.R. Physical activity, aging, and physiological function. Physiology 2017, 32, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors/Title/Year | Type of Study | Oil Integration | Sample | Duration | Results |
---|---|---|---|---|---|
Smith et al. 2015 | Randomized study | n-3 PUFA (1.86 EPA and 1.50 g DHA/die) or corn oil | Sixty healthy 60–85-year-old men and women | Six months | Treatment with fish oil derived n-3 PUFA brought benefits on thigh muscle volume, handgrip strength, and tended to increase the average isokinetic leg muscle power |
Yoshino et al. 2016 | Ten subjects of Smith study (2015) with best answer to treatment | n-3 PUFA (1.86 EPA and 1.50 gDHA/die) or corn oil | Twenty healthy 60–85-year-old men and women | Six months | Different pathways involved in mitochondrial regulation and in the organization of the cell matrix were increased while the pathways related to calpain- and ubiquitin-mediated proteolysis, mRNA translation, and inhibition of mTOR signaling were decreased |
Rodacki et al. 2012 | Randomized study | 3 groups: Group ST (only strength-training), Group ST90 (2 g/die fish oil for 90 days) and ST150 (2 g/die fish oil for 150 days) | Forty-five women | 90 or 150 days | Supplementation with fish oil accompanied by strength training increased the neuromuscular system, enhancing the muscle strength and the functional capacity in elderly women |
Boit et al. 2017 | Randomized study | 3 g of fish oil | Fifty men and women | 18 weeks | long-chain n-3 PUFA supplementation enhances the increases in maximal isometric torque and muscle quality after 18 weeks of resistance exercise in older women but not in older men |
Smith et al. 2011 | Randomized study | n-3 PUFA (1.86 EPA and 1.50 g DHA/die) | Sixteen healthy adults | 8 weeks | Omega 3 PUFA enhance muscle protein synthesis in response to stimulated feeding |
McGlory et al. 2016 | Randomized study | Fish oil group (5 g/day fish oil) and CONTROL GOUP (5 g/day coconut oil) took proteins following resistance exercise. | Twenty healthy males | 8 weeks | No changes were found neither at REST, nor after physical activity (FED) nor after physical activity + protein intake (FEDEX) |
Pahor et al. 2018 | Pilot randomized clinical trial | 0.7 of fish contained 400 mg of EPA and 200 mg of DHA | 289 participants with reduced mobility | 12 months | found no significant changes on IL-6 or walking speed |
Kamolrat et al. 2013 | Randomized study | Two group: fish oil (EPA 49.6%, DHA 50.4%) and control oil (60% olive and 40 & soy) | 32 male Rowett strain Lister Hooded rats | 8 weeks | The results also indicate an increase in anabolic signalling pathways particularly in type 2 fibres without effects on inflammation processes |
Gingras et al. 2007 | Randomized study | Two groups: control group (control oil mixture based on 60% cotton seed and 40% virgin olive oils), group LCn-3PUFA (4% menhaden oil) | Six growing steers | 15 weeks | Long-term enteral the supply of LCn-3PUFA gives greater sensitivity to elimination of insulin-regulated amino acids and glucose and that these answers occur, in part, in the skeleton muscle |
Kamolrat et al. 2013 | In vitro study | Three group of murine C2C12 cells: control, EPA group, and DHA group | Murine C2C12 murine cell | 28 h | The cells treated with EPA had greater protein synthesis and a lower protein breakdown than the controls and cells treated with DHA |
Siam M, et al. 2008 | Retrospective cohort study | No | 2983 men and women aged 59 to 73 | Each additional portion of fatty fish consumed per week was associated with a gain in grip strength 0.43 kg in men and 0.48 kg in women. |
Type of Study | Protein Supplementation | Sample | Duration | Results | |
---|---|---|---|---|---|
Alexandrov Nikita et al. 2018 | Cohort Study | 31,278 men and 43,355 women of 18–91 years | The proteins of animal origin increase the secretion of carnitine, suggesting their ability to preserve muscle mass. | ||
Drotningsvik A et al. 2019 | Double-blind randomized controlled pilot study | One intervention arm (5.2 g of whiting hydrolysate) and one control arm (placebo) | 24 nursing home residents (60 years or older) | 6 weeks | The study is feasible. |
Type of Study | Vitamin D Supplementation | Sample | Duration | Results | |
---|---|---|---|---|---|
Antoneta Granic et al. 2017 | Newcastle 85+ study: longitudinal study | No supplementation vitamin D | 845 | 5 years | The lowest 25(OH)D season-specific quartile was associated with a faster rate of muscle strength decline in men 85+ years old |
Mee Kyoung Kim et al. 2011 | Cross-sectional study | No supplementation vitamin D. Result extracted from study conducted periodically since 1998 to assess the health and nutritional status of the noninstitutionalized civilian population of Korea | 1380 men and 1789 women aged 50 years or older | From 1998 | Strong inverse association between 25(OH)D level and sarcopenia in older Koreans |
Knutsen at al. 2010 | Cross sectional descriptive study | No supplementation vitamin D | 572 | 2 months | musculoskeletal pain, headache, fatigue is correlated with deficiency of vitamin D |
Bischoff-Ferrari et al. 2004 | No supplementation vitamin D | 32 patients | Vitamin D receptors in muscle decrease with old age | ||
Marieke B. Snijder et al. 2006 | Prospective cohort study | No supplementation vitamin D | 1231 men and women (aged 65 years and older) Amsterdam | 1 year | Low 25(OH)D (10 ng/mL) was associated with an increased risk of falling |
Bischoff-Ferrari et al. 2016 | Double-blind randomized clinical trial | Three study groups with monthly treatments: 1. Control group receiving 24,000 IU of vitamin D3 (24,000 IU group), 2. 60,000 group receiving 60,000 IU of vitamin D3 3. 24,000 IU plus calcifediol group receiving 24,000 IU of vitamin D3 plus 300 μg of Calcifediol | 200 men and women (aged 70 years and older) | 1 year | Although higher monthly doses of vitamin D were effective in reaching a threshold of at least 30 ng/mL of 25-hydroxyvitamin D, they had no benefit on lower extremity function and were associated with increased risk of falls compared with 24,000 IU |
J.H. Oh et al. 2009 | Two group: 1: rotary cuff tear 2. different shoulder | No supplementation vitamin D | 366 patients | 16 months | Serum vitamin level had a significant negative correlation with fatty degeneration of the torn cuff muscles and a positive correlation with isokinetic muscle performance |
Authors/Title/Year | Type of Study | Magnesium Intake Measurement | Concentration Serum Magnesium Measurement | Sample | Duration | Results |
---|---|---|---|---|---|---|
Domingeuez Ligia J et al. 2006 | Prospective epidemiologic study | No | Yes | 1453 | 20 months | Higher levels of circulating magnesium correspond to better muscle performance |
Welch Alisa A et al. 2016 | Cross-sectional study | Yes | No | 2570 women aged 18 to 79 years | Data extrapolated over the years from an ongoing study on the aging of healthy adult twins | High intake of magnesium is significantly associated with a higher percentage of Fat Free Mass (FFM), leg explosive power and with circulating CRP concentrations. |
Welch Alisa A et al. 2017 | Prospective cohort study | Yes | No | 502,655 people aged 37–73 years | 2006–2010 | A greater magnesium intake was related to grip strength and a higher skeletal muscle mass. |
Hayhoe Richard P.G. et al. 2019 | cross-sectional cohort study | Yes | Yes | 25,639 men and women aged 40–79 years old | 1993–2000 | A higher intake of magnesium and a higher serum magnesium concentration corresponded to better skeletal muscle mass indices in both men and women |
Authors/Title/Year | Type of Study | Supplementation Creatine | Sample | Duration | Results |
---|---|---|---|---|---|
Darren G. Candow. 2008 | Randomized double-blind study | Yes | 30 | 10 weeks | Low-dose creatine supplementation enhances lean mass end grip strength but did not lead to formaldehyde production. |
Authors/Title/Year | Type of Study | L-Carnitine Supplementation | Sample | Duration | Results |
---|---|---|---|---|---|
Sawicka Angelika K et al. 2018 | Randomized study | Yes 1500 mg once a day | 28 | 24 weeks | Evident better preservation of lean mass in those taking L-carnitine. |
Malaguarnera M. 2007 | Randomized, double-blind, placebo-controlled study. | Yes 2 g once a day | 66 centenarians | 6 months | Patients taking L-carnitine had a reduction in fat mass and an increase in lean mass. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondanelli, M.; Rigon, C.; Perna, S.; Gasparri, C.; Iannello, G.; Akber, R.; Alalwan, T.A.; Freije, A.M. Novel Insights on Intake of Fish and Prevention of Sarcopenia: All Reasons for an Adequate Consumption. Nutrients 2020, 12, 307. https://doi.org/10.3390/nu12020307
Rondanelli M, Rigon C, Perna S, Gasparri C, Iannello G, Akber R, Alalwan TA, Freije AM. Novel Insights on Intake of Fish and Prevention of Sarcopenia: All Reasons for an Adequate Consumption. Nutrients. 2020; 12(2):307. https://doi.org/10.3390/nu12020307
Chicago/Turabian StyleRondanelli, Mariangela, Chiara Rigon, Simone Perna, Clara Gasparri, Giancarlo Iannello, Rashida Akber, Tariq A. Alalwan, and Afnan Mahmood Freije. 2020. "Novel Insights on Intake of Fish and Prevention of Sarcopenia: All Reasons for an Adequate Consumption" Nutrients 12, no. 2: 307. https://doi.org/10.3390/nu12020307
APA StyleRondanelli, M., Rigon, C., Perna, S., Gasparri, C., Iannello, G., Akber, R., Alalwan, T. A., & Freije, A. M. (2020). Novel Insights on Intake of Fish and Prevention of Sarcopenia: All Reasons for an Adequate Consumption. Nutrients, 12(2), 307. https://doi.org/10.3390/nu12020307