The Course Of IGF-1 Levels and Nutrient Intake in Extremely and Very Preterm Infants During Hospitalisation
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Nutrition
2.3. Study Procedures
2.4. Growth
2.5. Intake
2.6. Endocrine Parameters
2.7. Potential Confounders
- -
- Bronchopulmonary dysplasia (BPD); defined as having had a need for supplemental oxygen for at least 28 days at 36 weeks PMA or discharge home (whichever came first) [17].
- -
- Necrotizing enterocolitis (NEC); classified according to the Modified Bell’s staging criteria [18].
- -
- Late-onset sepsis (LOS), defined as sepsis occurring 72 h after birth with a positive blood culture or a full course of antibiotic treatment [19].
- -
- Retinopathy of prematurity (ROP), classified according to the International Classification for Retinopathy of Prematurity [20].
- -
- Intraventricular hemorrhage (IVH), classified according to the Papile grading system [21].
- -
- Patent ductus arteriosus (PDA), which was defined as hemodynamically significant if treatment was prescribed [22].
2.8. Statistical Analysis
3. Results
3.1. Changes in IGF-1 During Hospitalisation
3.2. IGF-1 Levels in Relation to Growth
3.3. IGF-1 Levels and Route of Administration
3.4. Nutrient Intake in Relation to Concurrent IGF-1 Levels
3.5. Nutrition in Relation to Changes in IGF-1 According to Postnatal Age
3.6. Nutrition in Relation to Changes in IGF-1 According to Postmenstrual Age
4. Discussion
4.1. The Effect of the Various Macronutrients on IGF-1 Levels
4.2. The Route of Nutrient Administration
4.3. Window of Effect of Nutrient Intake on IGF-1 Levels
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Larnkjaer, A.; Molgaard, C.; Michaelsen, K.F. Early nutrition impact on the insulin-like growth factor axis and later health consequences. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 285–292. [Google Scholar] [CrossRef]
- Yumani, D.F.; Lafeber, H.N.; van Weissenbruch, M.M. Dietary proteins and IGF I levels in preterm infants: Determinants of growth, body composition, and neurodevelopment. Pediatric Res. 2015, 77, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Engstrom, E.; Niklasson, A.; Wikland, K.A.; Ewald, U.; Hellstrom, A. The role of maternal factors, postnatal nutrition, weight gain, and gender in regulation of serum IGF-I among preterm infants. Pediatric Res. 2005, 57, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Hansen-Pupp, I.; Löfqvist, C.; Polberger, S.; Niklasson, A.; Fellman, V.; Hellström, A.; Ley, D. Influence of insulin-like growth factor I and nutrition during phases of postnatal growth in very preterm infants. Pediatric Res. 2011, 69, 448–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.J.; Underwood, L.E.; Keyes, L.; Clemmons, D.R. Use of insulin-like growth factor I (IGF-I) and IGF-binding protein measurements to monitor feeding of premature infants. J. Clin. Endocrinol. Metab. 1997, 82, 3982–3988. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Pollak, M.; Liu, Y.; Platz, E.A.; Majeed, N.; Rimm, E.B.; Willett, W.C. Nutritional predictors of insulin-like growth factor I and their relationships to cancer in men. Cancer Epidemiol. Biomark. Prev. 2003, 12, 84–89. [Google Scholar]
- Kaklamani, V.G.; Linos, A.; Kaklamani, E.; Markaki, I.; Koumantaki, Y.; Mantzoros, C.S. Dietary fat and carbohydrates are independently associated with circulating insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 concentrations in healthy adults. J. Clin. Oncol. 1999, 17, 3291–3298. [Google Scholar] [CrossRef] [PubMed]
- Norat, T.; Dossus, L.; Rinaldi, S.; Overvad, K.; Grønbæk, H.; Tjønneland, A.; Olsen, A.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Boeing, H.; et al. Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur. J. Clin. Nutr. 2007, 61, 91–98. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, M.J.; Xue, A.; Scarlett, C.J.; Sevette, A.; Kee, A.J.; Smith, R.C. Parenteral versus enteral nutrition: Effect on serum cytokines and the hepatic expression of mRNA of suppressor of cytokine signaling proteins, insulin-like growth factor-1 and the growth hormone receptor in rodent sepsis. Crit. Care (Lond. Engl.) 2007, 11, R79. [Google Scholar] [CrossRef] [Green Version]
- Wojnar, M.M.; Fan, J.; Li, Y.H.; Lang, C.H. Endotoxin-induced changes in IGF-I differ in rats provided enteral vs. parenteral nutrition. Am. J. Physiol. 1999, 276, E455–E464. [Google Scholar] [CrossRef]
- Cormack, B.E.; Harding, J.E.; Miller, S.P.; Bloomfield, F.H. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019, 11, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embleton, N.D.; Korada, M.; Wood, C.L.; Pearce, M.S.; Swamy, R.; Cheetham, T.D. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch. Dis. Child. 2016, 101, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Griffin, I.J. Feeding preterm infants today for later metabolic and cardiovascular outcomes. J. Pediatr. 2013, 162, S7–S16. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Boyce, C.; Watson, M.; Lazidis, G.; Reeve, S.; Dods, K.; Simmer, K.; McLeod, G. Preterm human milk composition: A systematic literature review. Br. J. Nutr. 2016, 116, 1033–1045. [Google Scholar] [CrossRef]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [Green Version]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Kliegman, R.M.; Walsh, M.C. Neonatal necrotizing enterocolitis: Pathogenesis, classification, and spectrum of illness. Curr. Probl. Pediatr. 1987, 17, 213–288. [Google Scholar] [CrossRef]
- Bekhof, J.; Reitsma, J.B.; Kok, J.H.; Van Straaten, I.H. Clinical signs to identify late-onset sepsis in preterm infants. Eur. J. Pediatr. 2013, 172, 501–508. [Google Scholar] [CrossRef]
- International Committee for the Classification of Retinopathy of P. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Jain, A.; Shah, P.S. Diagnosis, Evaluation, and Management of Patent Ductus Arteriosus in Preterm Neonates. JAMA Pediatr. 2015, 169, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, J.I.; Blanco, A.M.; Canosa, L.F.; Unniappan, S. Direct actions of macronutrient components on goldfish hepatopancreas in vitro to modulate the expression of ghr-I, ghr-II, igf-I and igf-II mRNAs. Gen. Comp. Endocrinol. 2017, 250, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hansen-Pupp, I.; Hellstrom-Westas, L.; Cilio, C.M.; Andersson, S.; Fellman, V.; Ley, D. Inflammation at birth and the insulin-like growth factor system in very preterm infants. Acta Paediatr. 2007, 96, 830–836. [Google Scholar] [CrossRef]
- MohanKumar, K.; Namachivayam, K.; Ho, T.T.; Torres, B.A.; Ohls, R.K.; Maheshwari, A. Cytokines and growth factors in the developing intestine and during necrotizing enterocolitis. Semin. Perinatol. 2017, 41, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Alzaree, F.A.; AbuShady, M.M.; Atti, M.A.; Fathy, G.A.; Galal, E.M.; Ali, A.; Elias, T.R. Effect of Early Breast Milk Nutrition on Serum Insulin-Like Growth Factor-1 in Preterm Infants. Open Access Maced. J. Med Sci. 2019, 7, 77–81. [Google Scholar] [CrossRef] [Green Version]
Variables | OMM | OMM + BMF (4.4g/100 mL) | DHM | DHM + BMF |
---|---|---|---|---|
Energy (kcal) | 68.5 | 83.8 | 60 | 75 |
Protein (g) | 1.5 | 2.6 | 0.8 | 1.9 |
Protein/energy ratio (g/100 kcal) | 2.2/100 | 1.3/100 | ||
Carbohydrates (g) | 7.3 | 10.0 | 7.5 | 10.2 |
Fat (g) | 3.3 | 3.3 | 2.9 | 2.9 |
PMA | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N Total | 2 | 3 | 7 | 17 | 21 | 33 | 30 | 34 | 25 | 33 | 25 | 26 | 29 |
N Postnatal | 0 | 0 | 1 | 3 | 6 | 12 | 16 | 22 | 25 | 33 | 25 | 26 | 29 |
Variables | (n = 87) |
---|---|
Gender, n (%) | |
Male | 44 (50.6) |
Female | 43 (49.4) |
Ethnicity, n (%) | |
White | 66 (75.9) |
Other | 21 (24.1) |
Gestational age (weeks), mean (SD) | 29.0 (1.8) |
Extremely preterm, n (%) | 25 (28.7) |
Very preterm, n (%) | 62 (71.3) |
Birthweight (g), mean (SD) | 1210 (216) |
Birthweight SDS, mean (SD) | 0.0 (0.7) |
Birthweight SDS < −1.3, n (%) | 3 (3.4) |
BPD, n (%) | 30 (34.5) |
NEC, n (%) | 8 (9.2) |
LOS, n (%) | 30 (34.5) |
PDA, n (%) | |
Hemodynamically Insignificant PDA | 11 (12.6) |
Hemodynamically Significant PDA | 8 (9.2) |
ROP, n (%) | |
ROP stage I | 4 (4.6) |
ROP stage III | 1 (1.1) |
IVH, n (%) | |
IVH grade I | 8 (9.2) |
IVH grade II | 11 (12.6) |
IVH grade III | 4 (4.6) |
Variables | B (SE) | β | p-Value |
---|---|---|---|
Included variables | |||
Constant | 1.482 (1.359) | 0.281 | |
Percentage parenteral intake on day 8 | −0.027 (0.011) | −0.234 | 0.019 |
Weight on day 8 (grams) | 0.004 (0.001) | 0.478 | <0.001 |
BPD | −1.134 (0.516) | −0.233 | 0.032 |
Hemodynamic significant PDA | −1.350 (0.793) | −0.159 | 0.095 |
Variables | Model R² | Model p-Value | B (SE) | β | p-Value |
---|---|---|---|---|---|
Energy intake model 1: | 0.605 | 0.006 | |||
Constant | 11.8 (6.7) | 0.106 | |||
Energy intake (kcal/day) | 0.05 (0.02) | 0.6 | 0.015 | ||
Gestational age (weeks) | −0.6 (0.2) | −0.5 | 0.029 | ||
Energy intake model 2: | 0.640 | 0.014 | |||
Constant | 9.4 (7.1) | 0.215 | |||
Energy intake (kcal/day) | 0.03 (0.03) | 0.3 | 0.395 | ||
Gestational age (weeks) | −0.5 (0.2) | −0.4 | 0.073 | ||
Weight (grams) | 0.003 (0.003) | 0.36 | 0.348 | ||
Protein intake model 1: | 0.578 | 0.009 | |||
Constant | 14.5 (6.7) | 0.053 | |||
Protein intake (g/day) | 1.2 (0.4) | 0.6 | 0.013 | ||
Gestational age (weeks) | −0.6 (0.2) | −0.5 | 0.025 | ||
Protein intake model 2: | 0.625 | 0.017 | |||
Constant | 10.2 (7.6) | 0.209 | |||
Protein intake (g/day) | 0.5 (0.8) | 0.2 | 0.561 | ||
Gestational age (weeks) | −0.5 (0.2) | −0.4 | 0.089 | ||
Weight (grams) | 0.004 (0.003) | 0.4 | 0.289 | ||
Carbohydrate intake model 1: | 0.593 | 0.014 | |||
Constant | 9.1 (7.8) | 0.268 | |||
Carbohydrate intake (g/day) | 0.3 (0.1) | 0.6 | 0.022 | ||
Gestational age (weeks) | −0.4 (0.3) | −0.4 | 0.111 | ||
Carbohydrate intake model 2: | 0.690 | 0.007 | |||
Constant | 5.5 (6.9) | 0.444 | |||
Carbohydrate intake (g/day) | 0.2 (0.1) | 0.3 | 0.144 | ||
Gestational age (weeks) | −0.4 (0.2) | −0.3 | 0.113 | ||
Weight (grams) | 0.004 (0.002) | 0.5 | 0.052 | ||
Fat intake model 1: | 0.581 | 0.008 | |||
Constant | 12.3 (6.9) | 0.102 | |||
Fat intake (g/day) | 1.1 (0.4) | 0.6 | 0.012 | ||
Gestational age (weeks) | −0.6 (0.2) | −0.5 | 0.034 | ||
Fat intake model 2: | 0.631 | 0.015 | |||
Constant | 9.4 (7.2) | 0.225 | |||
Fat intake (g/day) | 0.5 (0.7) | 0.3 | 0.494 | ||
Gestational age (weeks) | −0.5 (0.3) | −0.4 | 0.083 | ||
Weight (grams) | 0.003 (0.003) | 0.4 | 0.273 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yumani, D.F.J.; Calor, A.K.; van Weissenbruch, M.M. The Course Of IGF-1 Levels and Nutrient Intake in Extremely and Very Preterm Infants During Hospitalisation. Nutrients 2020, 12, 675. https://doi.org/10.3390/nu12030675
Yumani DFJ, Calor AK, van Weissenbruch MM. The Course Of IGF-1 Levels and Nutrient Intake in Extremely and Very Preterm Infants During Hospitalisation. Nutrients. 2020; 12(3):675. https://doi.org/10.3390/nu12030675
Chicago/Turabian StyleYumani, Dana F.J., Alexandra K. Calor, and Mirjam. M. van Weissenbruch. 2020. "The Course Of IGF-1 Levels and Nutrient Intake in Extremely and Very Preterm Infants During Hospitalisation" Nutrients 12, no. 3: 675. https://doi.org/10.3390/nu12030675
APA StyleYumani, D. F. J., Calor, A. K., & van Weissenbruch, M. M. (2020). The Course Of IGF-1 Levels and Nutrient Intake in Extremely and Very Preterm Infants During Hospitalisation. Nutrients, 12(3), 675. https://doi.org/10.3390/nu12030675