Large Neutral Amino Acids (LNAAs) Supplementation Improves Neuropsychological Performances in Adult Patients with Phenylketonuria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Supplementation with LNAAs
2.3. Plasma Phe and Tyr Determinations
2.4. Neuropsychological Assessment
2.5. Psychological General Well-Being Index (PGWBI)
2.6. Wisconsin Card Sorting Test (WCST)
2.7. Test of Attentional Performance (TAP Test)
2.8. 9-Hole Peg Test (HPG)
2.9. Statistical Analysis
3. Results
3.1. Phenotypic Classification
3.2. Phe, Tyr, and Phe/Tyr Ratio
3.3. Psychometric Evaluation
3.3.1. Psychological General Well-Being Index (PGWBI)
3.3.2. Wisconsin Card Sorting Test (WCST)
3.3.3. Test of Attentional Performance (TAP test)
3.3.4. 9-Hole Peg Test (HPG)
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Camp, K.M.; Parisi, M.A.; Acosta, P.B.; Berry, G.; Bilder, D.A.; Blau, N.; Bodamer, O.A.; Brosco, J.P.; Brown, C.S.; Burlina, A.; et al. Phenylketonuria Scientific Review Conference: State of the science and future research needs. Mol. Genet. Metab. 2014, 112, 87–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scriver, C.R.; Kaufman, S. Hyperphenylalaninemia: Phenylalanine hydroxylase deficiency. In The Metabolic and Molecular Bases of Inherited Disease. 8; McGraw-Hill: New York, NY, USA, 2003; pp. 1667–1724. [Google Scholar]
- Campistol, J.; Gassió, R.; Artuch, R.; Vilaseca, M.A. Neurocognitive function in mild hyperphenylalaninemia. Dev. Med. Child Neurol. 2011, 53, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Prevor, M.B.; Callender, G.; Druin, D.P. Prefrontal Cortex Cognitive Deficits in Children Treated Early and Continuously for PKU. Monogr. Soc. Res. Child Dev. 1997, 62, 1–208. [Google Scholar] [CrossRef]
- White, D.A.; Nortz, M.J.; Mandernach, T.; Huntington, K.; Steiner, R.D. Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. J. Int. Neuropsychol. Soc. 2002, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huijbregts, S. Sustained attention and inhibition of cognitive interference in treated phenylketonuria: Associations with concurrent and lifetime phenylalanine concentrations. Neuropsychology 2002, 40, 7–15. [Google Scholar] [CrossRef]
- Jahja, R.; Huijbregts, S.; De Sonneville, L.; Van Der Meere, J.J.; Van Spronsen, F.J. Neurocognitive Evidence for Revision of Treatment Targets and Guidelines for Phenylketonuria. J. Pediatr. 2014, 164, 895–899.e2. [Google Scholar] [CrossRef]
- Azadi, B.; Seddigh, A.; Tehrani-Doost, M.; Alaghband-Rad, J.; Ashrafi, M.R.; Azadi, B. Executive dysfunction in treated phenylketonuric patients. Eur. Child Adolesc. Psychiatry 2009, 18, 360–368. [Google Scholar] [CrossRef]
- Nardecchia, F.; Manti, F.; Chiarotti, F.; Carducci, C.; Carducci, C.; Leuzzi, V. Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: A longitudinal study. Mol. Genet. Metab. 2015, 115, 84–90. [Google Scholar] [CrossRef]
- Banerjee, P.; Grange, R.K.; Steiner, R.; White, D. Executive strategic processing during verbal fluency performance in children with phenylketonuria. Child Neuropsychol. 2010, 17, 105–117. [Google Scholar] [CrossRef]
- Leuzzi, V.; Pansini, M.; Sechi, E.; Chiarotti, F.; Carducci, C.; Levi, G.; Antonozzi, I. Executive function impairment in early-treated PKU subjects with normal mental development. J. Inherit. Metab. Dis. 2004, 27, 115–125. [Google Scholar] [CrossRef]
- Welsh, M.C.; Pennington, B.F.; Ozonoff, S.; Rouse, B.; McCabe, E.R.B. Neuropsychology of Early-Treated Phenylketonuria: Specific Executive Function Deficits. Child Dev. 1990, 61, 1697. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, S.; Gassió, R.; Campistol, J. Executive functioning in context: Relevance for treatment and monitoring of phenylketonuria. Mol. Genet. Metab. 2013, 110, S25–S30. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.S.-F.; Tseng, W.-Y.I.; Chien, Y.-H.; Hwu, W.-L.; Liu, H.-M. Diffusion tensor images in children with early-treated, chronic, malignant phenylketonuric: Correlation with intelligence assessment. Am. J. Neuroradiol. 2004, 25, 1569–1574. [Google Scholar]
- Kono, K.; Okano, Y.; Nakayama, K.; Hase, Y.; Minamikawa, S.; Ozawa, N.; Yokote, H.; Inoue, Y. Diffusion-weighted MR Imaging in Patients with Phenylketonuria: Relationship between Serum Phenylalanine Levels and ADC Values in Cerebral White Matter. Radiology 2005, 236, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Schuck, P.F.; Malgarin, F.; Cararo, J.H.; Cardoso, F.; Streck, E.L.; Ferreira, G.C. Phenylketonuria Pathophysiology: On the Role of Metabolic Alterations. Aging Dis. 2015, 6, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Van Spronsen, F.J.; Hoeksma, M.; Reijngoud, D.-J. Brain dysfunction in phenylketonuria: Is phenylalanine toxicity the only possible cause? J. Inherit. Metab. Dis. 2009, 32, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Oldendorf, W.; Szabó, J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol. Content 1976, 230, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Lou, H. Large doses of tryptophan and tyrosine as potential therapeutic alternative to dietary phenylalanine restriction in phenylketonuria. Lancet 1985, 326, 150–151. [Google Scholar] [CrossRef]
- Pietz, J.; Landwehr, R.; Kutscha, A.; Schmidt, H.; De Sonneville, L.; Trefz, F.K. Effect of high-dose tyrosine supplementation on brain function in adults with phenylketonuria. J. Pediatr. 1995, 127, 936–943. [Google Scholar] [CrossRef]
- Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Гречанина, Е.; Novikov, P.; McDonald, J.D.; Grady, J.; Tyring, S.K.; Güttler, F. Large neutral amino acids in the treatment of phenylketonuria (PKU). J. Inherit. Metab. Dis. 2006, 29, 732–738. [Google Scholar] [CrossRef]
- Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Burlina, A.B.; Burlina, A.P.; Braga, C.; Fiori, L.; Giovannini, M.; Гречанина, Е.; Novikov, P.; et al. Double blind placebo control trial of large neutral amino acids in treatment of PKU: Effect on blood phenylalanine. J. Inherit. Metab. Dis. 2007, 30, 153–158. [Google Scholar] [CrossRef]
- Schindeler, S.; Ghosh-Jerath, S.; Thompson, S.; Rocca, A.; Joy, P.; Kemp, A.; Rae, C.; Green, K.; Wilcken, B.; Christodoulou, J. The effects of large neutral amino acid supplements in PKU: An MRS and neuropsychological study. Mol. Genet. Metab. 2007, 91, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Moseley, K.; Fu, X.; Azen, C. Evaluation of Tetrahydrobiopterin Therapy with Large Neutral Amino Acid Supplementation in Phenylketonuria: Effects on Potential Peripheral Biomarkers, Melatonin and Dopamine, for Brain Monoamine Neurotransmitters. PLoS ONE 2016, 11, e0160892. [Google Scholar] [CrossRef] [PubMed]
- Concolino, D.; Mascaro, I.; Moricca, M.T.; Bonapace, G.; Matalon, K.; Trapasso, J.; Radhakrishnan, G.; Ferrara, C.; Matalon, R.; Strisciuglio, P. Long-term treatment of phenylketonuria with a new medical food containing large neutral amino acids. Eur. J. Clin. Nutr. 2017, 71, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlina, A.P.; Cazzorla, C.; Massa, P.; Polo, G.; Loro, C.; Gueraldi, D.; Burlina, A.P. Large Neutral Amino Acid Therapy Increases Tyrosine Levels in Adult Patients with Phenylketonuria: A Long-Term Study. Nutrients 2019, 11, 2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniele, A.; Scala, I.; Cardillo, G.; Pennino, C.; Ungaro, C.; Sibilio, M.; Parenti, G.; Esposito, L.; Zagari, A.; Andria, G.; et al. Functional and structural characterization of novel mutations and genotype-phenotype correlation in 51 phenylalanine hydroxylase deficient families from Southern Italy. FEBS J. 2009, 276, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Scala, I.; Concolino, D.; Della Casa, R.; Nastasi, A.; Ungaro, C.; Paladino, S.; Capaldo, B.; Ruoppolo, M.; Daniele, A.; Bonapace, G.; et al. Long-term follow-up of patients with phenylketonuria treated with tetrahydrobiopterin: A seven years experience. Orphanet J. Rare Dis. 2015, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Grossi, E.; Groth, N.; Mosconi, P.; Cerutti, R.; Pace, F.; Compare, A.; Apolone, G. Development and validation of the short version of the Psychological General Well-Being Index (PGWB-S). Heal. Qual. Life Outcomes 2006, 4, 88. [Google Scholar] [CrossRef] [Green Version]
- Lenci, G.; Calevo, M.G.; Gaggero, R.; Prato, G.; Pisciotta, L.; De Grandis, E.; Mancardi, M.M.; Baglietto, M.G.; Vigano’, M.; Veneselli, E. Personality profile and health-related quality of life in adults with previous continuous spike-waves during slow sleep syndrome. Brain Dev. 2019, 41, 522–530. [Google Scholar] [CrossRef]
- Creque, C.; Kolakowsky-Hayner, S.A. Wisconsin Card Sorting Test; Springer Science and Business Media LLC: Boston, MA, USA, 2011; pp. 1–3. [Google Scholar]
- Zimmermann, P.; Fimm, B. A Test Battery for Attentional Performance. In Applied Neuropsychology of Attention; Leclercq, M., Zimmermann, P., Eds.; Psychology Press: Wien, Austria, 2004. [Google Scholar]
- Grice, K.O.; Vogel, K.A.; Le, V.; Mitchell, A.; Muniz, S.; Vollmer, M.A. Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. Am. J. Occup. Ther. 2003, 57, 570–573. [Google Scholar] [CrossRef] [Green Version]
Subject n | Age (Years) | Sex | Genotype | Phe at Diagnosis (Μmol/L) | Historical Tolerance (mg Phe/day) | Phenotype | LNAA (g/kg/day) |
---|---|---|---|---|---|---|---|
1 | 27 | F | R261Q °/ IVS10NT-11G>A | 1870 | 350 | cPKU | 0.9 |
2 | 32 | M | R261Q °/ P281L | 1200 | 450 | mPKU | 0.8 |
3 | 24 | F | R261Q°/ IVS10NT-11G>A | 1500 | 350 | cPKU | 0.9 |
4 | 21 | M | R243X/ IVS10NT-11G>A | 2480 | 275 | cPKU | 0.8 |
5 | 20 | M | R261Q°/ IVS10NT-11G>A | 1694 | 340 | cPKU | 0.8 |
6 | 26 | F | P281L/ W187X | 1150 | 390 | moPKU | 0.8 |
7 | 27 | F | R261Q °/ IVS10NT-11G>A | 1815 | 265 | cPKU | 0.9 |
8 | 23 | F | IVS10NT-11G>A/ IVS10NT-11G>A | 1633 | 230 | cPKU | 0.8 |
9 | 18 | M | R158Q °/ IVS10NT-11G>A | 1200 | 330 | cPKU | 0.9 |
10 | 18 | F | L48S °/ D222G | 665 | 450 | mPKU | 0.8 |
Energy | 1546 kJ/365 kcal |
---|---|
Fat of which saturated fat | 1 g 0.7 g |
Carbohydrates of which sugars | 12 g 12 g |
Fibers | 5 g |
Amino acids | |
L-tyrosine | 12.4 g |
L-Leucine | 6.46 g |
L-Lysine | 3.76 g |
L- Glutamine | 2.32 g |
L-proline | 2.28 g |
L-valine | 2.2 g |
L-isoleucine | 2.2 g |
L-tryptophan | 2.2 g |
L-threonine | 2.08 g |
L-arginine | 1.84 g |
Aspartate | 1.56 g |
L-histidine | 0.8 g |
L-methionine | 0.64 g |
Vitamins | |
Vitamin C | 66 mg |
Vitamin E | 13.2 mg |
Niacin | 13.2 mg |
Pantothenic acid | 5.78 mg |
Vitamin B6 | 3.56 mg |
Riboflavin | 1.18 mg |
Thiamine | 1 mg |
Vitamin A | 858 mcg |
Folic acid | 495 μg |
Biotin | 99 μg |
Vitamin K | 74.6 μg |
Vitamin D | 10.24 μg |
Vitamin B12 | 5.96 μg |
Minerals | |
Calcium | 1056 mg |
Chloride | 916 mg |
Phosphorus | 816 mg |
Magnesium | 330 mg |
Iron | 13.2 mg |
Sodium | <29.6 mg |
Other | |
Zinc | 9.9 mg |
Manganese | 1.98 mg |
Copper | 1 mg |
Iodine | 132 μg |
Molybdenum | 59.4 μg |
Selenium | 49.5 μg |
Chrome | 26.4 μg |
DHA | 400 mg |
Choline | 429 mg |
Inositol | 82.5 mg |
Patients | Phe Pre-LNAAs n = 12 | Phe on LNAAs n = 12 | Tyr Pre-LNAAs n = 12 | Tyr on LNAAs n = 12 | Phe/Tyr Ratio Pre LNAAs n = 12 | Phe/Tyr Ratio on LNAAs n = 12 | Phe Level at T0, T3, and T12 | Tyr Level at T0, T3, and T12 |
---|---|---|---|---|---|---|---|---|
1 | 786 | 907 | 80 | 86 | 8.7 | 12.5 | 780; 890; 920 | 46; 115; 118 |
(453–968) | (786–1028) | (38–99) | (54–118) | (8.1–18.7) | (9–15.8) | |||
2 | 907 | 1028 | 38 | 58 * | 24 | 19 ** | 1068; 1080; 989 | 34; 78; 75 |
(363–1089) | (847–1089) | (32–54) | (60–76) | (6–26) | (10–19) | |||
3 | 847 | 605 | 37 | 77 * | 26 | 9.8 ** | 800; 550; 620 | 33, 140; 151 |
(647–1082) | (423–1120) | (27.5–49) | (48–151) | (15–30 | (4.6–17.7) | |||
4 | 937 | 1331 * | 50 | 83 ** | 19 | 15 | 910; 1200; 1260 | 36; 88; 90 |
(907–968) | (1028–1450) | (34–58) | (74–91) | (16–20) | (9.6–16) | |||
5 | 665 | 828 | 54 | 77 * | 8.6 | 10 | 650; 800; 850 | 39; 95; 110 |
(326–689) | (726–968) | (38–65) | (73–137) | (5–13.5) | (7.5–11.4) | |||
6 | 786 | 968 | 39 | 71 * | 25 | 20 | 830; 800; 938 | 35; 73; 80 |
(665–847) | (786–1089) | (30–50) | (60–80) | (16–29) | (17–21) | |||
7 | 907 | 877 | 45 | 70 ** | 20 | 13 ** | 920; 780; 805 | 36; 73; 79 |
(689–968) | (726–1089) | (35–56) | (62–77) | (16–22) | (10–14) | |||
8 | 883 | 1056 | 41 | 52 * | 21 | 19 | 900; 950; 890 | 33; 54; 60 |
(665–1200) | (780–1260) | (31–49) | (46–63) | (18–28) | (16–23) | |||
9 | 810 | 948 | 65 | 238 ** | 11 | 3.3 ** | 956; 880; 920 | 57; 232; 240 |
(480–1140) | (720–980) | (51–91) | (233–242) | (6–15) | (3–4) | |||
10 | 780 | 540 | 40 | 80 * | 25 | 10 ** | 740; 439; 560 | 32; 87; 86 |
(480–840) | (420–600) | (30–45) | (50–89) | (19–27) | (7–12) |
Variables | T0 Raw Scores Mean (SD) | T3 Raw Scores Mean (SD) | T12 Raw Scores Mean (SD) | T0 Centile | T3 Centile | T12 Centile |
---|---|---|---|---|---|---|
Number of trials administered | 93.6 (17.32) | 83.5 (16) | 82.8 (15) | -- | -- | |
Total number correct | 71.6 (6) | 70.8 (11.4) | 70 (11) | -- | -- | |
Total number of errors | 21.9 (12) | 12.8 (6) * | 12.4 (5.2) * | 55 (33.6) | 84 (20) * | 86 (18) * |
Percent errors | 22 (8.5) | 15 (4.5) * | 15 (4) * | 55 (33.6) | 84 (20) * | 87 (24) * |
Perseverative responses | 15.3 (12.8) | 9.3 (9.5) | 9.1 (9) | 51 (36.5) | 75 (31) | 74 (30) |
Percent perseverative response | 15 (10) | 9.2 (8.8) | 9 (8) | 46 (36) | 73 (34) | 72 (36) |
Perseverative errors | 10.7 (8.7) | 5.8 (3.4) | 5.5 (3) | 59 (37) | 85.6 (16) | 83 (12) |
Percent perseverative errors | 10.3 (7) | 6.7 (3) | 6.5 (3) | 63.6 (35) | 86.7 (15) | 88 (19) |
Non-perseverative errors | 17.6 (15.6) | 7 (3.6) * | 6.8 (3.3) * | 48.2 (30) | 76 (23) * | 78 (20) * |
Percent non-perseverative errors | 12.2 (3.2) | 7.16 (2.5) ** | 6.9 (2) ** | 44 (23) | 72 (22) ** | 75 (19) ** |
Conceptual level responses | 67 (6.4) | 72 (12) | 73 (13) | -- | -- | |
Percent conceptual level responses | 71 (9) | 79 (5.6) * | 80 (5.8) * | -- | -- | |
Number of categories completed | 5.9 (0.3) | 6 (0) | 6.1 (0.2) | -- | -- | |
Trials to complete first categories | 14.7 (4.9) | 15.3 (6.7) | 15 (6.5) | -- | -- | |
Failure to maintain set | 0.2 (0.4) | 0.7 (1) | 0.8 (0.9) | -- | -- | |
Learning to learn | 0.28 (2.4) | 0 (3.19) | 0 (3) |
Variables | T0 Ms Mean (SD) | T3 Ms Mean (SD) | T12 Ms Mean (SD) |
---|---|---|---|
Vigilance | |||
Time to complete the total tasks | 706 (82) | 614 (64) * | 609 (60) * |
Sustained attention | |||
Total time | 727 (147) | 597 (106) ** | 589 (98) ** |
n of errors | 6 (7.7) | 0.6 (0.8) ** | 0.8 (0.5) ** |
n of omissions | 9 (9.5) | 3 (2.4) * | 3.2 (2.2) * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scala, I.; Riccio, M.P.; Marino, M.; Bravaccio, C.; Parenti, G.; Strisciuglio, P. Large Neutral Amino Acids (LNAAs) Supplementation Improves Neuropsychological Performances in Adult Patients with Phenylketonuria. Nutrients 2020, 12, 1092. https://doi.org/10.3390/nu12041092
Scala I, Riccio MP, Marino M, Bravaccio C, Parenti G, Strisciuglio P. Large Neutral Amino Acids (LNAAs) Supplementation Improves Neuropsychological Performances in Adult Patients with Phenylketonuria. Nutrients. 2020; 12(4):1092. https://doi.org/10.3390/nu12041092
Chicago/Turabian StyleScala, Iris, Maria Pia Riccio, Maria Marino, Carmela Bravaccio, Giancarlo Parenti, and Pietro Strisciuglio. 2020. "Large Neutral Amino Acids (LNAAs) Supplementation Improves Neuropsychological Performances in Adult Patients with Phenylketonuria" Nutrients 12, no. 4: 1092. https://doi.org/10.3390/nu12041092
APA StyleScala, I., Riccio, M. P., Marino, M., Bravaccio, C., Parenti, G., & Strisciuglio, P. (2020). Large Neutral Amino Acids (LNAAs) Supplementation Improves Neuropsychological Performances in Adult Patients with Phenylketonuria. Nutrients, 12(4), 1092. https://doi.org/10.3390/nu12041092