Relative Validity of Dietary Total Antioxidant Capacity for Predicting All-Cause Mortality in Comparison to Diet Quality Indexes in US Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Estimation of Dietary TAC
2.3. Estimation of Diet Quality Index Scores
2.4. Outcome
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Collaborators, T.U.B.O.D.; Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.R.; et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, and Risk Factors among US States. JAMA 2018, 319, 1444–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burggraf, C.; Teuber, R.; Brosig, S.; Meier, T. Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 2018, 76, 747–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018, 118, 74–100.e11. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D.R., Jr.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78, 508s–513s. [Google Scholar] [CrossRef] [PubMed]
- Kampman, E.; Vrieling, A.; Van Duijnhoven, F.J.; Winkels, R.M. Impact of Diet, Body Mass Index, and Physical Activity on Cancer Survival. Curr. Nut. Rep. 2012, 1, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, K.; Dyakova, M.; Ward, K.; Thorogood, M.; Brunner, E. Dietary advice for reducing cardiovascular risk. Cochrane Database Syst. Rev. 2013, 3, CD002128. [Google Scholar]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heron, M. Deaths: Leading Causes for 2017; National Center for Health Statistics: Hyattsville, MD, USA, 2019.
- Serafini, M.; Del Rio, D. Understanding the association between dietary antioxidants, redox status and disease: Is the Total Antioxidant Capacity the right tool? Redox Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Total antioxidant capacity: Appraisal of a concept. J. Nutr. 2007, 137, 1493–1495. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Serafini, M.; Morgenstern, R.; Prior, R.L.; Wolk, A. The validity and reproducibility of food-frequency questionnaire-based total antioxidant capacity estimates in Swedish women. Am. J. Clin. Nutr. 2008, 87, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J. Sci. Food Agric. 2019. [CrossRef] [PubMed]
- Brighenti, F.; Valtueña, S.; Pellegrini, N.; Ardigò, D.; Del Rio, D.; Salvatore, S.; Piatti, P.; Serafini, M.; Zavaroni, I. Total antioxidant capacity of the diet is inversely and independently related to plasma concentration of high-sensitivity C-reactive protein in adult Italian subjects. Br. J. Nutr. 2005, 93, 619–625. [Google Scholar] [CrossRef]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Uenishi, K.; Yamasaki, M.; Hayabuchi, H.; Goda, T.; Oka, J.; Baba, K.; Ohki, K.; et al. Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women. Nutr. J. 2012, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, M.; Lee, S.G.; Davis, C.G.; Koo, S.I.; Fernandez, M.L.; Volek, J.S.; Chun, O.K. Diets high in total antioxidant capacity improve risk biomarkers of cardiovascular disease: A 9-month observational study among overweight/obese postmenopausal women. Eur. J. Nutr. 2014, 53, 1363–1369. [Google Scholar] [CrossRef]
- Kim, K.; Vance, T.M.; Chun, O.K. Greater Total Antioxidant Capacity from Diet and Supplements Is Associated with a Less Atherogenic Blood Profile in U.S. Adults. Nutrients 2016, 8, 15. [Google Scholar] [CrossRef]
- Rautiainen, S.; Larsson, S.; Virtamo, J.; Wolk, A. Total antioxidant capacity of diet and risk of stroke: A population-based prospective cohort of women. Stroke 2012, 43, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Rautiainen, S.; Levitan, E.B.; Mittleman, M.A.; Wolk, A. Total antioxidant capacity of diet and risk of heart failure: A population-based prospective cohort of women. Am. J. Med. 2013, 126, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Levitan, E.B.; Orsini, N.; Åkesson, A.; Morgenstern, R.; Mittleman, M.A.; Wolk, A. Total antioxidant capacity from diet and risk of myocardial infarction: A prospective cohort of women. Am. J. Med. 2012, 125, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Agnoli, C.; Pellegrini, N.; Krogh, V.; Brighenti, F.; Mazzeo, T.; Masala, G.; Bendinelli, B.; Berrino, F.; Sieri, S.; et al. Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J. Nutr. 2011, 141, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colarusso, L.; Serafini, M.; Lagerros, Y.T.; Nyren, O.; La Vecchia, C.; Rossi, M.; Ye, W.; Tavani, A.; Adami, H.O.; Grotta, A.; et al. Dietary antioxidant capacity and risk for stroke in a prospective cohort study of Swedish men and women. Nutrition 2017, 33, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Psaltopoulou, T.; Panagiotakos, D.B.; Pitsavos, C.; Chrysochoou, C.; Detopoulou, P.; Skoumas, J.; Stefanadis, C. Dietary antioxidant capacity is inversely associated with diabetes biomarkers: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 561–567. [Google Scholar] [CrossRef]
- Okubo, H.; Syddall, H.E.; Phillips, D.I.; Sayer, A.A.; Dennison, E.M.; Cooper, C.; Robinson, S.M. Dietary total antioxidant capacity is related to glucose tolerance in older people: The Hertfordshire Cohort Study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantavos, A.; Ruiter, R.; Feskens, E.F.; De Keyser, C.E.; Hofman, A.; Stricker, B.H.; Franco, O.H.; Kiefte-de Jong, J.C. Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: The Rotterdam Study. Int. J. Cancer 2015, 136, 2178–2186. [Google Scholar] [CrossRef]
- Lucas, A.L.; Bosetti, C.; Boffetta, P.; Negri, E.; Tavani, A.; Serafini, M.; Polesel, J.; Serraino, D.; La Vecchia, C.; Rossi, M. Dietary total antioxidant capacity and pancreatic cancer risk: An Italian case-control study. Br. J. Cancer 2016, 115, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Vance, T.M.; Wang, Y.; Su, L.J.; Fontham, E.T.; Steck, S.E.; Arab, L.; Bensen, J.T.; Mohler, J.L.; Chen, M.H.; Chun, O.K. Dietary Total Antioxidant Capacity is Inversely Associated with Prostate Cancer Aggressiveness in a Population-Based Study. Nutr. Cancer 2016, 68, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Puchau, B.; Zulet, M.A.; De Echávarri, A.G.; Hermsdorff, H.H.; Martínez, J.A. Dietary total antioxidant capacity: A novel indicator of diet quality in healthy young adults. J. Am. Coll. Nutr. 2009, 28, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Song, W.O.; Fernandez, M.L.; Bruno, R.S.; Koo, S.I.; Chun, O.K. Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int. J. Food Sci. Nutr. 2010, 61, 600–623. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Lee, S.-G.; Davis, C.; Masterjohn, C.; Kenny, A.; Bruno, R.S.; Chun, O.K. Total Antioxidant Capacity: A Useful Tool in Assessing Antioxidant Intake Status. In Natural Compounds as Inducers of Cell Death: Volume 1; Diederich, M., Noworyta, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 265–292. [Google Scholar]
- Chun, O.K.; Chung, S.J.; Song, W.O. Urinary isoflavones and their metabolites validate the dietary isoflavone intakes in US adults. J. Am. Diet. Assoc. 2009, 109, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Lee, S.G.; Davis, C.G.; Koo, S.I.; Chun, O.K. Dietary total antioxidant capacity is associated with diet and plasma antioxidant status in healthy young adults. J. Acad. Nutr. Diet. 2012, 112, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Lee, S.G.; Davis, C.G.; Kenny, A.; Koo, S.I.; Chun, O.K. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women. J. Nutr. Biochem. 2012, 23, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Vance, T.M.; Azabdaftari, G.; Pop, E.A.; Lee, S.G.; Su, L.J.; Fontham, E.T.; Bensen, J.T.; Steck, S.E.; Arab, L.; Mohler, J.L.; et al. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants. Prostate Cancer 2015, 2015, 728046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vance, T.M.; Azabdaftari, G.; Pop, E.A.; Lee, S.G.; Su, L.J.; Fontham, E.T.; Bensen, J.T.; Steck, S.E.; Arab, L.; Mohler, J.L.; et al. Intake of dietary antioxidants is inversely associated with biomarkers of oxidative stress among men with prostate cancer. Br. J. Nutr. 2016, 115, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Vance, T.M.; Chen, M.H.; Chun, O.K. Dietary total antioxidant capacity is inversely associated with all-cause and cardiovascular disease death of US adults. Eur. J. Nutr. 2018, 57, 2469–2476. [Google Scholar] [CrossRef]
- National Center for Health Statistics. Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–94; National Center for Health Statistics: Hyattsville, MD, USA, 1994.
- Zipf, G.; Chiappa, M.; Porter, K.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National Health and Nutrition Examination Survey: Plan and Operations, 1999–2010; National Center for Health Statistics: Hyattsville, MD, USA, 2013.
- Haytowitz, D.B.; Wu, X.; Bhagwat, S. USDA Database for the Flavonoid Content of Selected Foods, Release 3.3; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2018. Available online: http://www.ars.usda.gov (accessed on 6 January 2020).
- Haytowitz, D.; Wu, X.; Bhagwat, S. USDA’s Database for the Proanthocyanidin Content of Selected Foods, Release 2.1; U.S. Department of Agriculture, Agricultural Service: Washington, DC, USA, 2018. Available online: http://www.ars.usda.gov (accessed on 6 January 2020).
- Bhagwat, S.; Haytowitz, D.B. USDA Database for the Isoflavone Content of Selected Foods, Release 2.1; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2015. Available online: http://www.ars.usda.gov (accessed on 6 January 2020).
- Bhagwat, S.; Haytowitz, D.B.; Wasswa-Kintu, S. USDA’s Expanded Flavonoid Database for the assessment of Dietary Intakes.; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2014. Available online: http://www.ars.usda.gov (accessed on 6 January 2020).
- Kim, K.; Vance, T.M.; Chun, O.K. Estimated Intake and Major Food Sources of Flavonoids among US Adults: Changes Between 1999–2002 and 2007–2010 in NHANES. Eur. J. Nutr. 2016, 55, 833–843. [Google Scholar] [CrossRef]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC/National Center for Health Statistics. NDI Mortality Data. Available online: https://www.cdc.gov/nchs/data-linkage/mortality.htm (accessed on 22 November 2019).
- Agudo, A.; Cabrera, L.; Amiano, P.; Ardanaz, E.; Barricarte, A.; Berenguer, T.; Chirlaque, M.D.; Dorronsoro, M.; Jakszyn, P.; Larrañaga, N.; et al. Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: Findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am. J. Clin. Nutr. 2007, 85, 1634–1642. [Google Scholar] [CrossRef]
- Michaëlsson, K.; Wolk, A.; Melhus, H.; Byberg, L. Milk, Fruit and Vegetable, and Total Antioxidant Intakes in Relation to Mortality Rates: Cohort Studies in Women and Men. Am. J. Epidemiol. 2017, 185, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Bastide, N.; Dartois, L.; Dyevre, V.; Dossus, L.; Fagherazzi, G.; Serafini, M.; Boutron-Ruault, M.-C. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur. J. Nutr. 2017, 56, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Henríquez-Sánchez, P.; Sánchez-Villegas, A.; Ruano-Rodríguez, C.; Gea, A.; Lamuela-Raventós, R.M.; Estruch, R.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Schröder, H.; et al. Dietary total antioxidant capacity and mortality in the PREDIMED study. Eur. J. Nutr. 2016, 55, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chung, S.J.; Floegel, A.; Song, W.O.; Koo, S.I.; Chun, O.K. Dietary antioxidant capacity is associated with improved serum antioxidant status and decreased serum C-reactive protein and plasma homocysteine concentrations. Eur. J. Nutr. 2013, 52, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Zhang, A.; Zhong, F. Association between Homocysteine Levels and All-cause Mortality: A Dose-Response Meta-Analysis of Prospective Studies. Sci. Rep. 2017, 7, 4769. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhong, X.; Cheng, G.; Zhao, C.; Zhang, L.; Hong, Y.; Wan, Q.; He, R.; Wang, Z. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: A meta-analysis. Atherosclerosis 2017, 259, 75–82. [Google Scholar] [CrossRef]
- Yang, M.; Chung, S.-J.; Chung, C.E.; Kim, D.-O.; Song, W.O.; Koo, S.I.; Chun, O.K. Estimation of total antioxidant capacity from diet and supplements in US adults. Br. J. Nutr. 2011, 106, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Chun, O.K.; Floegel, A.; Chung, S.-J.; Chung, C.E.; Song, W.O.; Koo, S.I. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J. Nutr. 2010, 140, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Chun, O.K.; Joung, H. Estimation of dietary total antioxidant capacity of Korean adults. Eur. J. Nutr. 2018, 57, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, P.; Lajous, M.; MacDonald, C.-J.; Fagherazzi, G.; Bonnet, F.; Boutron-Ruault, M.-C. High dietary total antioxidant capacity is associated with a reduced risk of hypertension in French women. Nutr. J. 2019, 18, 31. [Google Scholar] [CrossRef]
- Drewnowski, A.; Rehm, C.D. Consumption of added sugars among US children and adults by food purchase location and food source. Am. J. Clin. Nutr. 2014, 100, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.; Dhar, I. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease. Int. J. Angiol. 2014, 23, 217–226. [Google Scholar]
- Bayorh, M.A.; Ganafa, A.A.; Socci, R.R.; Silvestrov, N.; Abukhalaf, I.K. The role of oxidative stress in salt-induced hypertension. Am. J. Hypertens. 2004, 17, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Van der Vaart, H.; Postma, D.S.; Timens, W.; Ten Hacken, N.H.T. Acute effects of cigarette smoke on inflammation and oxidative stress: A review. Thorax 2004, 59, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Bondonno, N.P.; Lewis, J.R.; Blekkenhorst, L.C.; Bondonno, C.P.; Shin, J.H.; Croft, K.D.; Woodman, R.J.; Wong, G.; Lim, W.H.; Gopinath, B.; et al. Association of flavonoids and flavonoid-rich foods with all-cause mortality: The Blue Mountains Eye Study. Clin. Nutr. 2020, 39, 141–150. [Google Scholar] [CrossRef]
- Jayedi, A.; Rashidy-Pour, A.; Parohan, M.; Zargar, M.S.; Shab-Bidar, S. Dietary Antioxidants, Circulating Antioxidant Concentrations, Total Antioxidant Capacity, and Risk of All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Observational Studies. Adv. Nutr. 2018, 9, 701–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
HEI-2015 | AHEI-2010 | aMED | DASH | Energy-Adjusted TAC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Quintile 1 (n = 4759) | Quintile 5 (n = 4759) | Quintile 1 (n = 4759) | Quintile 5 (n = 4759) | Quintile 1 (n = 3028) | Quintile 5 (n = 5057) | Quintile 1 (n = 4556) | Quintile 5 (n = 4660) | Quintile 1 (n = 4759) | Quintile 5 (n = 4759) | |
Range | 12.7–40.3 | 62.0–99.99 | 1.8–27.1 | 47.1–89.5 | 0–1 | 5–9 | 8–17 | 26–40 | 0.3–90.5 | 636.3–6163.1 |
Gender | ||||||||||
Men | 2372 (49.2) | 2129 (43.6) | 2620 (56.6) | 2108 (42.6) | 1607 (52.0) | 2435 (47.2) | 2792 (62.8) | 1872 (39.6) | 2471 (50.2) | 2021 (41.6) |
Women | 2387 (50.8) | 2630 (56.4) | 2139 (43.4) | 2651 (57.4) | 1421 (48.0) | 2622 (52.8) | 1764 (37.2) | 2788 (60.4) | 2288 (49.8) | 2738 (58.4) |
Age (years) | ||||||||||
30–44 | 2042 (50.1) | 1124 (29.4) | 2189 (52.3) | 1202 (31.6) | 1264 (50.0) | 1473 (33.6) | 2377 (57.9) | 1039 (29.4) | 1950 (48.3) | 1398 (36.4) |
45–54 | 889 (22.2) | 751 (21.2) | 921 (22.3) | 855 (23.9) | 576 (22.3) | 911 (23.9) | 950 (22.9) | 688 (20.1) | 907 (23.0) | 884 (24.4) |
55–64 | 761 (14.2) | 893 (19.2) | 727 (13.2) | 903 (18.2) | 489 (13.4) | 918 (17.7) | 643 (11.9) | 879 (18.9) | 811 (15.2) | 873 (16.8) |
65–74 | 613 (8.2) | 1044 (17.8) | 526 (7.3) | 976 (15.9) | 391 (8.5) | 952 (15.3) | 376 (5.0) | 1083 (19.2) | 627 (8.4) | 824 (13.4) |
75–84 | 359 (4.4) | 737 (10.0) | 298 (3.9) | 653 (8.7) | 239 (4.9) | 638 (7.9) | 168 (1.8) | 745 (10.0) | 354 (4.1) | 597 (7.1) |
≥85 | 95 (0.9) | 210 (2.3) | 98 (0.9) | 170 (1.7) | 69 (1.0) | 165 (1.6) | 42 (0.4) | 226 (2.4) | 110 (1.1) | 183 (2.0) |
Race/Ethnicity | ||||||||||
White | 2143 (74.3) | 2515 (78.1) | 2031 (71.1) | 2512 (78.9) | 1349 (73.8) | 2702 (79.3) | 1852 (70.7) | 2714 (83.3) | 2034 (72.9) | 2731 (79.9) |
Black | 1461 (13.4) | 819 (7.7) | 1549 (14.8) | 794 (7.6) | 905 (13.3) | 935 (8.2) | 1582 (15.7) | 697 (6.4) | 1456 (14.4) | 968 (8.5) |
Hispanic | 1059 (9.0) | 1297 (10.1) | 1077 (9.9) | 1295 (8.5) | 713 (9.2) | 1258 (8.1) | 1006 (9.3) | 1141 (7.1) | 1171 (9.4) | 902 (6.0) |
Other | 96 (3.3) | 128 (4.0) | 102 (4.2) | 158 (5.0) | 61 (3.7) | 162 (4.4) | 116 (4.2) | 108 (3.3) | 98 (3.3) | 158 (5.5) |
Marital status | ||||||||||
Married | 2931 (66.4) | 3152 (71.4) | 2950 (67.1) | 3189 (72.3) | 1883 (66.8) | 3462 (72.7) | 2922 (68.4) | 3076 (71.5)2 | 2982 (65.9) | 3084 (71.2) |
Unmarried | 1753 (33.6) | 1547 (28.6) | 1724 (32.9) | 1508 (27.7) | 1103 (33.2) | 1514 (27.3) | 1560 (31.6) | 1524 (28.5)2 | 1711 (34.1) | 1602 (28.8) |
PIR | ||||||||||
<1.3 | 1433 (22.4) | 970 (12.4) | 1418 (22.6) | 953 (11.3) | 961 (23.9) | 893 (11.1) | 1397 (23.9) | 916 (11.4) | 1486 (22.9) | 983 (14.1) |
1.3–<1.85 | 621 (11.0) | 520 (8.0) | 612 (10.9) | 487 (7.5) | 425 (11.8) | 520 (7.2) | 573 (10.4) | 467 (7.1) | 616 (11.3) | 540 (8.0) |
≥1.85 | 2309 (66.6) | 2855 (79.7) | 2344 (66.5) | 2919 (81.2) | 1375 (64.2) | 3257 (81.8) | 2240 (65.7) | 2862 (81.5) | 2256 (65.7) | 2867 (77.8) |
Physical activity 3 | ||||||||||
Sufficient | 1612 (37.5) | 2291 (54.9) | 1634 (38.0) | 2285 (54.5) | 1001 (37.4) | 2480 (56.9) | 1510 (36.7) | 2310 (57.3) | 1583 (37.9) | 2041 (47.5) |
Insufficient | 3147 (62.5) | 2466 (45.1) | 3125 (62.0) | 2473 (45.5) | 2027 (62.6) | 2576 (43.1) | 3046 (63.3) | 2348 (42.7) | 3176 (62.1) | 2718 (52.5) |
Smoking 4 | ||||||||||
Never and former (quit ≥3 years) | 2941 (60.3) | 4082 (85.5) | 2885 (58.7) | 3937 (82.6) | 1715 (53.1) | 4222 (83.5) | 2502 (53.4) | 4058 (86.5) | 2939 (59.6) | 3818 (78.5) |
Former (quit <3 years) | 187 (4.3) | 145 (3.4) | 194 (4.4) | 160 (3.3) | 125 (5.2) | 173 (3.8) | 216 (5.2) | 127 (3.4) | 181 (4.2) | 134 (2.9) |
Current | 1613 (35.4) | 519 (11.1) | 1664 (36.9) | 644 (14.1) | 1180 (41.6) | 646 (12.8) | 1823 (41.4) | 455 (10.1) | 1619 (36.2) | 789 (18.7) |
BMI (kg/m2) | 28.7 ± 0.2 a | 27.2 ± 0.1 b | 28.2 ± 0.2 a | 27.3 ± 0.1 b | 28.4 ± 0.2 a | 27.2 ± 0.1 b | 28.6 ± 0.2 a | 27.0 ± 0.1 b | 28.7 ± 0.2 a | 27.7 ± 0.1 b |
Energy intake (kcal/day) | 2082.8 ± 20.2 a | 1957.2 ± 18.0 b | 2237.7 ± 18.5 a | 1978.7 ± 18.0 b | 1960.9 ± 25.3 a | 2189.3 ± 17.2 b | 2425.5 ± 18.8 a | 1942.7 ± 16.5 b | 2001.6 ± 21.1 | 1968.7 ± 18.5 |
History of diabetes | 446 (7.1) | 772 (12.1) | 414 (6.1) | 741 (11.8) | 319 (7.3) | 643 (9.6)2 | 330 (5.7) | 721 (11.2) | 479 (8.1) | 569 (8.7) 2 |
History of CVDs | 454 (8.0) | 576 (9.3) | 416 (7.5) | 518 (9.1) 2 | 296 (8.3) | 512 (7.9) 2 | 316 (6.3) | 575 (9.9) | 490 (8.5) | 519 (7.9) 2 |
History of hypertension | 1539 (29.3) | 1806 (34.2) | 1498 (28.7) | 1722 (32.0) | 965 (28.0) | 1792 (31.9) | 1305 (26.9) | 1791 (33.8) | 1578 (30.4) | 1719 (31.9) 2 |
Energy-Adjusted Dietary TAC (mg VCE/day) | ||||||
---|---|---|---|---|---|---|
Quintile 1 (n = 4759) | Quintile 2 (n = 4760) | Quintile 3 (n = 4759) | Quintile 4 (n = 4760) | Quintile 5 (n = 4759) | p for Trend | |
Diet quality index scores | ||||||
HEI-2015 | 43.7 ± 0.3 a | 50.6 ± 0.3 b | 54.7 ± 0.4 c | 58.4 ± 0.3 d | 54.4 ± 0.4 c | <0.0001 |
AHEI-2010 | 32.4 ± 0.4 a | 37.2 ± 0.4 b | 38.9 ± 0.4 c | 40.6 ± 0.3 d | 38.5 ± 0.4 b,c | <0.0001 |
aMED | 2.42 ± 0.04 a | 3.12 ± 0.04 b | 3.60 ± 0.05 c | 3.95 ± 0.03 d | 3.59 ± 0.04 c | <0.0001 |
DASH | 18.7 ± 0.1 a | 21.4 ± 0.1 b | 23.1 ± 0.1 c | 24.4 ± 0.1 d | 22.4 ± 0.1 e | <0.0001 |
Foods and nutrients | ||||||
Total fruits (cup eq.) | 0.3 ± 0.03 a | 0.7 ± 0.04 b | 1.5 ± 0.03 c | 2.5 ± 0.04 d | 1.7 ± 0.05 e | <0.0001 |
Whole fruits (cup eq.) | 0.3 ± 0.03 a | 0.6 ± 0.03 b | 1.0 ± 0.03 c | 1.5 ± 0.04 d | 1.1 ± 0.04 e | <0.0001 |
Fruit juice (cup eq.) | 0.1 ± 0.02 a | 0.1 ± 0.01 b | 0.5 ± 0.02 c | 0.9 ± 0.02 d | 0.6 ± 0.03 c | <0.0001 |
Total vegetables (cup eq.) | 1.2 ± 0.05 a | 2.0 ± 0.05 b | 2.3 ± 0.06 b,c | 2.5 ± 0.05 b,c | 2.5 ± 0.05 c | <0.0001 |
Dark green vegetables (cup eq.) | 0.0 ± 0.01 a | 0.1 ± 0.01 b | 0.2 ± 0.01 c | 0.3 ± 0.02 d | 0.2 ± 0.02 c | <0.0001 |
Potatoes (cup eq.) | 0.5 ± 0.03 a | 0.5 ± 0.03 a | 0.5 ± 0.03 a | 0.4 ± 0.02 b | 0.5 ± 0.02 a | 0.8258 |
Whole grains (oz eq.) | 0.6 ± 0.04 a | 0.7 ± 0.04 b | 0.8 ± 0.04 b,c | 0.9 ± 0.04 d | 0.9 ± 0.04 c,d | <0.0001 |
Refined grains (oz eq.) | 6.2 ± 0.08 a | 5.8 ± 0.1 a,b | 5.6 ± 0.09 b,c | 5.4 ± 0.09 c | 5.6 ± 0.09 b,c | 0.1752 |
Dairy (cup eq.) | 1.3 ± 0.04 a | 1.3 ± 0.03 a,b | 1.3 ± 0.04 b,c | 1.3 ± 0.04 a,b | 1.1 ± 0.04 a | 0.4609 |
Total protein foods (oz eq.) | 6.5 ± 0.11 | 6.5 ± 0.11 | 6.5 ± 0.11 | 6.5 ± 0.1 | 6.6 ± 0.1 | 0.2915 |
Red and processed meats (oz eq.) | 3.0 ± 0.07 a | 2.7 ± 0.07 a,b | 2.5 ± 0.07 b,d | 2.2 ± 0.07 c | 2.5 ± 0.08 d | <0.0001 |
Seafood (oz eq.) | 0.8 ± 0.07 a | 0.8 ± 0.07 a,b | 0.8 ± 0.07 b,c | 1.0 ± 0.09 c | 0.9 ± 0.06 b,c | 0.0058 |
Legumes (cup eq.) | 0.1 ± 0.01 a | 0.2 ± 0.01 b | 0.2 ± 0.01 b | 0.2 ± 0.01 b | 0.2 ± 0.01 b | 0.0262 |
Nuts and seeds (oz eq.) | 0.4 ± 0.03 a | 0.4 ± 0.03 a,b | 0.5 ± 0.05 b | 0.5 ± 0.04 b | 0.4 ± 0.04 b | 0.0206 |
SSBs (g)2 | 400.9 ± 15.3 a | 211.1 ± 11.4 b | 152.9 ± 10.0 c | 141.5 ± 10.4 c | 298.4 ± 12.2 d | 0.3658 |
SFA (% of energy) | 11.7 ± 0.12 a | 10.8 ± 0.12 b | 10.3 ± 0.11 c | 9.4 ± 0.1 d | 9.8 ± 0.13 e | <0.0001 |
PUFA (% of energy) | 7.3 ± 0.11 a | 7.2 ± 0.09 a,b | 7.0 ± 0.09 b,c | 6.7 ± 0.09 c | 7.0 ± 0.1 b | 0.1838 |
MUFA (% of energy) | 13.3 ± 0.12 a | 12.5 ± 0.12 b | 11.9 ± 0.11 c | 11.0 ± 0.11 d | 11.7 ± 0.13 c | <0.0001 |
Sodium (mg) | 3201.9 ± 33.9 a,b | 3279.6 ± 37.4 c | 3236.2 ± 38.1 a,c | 3166.9 ± 34.3 b | 3268.1 ± 31.0 a,b,c | 0.3008 |
Added sugars (teaspoon eq.) | 20.2 ± 0.38 a | 15.8 ± 0.38 b,c | 15.3 ± 0.31 b,c | 14.6 ± 0.36 b | 16.1 ± 0.31 c | 0.9233 |
Alcohol (drinks) | 0.3 ± 0.04 a | 0.8 ± 0.05 b | 0.6 ± 0.04 b | 0.5 ± 0.04 b | 0.4 ± 0.04 a | 0.0172 |
Quintile (Median, Range) | n of Deaths/n | Person-Years | All-Cause Mortality | ||
---|---|---|---|---|---|
Model 1 1 | Model 2 2 | Model 3 3 | |||
HEI-2015 | |||||
Q1 (34.5, 12.7–40.3) | 1507/4759 | 72,190.7 | 1.00 | 1.00 | 1.00 |
Q2 (43.9, 39.6–47.9) | 1474/4760 | 72,415.5 | 0.81 (0.74–0.90) | 0.82 (0.74–0.91) | 0.87 (0.78–0.97) |
Q3 (50.9, 47.0–54.9) | 1596/4759 | 70,543.8 | 0.82 (0.73–0.91) | 0.85 (0.76–0.95) | 0.92 (0.82–1.03) |
Q4 (58.1, 53.9–63.8) | 1698/4760 | 70,431.9 | 0.80 (0.72–0.90) | 0.85 (0.76–0.97) | 0.93 (0.82–1.06) |
Q5 (69.3, 62.0–99.99) | 1831/4759 | 68,750.0 | 0.70 (0.63–0.78) | 0.76 (0.68–0.85) | 0.87 (0.77–0.98) |
p for trend 4 | <0.0001 | 0.0002 | 0.1178 | ||
p for trend 5 | <0.0001 | 0.0005 | 0.1529 | ||
AHEI-2010 | |||||
Q1 (21.0, 1.8–27.1) | 1436/4759 | 73,429.5 | 1.00 | 1.00 | 1.00 |
Q2 (29.7, 24.9–34.5) | 1589/4762 | 71,136.1 | 0.86 (0.78–0.94) | 0.86 (0.77–0.95) | 0.90 (0.81–1.01) |
Q3 (36.5, 31.9–41.5) | 1665/4757 | 70,485.7 | 0.79 (0.71–0.89) | 0.81 (0.72–0.90) | 0.88 (0.79–0.97) |
Q4 (43.9, 38.7–49.6) | 1727/4760 | 68,953.6 | 0.81 (0.72–0.90) | 0.81 (0.73–0.91) | 0.89 (0.80–1.00) |
Q5 (54.5, 47.1–89.5) | 1689/4759 | 70,327.0 | 0.71 (0.63–0.80) | 0.76 (0.67–0.86) | 0.84 (0.74–0.94) |
p for trend 4 | <0.0001 | <0.0001 | 0.0082 | ||
p for trend 5 | <0.0001 | <0.0001 | 0.0085 | ||
aMED | |||||
Q1 (1, 0–1) | 1055/3028 | 45,844.3 | 1.00 | 1.00 | 1.00 |
Q2 (2, 2–2) | 1652/4658 | 68,945.8 | 0.87 (0.77–0.99) | 0.88 (0.76–1.01) | 0.92 (0.79–1.06) |
Q3 (3, 3–3) | 2074/5947 | 87,805.8 | 0.77 (0.68–0.87) | 0.79 (0.69–0.91) | 0.86 (0.75–0.99) |
Q4 (4, 4–4) | 1713/5107 | 75,947.4 | 0.66 (0.58–0.76) | 0.68 (0.59–0.79) | 0.78 (0.67–0.89) |
Q5 (5, 5–9) | 1612/5057 | 75,788.6 | 0.63 (0.55–0.73) | 0.68 (0.59–0.79) | 0.79 (0.69–0.90) |
p for trend 4 | <0.0001 | <0.0001 | <0.0001 | ||
DASH | |||||
Q1 (15, 8–17) | 1186/4556 | 72,214.5 | 1.00 | 1.00 | 1.00 |
Q2 (19, 18–20) | 1620/5048 | 76,403.8 | 0.79 (0.71–0.89) | 0.81 (0.73–0.90) | 0.87 (0.78–0.96) |
Q3 (22, 21–23) | 1495/4689 | 66,929.1 | 0.65 (0.57–0.73) | 0.67 (0.59–0.76) | 0.75 (0.66–0.86) |
Q4 (24, 23–26) | 1899/4844 | 70,141.8 | 0.66 (0.58–0.75) | 0.70 (0.62–0.80) | 0.81 (0.71–0.92) |
Q5 (28, 26–40) | 1906/4660 | 68,642.6 | 0.61 (0.54–0.70) | 0.68 (0.59–0.77) | 0.80 (0.70–0.92) |
p for trend 4 | <0.0001 | <0.0001 | 0.0074 | ||
p for trend 5 | <0.0001 | <0.0001 | 0.0123 | ||
Energy-adjusted TAC | |||||
Q1 (50.5, 0.3–90.5) | 1545/4759 | 71,411.7 | 1.00 | 1.00 | 1.00 |
Q2 (122.3, 81.0–171.3) | 1555/4760 | 71,676.4 | 0.86 (0.79–0.94) | 0.87 (0.79–0.95) | 0.91 (0.83–0.999) |
Q3 (221.4, 164.4–296.6) | 1673/4759 | 70,364.3 | 0.76 (0.70–0.84) | 0.80 (0.73–0.88) | 0.88 (0.80–0.97) |
Q4 (403.8, 292.2–645.3) | 1681/4760 | 70,331.8 | 0.71 (0.64–0.78) | 0.76 (0.69–0.84) | 0.85 (0.78–0.94) |
Q5 (1201.4, 636.3–6163.1) | 1652/4759 | 70,547.7 | 0.75 (0.68–0.82) | 0.79 (0.71–0.88) | 0.88 (0.79–0.98) |
p for trend 4 | 0.0007 | 0.0132 | 0.2553 | ||
p for trend 5 | <0.0001 | <0.0001 | 0.0293 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, K.; Kim, K.; Sakaki, J.R.; Chun, O.K. Relative Validity of Dietary Total Antioxidant Capacity for Predicting All-Cause Mortality in Comparison to Diet Quality Indexes in US Adults. Nutrients 2020, 12, 1210. https://doi.org/10.3390/nu12051210
Ha K, Kim K, Sakaki JR, Chun OK. Relative Validity of Dietary Total Antioxidant Capacity for Predicting All-Cause Mortality in Comparison to Diet Quality Indexes in US Adults. Nutrients. 2020; 12(5):1210. https://doi.org/10.3390/nu12051210
Chicago/Turabian StyleHa, Kyungho, Kijoon Kim, Junichi R. Sakaki, and Ock K. Chun. 2020. "Relative Validity of Dietary Total Antioxidant Capacity for Predicting All-Cause Mortality in Comparison to Diet Quality Indexes in US Adults" Nutrients 12, no. 5: 1210. https://doi.org/10.3390/nu12051210
APA StyleHa, K., Kim, K., Sakaki, J. R., & Chun, O. K. (2020). Relative Validity of Dietary Total Antioxidant Capacity for Predicting All-Cause Mortality in Comparison to Diet Quality Indexes in US Adults. Nutrients, 12(5), 1210. https://doi.org/10.3390/nu12051210