Betaine Supplementation Does not Improve Muscle Hypertrophy or Strength Following 6 Weeks of Cross-Fit Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.3. Supplementation
2.4. Training
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grizales, A.M.; Patti, M.E.; Lin, A.P.; Beckman, J.A.; Sahni, V.A.; Cloutier, E.; Fowler, K.M.; Dreyfuss, J.M.; Pan, H.; Kozuka, C.; et al. Metabolic Effects of Betaine: A Randomized Clinical Trial of Betaine Supplementation in Prediabetes. J. Clin. Endocrinol. Metab. 2018, 103, 3038–3049. [Google Scholar] [CrossRef] [PubMed]
- Slow, S.; Lever, M.; Elmslie, J. Betaine supplementation and the metabolic syndrome. Eur. J. Clin. Nutr. 2011, 65, 771. [Google Scholar] [CrossRef] [PubMed]
- Lever, M.; George, P.M.; Atkinson, W.; Molyneux, S.L.; Elmslie, J.L.; Slow, S.; Richards, A.M.; Chambers, S.T. Plasma lipids and betaine are related in an acute coronary syndrome cohort. PLoS ONE 2011, 6, e21666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olthof, M.R.; van Vliet, T.; Boelsma, E.; Verhoef, P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J. Nutr. 2003, 133, 4135–4138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, E.; Zeisel, S.H.; Jacques, P.; Selhub, J.; Dougherty, L.; Colditz, G.A.; Willett, W.C. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am. J. Clin. Nutr. 2006, 83, 905–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Likes, R.; Madl, R.L.; Zeisel, S.H.; Craig, S.A. The betaine and choline content of a whole wheat flour compared to other mill streams. J. Cereal Sci. 2007, 46, 93–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholewa, J.M.; Guimaraes-Ferreira, L.; Zanchi, N.E. Effects of betaine on performance and body composition: A review of recent findings and potential mechanisms. Amino Acids 2014, 46, 1785–1793. [Google Scholar] [CrossRef]
- Cholewa, J.M.; Paolone, V.J.; Wood, R.; Matthews, T. Betaine Supplementation Improves Body Composition And Homocysteine Thiolactone In Strength Trained Men. Med. Sci. Sports Exerc. 2013, 45, 569. [Google Scholar]
- Pekala, J.; Patkowska-Sokola, B.; Bodkowski, R.; Jamroz, D.; Nowakowski, P.; Lochynski, S.; Librowski, T. L-carnitine--metabolic functions and meaning in humans life. Curr. Drug Metab. 2011, 12, 667–678. [Google Scholar] [CrossRef]
- Brosnan, J.T.; da Silva, R.P.; Brosnan, M.E. The metabolic burden of creatine synthesis. Amino Acids 2011, 40, 1325–1331. [Google Scholar] [CrossRef]
- Robinson, J.L.; Harding, S.V.; Brunton, J.A.; Bertolo, R.F. Dietary Methyl Donors Contribute to Whole-Body Protein Turnover and Protein Synthesis in Skeletal Muscle and the Jejunum in Neonatal Piglets. J. Nutr. 2016, 146, 2007–2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apicella, J.M.; Lee, E.C.; Bailey, B.L.; Saenz, C.; Anderson, J.M.; Craig, S.A.; Kraemer, W.J.; Volek, J.S.; Maresh, C.M. Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise. Eur. J. Appl. Physiol. 2013, 113, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BORSOOK, M.E.; BILLIG, H.K.; GOLSETH, J.G. Betaine and glycocyamine in the treatment of disability resulting from acute anterior poliomyelitis. Ann. West Med. Surg. 1952, 6, 423–427. [Google Scholar]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Rashti, S.L.; Faigenbaum, A.D. Effect of betaine supplementation on power performance and fatigue. J. Int. Soc. Sports Nutr. 2009, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Gonzalez, A.M.; Beller, N.A.; Craig, S.A. Effect of 15 days of betaine ingestion on concentric and eccentric force outputs during isokinetic exercise. J. Strength Cond. Res. 2011, 25, 2235–2241. [Google Scholar] [CrossRef]
- Pryor, J.L.; Craig, S.A.; Swensen, T. Effect of betaine supplementation on cycling sprint performance. J. Int. Soc. Sports Nutr. 2012, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.E.; Casa, D.J.; Roti, M.W.; Lee, E.C.; Craig, S.A.; Sutherland, J.W.; Fiala, K.A.; Maresh, C.M. Influence of betaine consumption on strenuous running and sprinting in a hot environment. J. Strength Cond. Res. 2008, 22, 851–860. [Google Scholar] [CrossRef]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit((R)) benchmark performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Kramer, S.J.; Baur, D.A.; Spicer, M.T.; Vukovich, M.D.; Ormsbee, M.J. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes. J. Int. Soc. Sports Nutr. 2016, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric standardization reference manual, Abridged ed.; Human Kinetics Books: Champaign, IL, USA, 1991; p. vi. 90p. [Google Scholar]
- Hart, P.D. Test-retest stability of four common body composition assessments in college students. J. Phys. Fit Med. Treat. Sports 2017, 10. [Google Scholar] [CrossRef]
- McCurdy, K.; Langford, G.A.; Cline, A.L.; Doscher, M.; Hoff, R. The Reliability of 1- and 3Rm Tests of Unilateral Strength in Trained and Untrained Men and Women. J. Sports Sci. Med. 2004, 3, 190–196. [Google Scholar] [PubMed]
- Schwab, U.; Torronen, A.; Toppinen, L.; Alfthan, G.; Saarinen, M.; Aro, A.; Uusitupa, M. Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am. J. Clin. Nutr. 2002, 76, 961–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepanowski, J.F.; Farney, T.M.; McCarthy, C.G.; Schilling, B.K.; Craig, S.A.; Bloomer, R.J. The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J. Strength Cond. Res. 2011, 25, 3461–3471. [Google Scholar] [CrossRef]
- Cholewa, J.M.; Wyszczelska-Rokiel, M.; Glowacki, R.; Jakubowski, H.; Matthews, T.; Wood, R.; Craig, S.A.; Paolone, V. Effects of betaine on body composition, performance, and homocysteine thiolactone. J. Int. Soc. Sport Nutr. 2013, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Mate-Munoz, J.L.; Lougedo, J.H.; Barba, M.; Canuelo-Marquez, A.M.; Guodemar-Perez, J.; Garcia-Fernandez, P.; Lozano-Estevan, M.D.C.; Alonso-Melero, R.; Sanchez-Calabuig, M.A.; Ruiz-Lopez, M.; et al. Cardiometabolic and Muscular Fatigue Responses to Different CrossFit(R) Workouts. J. Sports Sci. Med. 2018, 17, 668–679. [Google Scholar]
- Craig, S.A. Betaine in human nutrition. Am. J. Clin. Nutr. 2004, 80, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Senesi, P.; Luzi, L.; Montesano, A.; Mazzocchi, N.; Terruzzi, I. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J. Transl. Med. 2013, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.C.; Xu, Z.R.; Han, X.Y.; Li, W.F. Effect of betaine on growth hormone pulsatile secretion and serum metabolites in finishing pigs. J. Anim. Physiol. Anim. Nutr. (Berl.) 2007, 91, 85–90. [Google Scholar] [CrossRef]
- Cholewa, J.; Trexler, E.; Lima-Soares, F.; de Araujo Pessoa, K.; Sousa-Silva, R.; Santos, A.M.; Zhi, X.; Nicastro, H.; Cabido, C.E.T.; de Freitas, M.C.; et al. Effects of dietary sports supplements on metabolite accumulation, vasodilation and cellular swelling in relation to muscle hypertrophy: A focus on “secondary” physiological determinants. Nutrition 2019, 60, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Cholewa, J.M.; Hudson, A.; Cicholski, T.; Cervenka, A.; Barreno, K.; Broom, K.; Barch, M.; Craig, S.A.S. The effects of chronic betaine supplementation on body composition and performance in collegiate females: A double-blind, randomized, placebo controlled trial. J. Int. Soc. Sport Nutr. 2018, 15, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Cosgrove, S.J.; Crawford, D.A.; Heinrich, K.M. Multiple Fitness Improvements Found after 6-Months of High Intensity Functional Training. Sports (Basel) 2019, 7, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, V.B.; Metha, K. Betaine in context. In Betaine: Chemistry, Analysis, Function, and Effects; The Royal Society of Chemistry: Cambridge, UK, 2015; pp. 3–8. [Google Scholar]
- Millard-Stafford, M.; Warren, G.L.; Hitchcock, K.M.; Welling, R.I.; Rosskopf, L.B.; Snow, T.K. Fluid Replacement In The Heat: Effects Of Betaine. Med. Sci. Sports Exerc. 2005, 37, S28. [Google Scholar] [CrossRef]
- Caldas, T.; Demont-Caulet, N.; Ghazi, A.; Richarme, G. Thermoprotection by glycine betaine and choline. Microbiology-Sgm 1999, 145, 2543–2548. [Google Scholar] [CrossRef] [Green Version]
- Warren, L.K.; Lawrence, L.M.; Thompson, K.N. The influence of betaine on untrained and trained horses exercising to fatigue. J. Anim. Sci. 1999, 77, 677–684. [Google Scholar] [CrossRef]
Variable | BET (N = 14) | PLA (N = 15) | ||
---|---|---|---|---|
Female (N = 7) | Male (N = 7) | Female (N = 7) | Male (N = 8) | |
Age (y) | 36.29 ± 8.12 | 32.43 ± 8.24 | 34.86 ± 10.93 | 36.13 ± 8.69 |
Height (cm) | 167.43 ± 4.08 | 174.50 ± 4.75 | 164.43 ± 8.83 | 178.25 ± 9.44 |
Weight (kg) | 64.57 ± 7.57 | 78.37 ± 5.59 | 63.59 ± 13.82 | 76.29 ± 6.82 |
BMI (kg/m2) | 23.01 ± 2.32 | 25.73 ± 1.28 | 23.25 ± 2.53 | 24.02 ± 1.45 |
Body Fat (%) | 15.04 ± 3.47 | 24.43 ± 2.89 | 13.99 ± 2.98 | 23.96 ± 2.98 |
N° training/wk | 4.14 ± 1.46 | 4.17 ± 0.75 | 3.71 ± 0.76 | 4.71 ± 0.76 |
Variable | BET (N = 14) | PLA (N = 15) | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Treatment p-Value (η²) | Time p-Value (η²) | Time x treatment p-Value (η²) | |
Fat Mass (%) | 16.79 ± 7.06 | 16.57 ± 7.11 | 17.98 ± 9.02 | 18.20 ± 8.90 | 0.346 (0.067) | 0.973 (0.001) | 0.336 (0.001) |
Fat Free Mass (%) | 59.53 ± 10.65 | 59.47 ± 11.14 | 57.77 ± 12.49 | 57.63 ± 12.35 | 0.187 (0.126) | 0.520 (0.001) | 0.883 (0.001) |
Phase angle (°) | 8.02 ± 1.09 | 7.66 ± 0.99 | 6.74 ± 2.70 | 8.11 ± 1.39 | 0.255 (0.040) | 0.131 (0.031) | 0.085 (0.087) |
Active cellular mass (kg) | 36.00 ± 7.64 | 35.89±7.62 | 35.89 ± 7.79 | 36.15 ± 8.08 | 0.832 (0.003) | 0.959 (0.001) | 0.082 (0.001) |
Total Body Water (L) | 41.14 ± 7.11 | 41.68 ± 7.62 | 40.99 ± 8.32 | 40.61 ± 8.41 | 0.831 (0.004) | 0.743 (0.001) | 0.720 (0.001) |
ECW/ICW (%) | 0.67 ± 0.05 | 0.67 ± 0.06 | 0.66 ± 0.05 | 0.66 ± 0.06 | 0.514 (0.030) | 0.793 (0.001) | 0.745 (0.001) |
Variable | BET (N = 14) | PLA (N = 15) | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Treatment p-Value (η²) | Time p-Value (η²) | Time x Treatment p-Value (η²) | |
Back Squat (kg) | 95.08 ± 35.91 | 98.08 ± 36.79 * | 88.86 ± 27.60 | 91.00 ± 29.63 | 0.062 (0.294) | 0.005 (0.009) | 0.230 (0.001) |
Bergeron Beep test (reps) | 74.25 ± 34.68 | 71.33 ± 25.96 | 73.77 ± 35.03 | 73.77 ± 33.16 | 0.394 (0.059) | 0.772 (0.001) | 0.255 (0.011) |
2 km Row (s) | 526.27 ± 42.91 | 523.36 ± 35.09 | 501.00 ± 38.45 | 503.08 ± 40.38 | 0.547 (0.039) | 0.906 (0.001) | 0.488 (0.007) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moro, T.; Badiali, F.; Fabbri, I.; Paoli, A. Betaine Supplementation Does not Improve Muscle Hypertrophy or Strength Following 6 Weeks of Cross-Fit Training. Nutrients 2020, 12, 1688. https://doi.org/10.3390/nu12061688
Moro T, Badiali F, Fabbri I, Paoli A. Betaine Supplementation Does not Improve Muscle Hypertrophy or Strength Following 6 Weeks of Cross-Fit Training. Nutrients. 2020; 12(6):1688. https://doi.org/10.3390/nu12061688
Chicago/Turabian StyleMoro, Tatiana, Francesca Badiali, Iader Fabbri, and Antonio Paoli. 2020. "Betaine Supplementation Does not Improve Muscle Hypertrophy or Strength Following 6 Weeks of Cross-Fit Training" Nutrients 12, no. 6: 1688. https://doi.org/10.3390/nu12061688
APA StyleMoro, T., Badiali, F., Fabbri, I., & Paoli, A. (2020). Betaine Supplementation Does not Improve Muscle Hypertrophy or Strength Following 6 Weeks of Cross-Fit Training. Nutrients, 12(6), 1688. https://doi.org/10.3390/nu12061688