Carbohydrate Intake in Early Childhood and Body Composition and Metabolic Health: Results from the Generation R Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Dietary Assessment
2.3. Metabolic Health Measurements
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Associations of Carbohydrate Intake with Body Composition
3.3. Associations of Carbohydrate Intake with Metabolic Health
3.4. Additional Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, S.; Gunn, P.; Wittekind, A.; Cottrell, R. The effects of sucrose on metabolic health: A systematic review of human intervention studies in healthy adults. Crit. Rev. Food Sci. Nutr. 2013, 53, 591–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauner, H.; Bechthold, A.; Boeing, H.; Bronstrup, A.; Buyken, A.; Leschik-Bonnet, E.; Linseisen, J.; Schulze, M.; Strohm, D.; Wolfram, G.; et al. Evidence-based guideline of the german nutrition society: Carbohydrate intake and prevention of nutrition-related diseases. Ann. Nutr. Metab. 2012, 60 (Suppl. 1), 1–58. [Google Scholar] [CrossRef]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef]
- Morrison, J.A.; Glueck, C.J.; Woo, J.G.; Wang, P. Risk factors for cardiovascular disease and type 2 diabetes retained from childhood to adulthood predict adult outcomes: The princeton lrc follow-up study. Int. J. Pediatr. Endocrinol. 2012, 2012, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskinen, J.; Magnussen, C.G.; Sinaiko, A.; Woo, J.; Urbina, E.; Jacobs, D.R., Jr.; Steinberger, J.; Prineas, R.; Sabin, M.A.; Burns, T.; et al. Childhood age and associations between childhood metabolic syndrome and adult risk for metabolic syndrome, type 2 diabetes mellitus and carotid intima media thickness: The international childhood cardiovascular cohort consortium. J. Am. Heart Assoc. 2017, 6, e005632. [Google Scholar] [CrossRef] [Green Version]
- Ter Horst, K.W.; Schene, M.R.; Holman, R.; Romijn, J.A.; Serlie, M.J. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: A systematic review and meta-analysis of diet-intervention trials. Am. J. Clin. Nutr. 2016, 104, 1562–1576. [Google Scholar] [CrossRef] [Green Version]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, M.U.; O’Reilly, E.J.; Heitmann, B.L.; Pereira, M.A.; Balter, K.; Fraser, G.E.; Goldbourt, U.; Hallmans, G.; Knekt, P.; Liu, S.; et al. Major types of dietary fat and risk of coronary heart disease: A pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 2009, 89, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Sorkin, J.D.; Mastella, L.; Sutherland, A.; Rhyne, J.; Donnelly, P.; Simpson, K.; Goldberg, A.P. Poly is more effective than monounsaturated fat for dietary management in the metabolic syndrome: The muffin study. J. Clin. Lipidol. 2016, 10, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Sievenpiper, J.L.; Carleton, A.J.; Chatha, S.; Jiang, H.Y.; de Souza, R.J.; Beyene, J.; Kendall, C.W.; Jenkins, D.J. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: Systematic review and meta-analysis of experimental trials in humans. Diabetes Care 2009, 32, 1930–1937. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.A.; Sievenpiper, J.L. Controversies about sugars: Results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur. J. Nutr. 2016, 55, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Dutch Health Council (Gezondheidsraad). Verteerbare Koolhydraten-Achtergronddocument bij Richtlijnen Goede Voeding 2015). Publication nr. A15/23; Gezondheidsraad: The Hague, The Netherlands, 2015. [Google Scholar]
- Kooijman, M.N.; Kruithof, C.J.; van Duijn, C.M.; Duijts, L.; Franco, O.H.; van, I.M.H.; de Jongste, J.C.; Klaver, C.C.; van der Lugt, A.; Mackenbach, J.P.; et al. The generation r study: Design and cohort update 2017. Eur. J. Epidemiol. 2016, 31, 1243–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voortman, T.; Kiefte-de Jong, J.C.; Geelen, A.; Villamor, E.; Moll, H.A.; de Jongste, J.C.; Raat, H.; Hofman, A.; Jaddoe, V.W.; Franco, O.H.; et al. The development of a diet quality score for preschool children and its validation and determinants in the generation r study. J. Nutr. 2015, 145, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Kiefte-de Jong, J.C.; de Vries, J.H.; Bleeker, S.E.; Jaddoe, V.W.; Hofman, A.; Raat, H.; Moll, H.A. Socio-demographic and lifestyle determinants of ‘western-like’ and ‘health conscious’ dietary patterns in toddlers. Br. J. Nutr. 2013, 109, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Van der Velde, L.A.; Nguyen, A.N.; Schoufour, J.D.; Geelen, A.; Jaddoe, V.W.V.; Franco, O.H.; Voortman, T. Diet quality in childhood: The generation r study. Eur. J. Nutr. 2019, 58, 1259–1269. [Google Scholar] [CrossRef] [Green Version]
- Netherlands Nutrition Center. Richtlijnen schijf Van Vijf (Wheel of Five Guidelines); Netherlands Nutrition Center (Voedingscentrum): The Hague, The Nwtherlands, 2016. [Google Scholar]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [Green Version]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012, 346, e7492. [Google Scholar] [CrossRef] [Green Version]
- Leermakers, E.T.; Felix, J.F.; Erler, N.S.; Cerimagic, A.; Wijtzes, A.I.; Hofman, A.; Raat, H.; Moll, H.A.; Rivadeneira, F.; Jaddoe, V.W.; et al. Sugar-containing beverage intake in toddlers and body composition up to age 6 years: The generation r study. Eur. J. Clin. Nutr. 2015, 69, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Leermakers, E.T.; Felix, J.F.; Jaddoe, V.W.; Raat, H.; Franco, O.H.; Kiefte-de Jong, J.C. Sugar-containing beverage intake at the age of 1 year and cardiometabolic health at the age of 6 years: The generation r study. Int. J. Behav. Nutr. Phys. Act 2015, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Van Rompay, M.I.; McKeown, N.M.; Goodman, E.; Eliasziw, M.; Chomitz, V.R.; Gordon, C.M.; Economos, C.D.; Sacheck, J.M. Sugar-sweetened beverage intake is positively associated with baseline triglyceride concentrations, and changes in intake are inversely associated with changes in hdl cholesterol over 12 months in a multi-ethnic sample of children. J. Nutr. 2015, 145, 2389–2395. [Google Scholar] [CrossRef] [Green Version]
- Voortman, T.; Braun, K.V.; Kiefte-de Jong, J.C.; Jaddoe, V.W.; Franco, O.H.; van den Hooven, E.H. Protein intake in early childhood and body composition at the age of 6 years: The generation r study. Int. J. Obes. 2016, 40, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Braun, K.V.; Erler, N.S.; Kiefte-de Jong, J.C.; Jaddoe, V.W.; van den Hooven, E.H.; Franco, O.H.; Voortman, T. Dietary intake of protein in early childhood is associated with growth trajectories between 1 and 9 years of age. J. Nutr. 2016, 146, 2361–2367. [Google Scholar] [CrossRef] [PubMed]
- Jen, V.; Braun, K.V.E.; Karagounis, L.G.; Nguyen, A.N.; Jaddoe, V.W.V.; Schoufour, J.D.; Franco, O.H.; Voortman, T. Longitudinal association of dietary protein intake in infancy and adiposity throughout childhood. Clin. Nutr. 2019, 38, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; von Kries, R.; Closa, R.; Escribano, J.; Scaglioni, S.; Giovannini, M.; Beyer, J.; Demmelmair, H.; Gruszfeld, D.; Dobrzanska, A.; et al. Lower protein in infant formula is associated with lower weight up to age 2 y: A randomized clinical trial. Am. J. Clin. Nutr. 2009, 89, 1836–1845. [Google Scholar]
- Weber, M.; Grote, V.; Closa-Monasterolo, R.; Escribano, J.; Langhendries, J.P.; Dain, E.; Giovannini, M.; Verduci, E.; Gruszfeld, D.; Socha, P.; et al. Lower protein content in infant formula reduces bmi and obesity risk at school age: Follow-up of a randomized trial. Am. J. Clin. Nutr. 2014, 99, 1041–1051. [Google Scholar] [CrossRef]
Mean, Median, or % | |
---|---|
Child characteristics | |
Sex, girls | 51.0 |
Ethnicity, Dutch | 68.2 |
Birth weight (g) | 3446 ± 580 |
Breastfeeding | |
Exclusively ≥4 months | 28.0 |
Partially ≥4 months | 63.0 |
Never | 9.0 |
Child characteristics at dietary assessment | |
Age at FFQ (months) | 12.9 (12.7–19.9) |
Total energy intake (kcal) | 1321 ± 413 |
Carbohydrate intake (g/day) | 191.7 ± 58.9 |
Carbohydrate intake (E%/day) | 58.3 ± 6.1 |
Monosaccharide and disaccharide intake (g/day) | 113.0 ± 40.9 |
Monosaccharide and disaccharide intake (E%/day) | 34.2 ± 6.9 |
Polysaccharide intake (g/day) | 77.5 ± 27.3 |
Polysaccharide intake (E%/day) | 23.8 ± 5.5 |
Child characteristics at 6-year-visit | |
Age (years) | 5.9 (5.8–6.0) |
Sports participation, yes | 43.8 |
Screen time, ≥2 h/day | 24.2 |
Height (cm) (n = 2984) | 118.2 ± 5.2 |
Weight (kg) (n = 2984) | 21.8 (20.2−24.0) |
Body mass index (kg/m2) (n = 2984) | 15.7 (15.10–16.7) |
Fat mass index (kg/m2) (n = 2911) | 3.6 (3.1–4.3) |
Fat-free mass index (kg/m2) (n = 2911) | 11.9 (11.3–12.5) |
Triglyceride (mmol/L) (n = 2003) | 0.97 (0.72–1.29) |
Total cholesterol (mmol/L) (n = 2007) | 4.22 ± 0.63 |
LDL cholesterol (mmol/L) (n = 2008) | 2.37 ± 0.56 |
HDL cholesterol (mmol/L) (n = 2008) | 1.34 ± 0.46 |
Insulin (pmol/L) (n = 1998) | 115 (64–187) |
Maternal characteristics | |
Maternal age (years) | 31.4 ± 4.6 |
Maternal educational level, high | 63.0 |
Maternal body mass index (kg/m2) | 23.5 (21.6–26.2) |
Smoking during pregnancy | |
Never | 77.6 |
Until pregnancy was known | 10.0 |
Continued | 12.4 |
Alcohol consumption during pregnancy | |
Never | 38.4 |
Until pregnancy was known | 14.5 |
Continued occasionally | 38.0 |
Continued occasionally frequently | 9.2 |
Folic acid supplementation during pregnancy | |
Started periconceptional | 52.5 |
Started first 10 weeks | 31.2 |
None | 16.2 |
Household income, ≥2200 Euros/month | 66.4 |
BMI (SDS) (n = 3573) | FMI (SDS) (n = 3112) | FFMI (SDS) (n = 3112) | |
---|---|---|---|
Total carbohydrate intake (10 g/day) | |||
Model 1 | −0.01 (−0.02, 0.01) | −0.01 (−0.02, 0.004) | 0.003 (−0.01, 0.02) |
Model 2 | −0.004 (−0.02, 0.01) | −0.01 (−0.02, 0.01) | 0.005 (−0.01, 0.02) |
Total monosaccharide and disaccharide intake (10 g/day) | |||
Model 1 | 0.004 (−0.01, 0.02) | 0.002 (−0.01, 0.01) | 0.003 (−0.01, 0.02) |
Model 2 | 0.002 (−0.01, 0.01) | 0.002 (−0.01, 0.01) | 0.01 (−0.01, 0.02) |
Total polysaccharide intake (10 g/day) | |||
Model 1 | −0.01 (−0.03, 0.004) | −0.01 (−0.03, 0.004) | −0.004 (−0.02, 0.01) |
Model 2 | −0.01 (−0.02, 0.01) | −0.01 (−0.02, 0.01) | 0.000 (−0.02, 0.02) |
Triglycerides (SDS) (n = 2548) | Total Cholesterol (SDS) (n = 2554) | HDL-Cholesterol (SDS) (n = 2556) | LDL-Cholesterol (SDS) (n = 2554) | Insulin (SDS) (n = 2548) | |
---|---|---|---|---|---|
Total carbohydrate intake (10 g/day) | |||||
Model 1 | 0.02 (0.004, 0.04) | 0.001 (−0.02, 0.02) | −0.01 (−0.03, 0.01) | 0.001 (−0.02, 0.02) | −0.002 (−0.02, 0.01) |
Model 2 | 0.02 (0.01, 0.04) | 0.001 (−0.02, 0.02) | −0.02 (−0.03, 0.003) | 0.002 (−0.02, 0.02) | −0.002 (−0.02, 0.01) |
Model 3 | 0.02 (0.01, 0.04) | 0.002 (−0.02, 0.02) | −0.02 (−0.04, 0.001) | 0.004 (−0.01, 0.02) | −0.001 (−0.02, 0.01) |
Total monosaccharide and disaccharide intake (10 g/day) | |||||
Model 1 | 0.02 (0.01, 0.04) | −0.000 (−0.02, 0.02) | −0.03 (−0.04, −0.01) | 0.01 (−0.01, 0.03) | −0.01 (−0.02, 0.01) |
Model 2 | 0.02 (0.01, 0.04) | 0.000 (−0.02, 0.02) | −0.03 (−0.04, −0.01) | 0.01 (−0.01, 0.03) | −0.01 (−0.02, 0.01) |
Model 3 | 0.02 (0.01, 0.04) | 0.000 (−0.01, 0.02) | −0.03 (−0.04, −0.01) | 0.01 (−0.01, 0.03) | −0.01 (−0.02, 0.01) |
Total polysaccharide intake (10 g/day) | |||||
Model 1 | −0.01 (−0.03, 0.01) | 0.002 (−0.02, 0.02) | 0.02 (0.001, 0.04) | −0.01 (−0.03, 0.01) | 0.01 (−0.01, 0.03) |
Model 2 | −0.01 (−0.03, 0.01) | 0.001 (−0.02, 0.02) | 0.02 (−0.000, 0.04) | −0.01 (−0.03, 0.01) | 0.01 (−0.01, 0.03) |
Model 3 | −0.01 (−0.03, 0.01) | 0.001 (−0.02, 0.02) | 0.02 (−0.001, 0.04) | −0.01 (−0.03, 0.01) | 0.01 (−0.004, 0.03) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, A.N.; Santos, S.; Braun, K.V.E.; Voortman, T. Carbohydrate Intake in Early Childhood and Body Composition and Metabolic Health: Results from the Generation R Study. Nutrients 2020, 12, 1940. https://doi.org/10.3390/nu12071940
Nguyen AN, Santos S, Braun KVE, Voortman T. Carbohydrate Intake in Early Childhood and Body Composition and Metabolic Health: Results from the Generation R Study. Nutrients. 2020; 12(7):1940. https://doi.org/10.3390/nu12071940
Chicago/Turabian StyleNguyen, Anh N., Susana Santos, Kim V. E. Braun, and Trudy Voortman. 2020. "Carbohydrate Intake in Early Childhood and Body Composition and Metabolic Health: Results from the Generation R Study" Nutrients 12, no. 7: 1940. https://doi.org/10.3390/nu12071940
APA StyleNguyen, A. N., Santos, S., Braun, K. V. E., & Voortman, T. (2020). Carbohydrate Intake in Early Childhood and Body Composition and Metabolic Health: Results from the Generation R Study. Nutrients, 12(7), 1940. https://doi.org/10.3390/nu12071940