Phytopharmacological Possibilities of Bird Cherry Prunus padus L. and Prunus serotina L. Species and Their Bioactive Phytochemicals
Abstract
:1. Introduction
2. Data Collections
3. Habitats and Classification
4. Botanical Characteristics of P. padus and P. serotina
5. Nutrition Value and Mineral Content of P. padus and P. serotina
6. Phytocompounds Content in P. padus and P. serotina
6.1. Chlorophyll and Anthocyanins
6.2. Vitamin: Tocopherols and Vitamin C
6.3. Terpens
6.4. Organic Acids
6.5. Polyphenolic Compounds in Wild Cherries (P. padus and P. serotina)
7. Cyanogenic Glycosides: Amygdalin and Prunazine
8. Pharmacological Activity, Health-Promoting Properties
8.1. Antioxidant Activity
8.2. Antimicrobial Activity
8.3. Antidiabetic Effect
8.4. Cardiovascular Activity
8.5. Anti-Inflammatory and Anti-Nociceptive Properties
9. Cosmetic Properties of P. padus and P. serotina
10. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pasko, P. South Siberian fruits: Their selected chemical constituents, biological activity, and traditional use in folk medicine and daily nutrition. J. Med. Plants Res. 2012, 6. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Proc. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- McVaugh, R. A revision of the North American black cherries (prunus serotina ehrh., and relatives). Brittonia 1951, 7, 279–315. [Google Scholar] [CrossRef]
- Starfinger, U.; Kowarik, I.; Rode, M.; Schepker, H. From desirable ornamental plant to pest to accepted addition to the flora?—The perception of an alien tree species through the centuries. Proc. Biol. Invasions 2003, 5, 323–335. [Google Scholar] [CrossRef]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin composition of different wild and cultivated berry species. LWT Food Sci. Technol. 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Karczmarczuk, R. Na tropach czeremchy. Wszechświat 2012, 113, 124–127. [Google Scholar]
- Lee, S.; Wen, J. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am. J. Bot. 2001, 88, 150–160. [Google Scholar] [CrossRef]
- GOWER, J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966, 53, 325–338. [Google Scholar] [CrossRef]
- Bentham, G.; Hooker, J.D. Genera Plantarum, 3-Vols; Reeve & Co.: London, UK, 1862. [Google Scholar]
- Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America: Exclusive of the Subtropical and Warmer Temperate Regions; Blackburn Press: Hubei, China, 2001; ISBN 1930665326. [Google Scholar]
- Shaw, J.; Small, R.L. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 2005, 92, 2011–2030. [Google Scholar] [CrossRef] [Green Version]
- Mauri, A.; Caudullo, G. European bird cherry Prunus padus L. In European Atlas of Forest Tree Species; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Szweykowski, J.; Szweykowska, A. Słownik botaniczny; Wiedza Powszechna: Warszawa, Poland, 2003. [Google Scholar]
- Rumińska, A.; Ożarowski, A. Leksykon roślin leczniczych; PWRiL: Warszawa, Poland, 1990. [Google Scholar]
- Leather, S.R. Prunus Padus L. J. Ecol. 1996, 84, 125. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea. Volume 2: Rosaceae to Umbelliferae; University of Chicago Press: Chicago, IL, USA, 1969; Volume 44. [Google Scholar]
- Marquis, D.A. Prunus serotina Ehrh. Black Cherry Rosaceae Rose family. Redalyc 2018. [Google Scholar] [CrossRef]
- Auclair, A.N.; Cottam, G. Dynamics of Black Cherry (Prunus serotina Erhr.) in Southern Wisconsin Oak Forests. Ecol. Monogr. 1971, 41, 153–177. [Google Scholar] [CrossRef]
- Kulesza Witold–Klucz do oznaczania drzew i krzewów dzikich i hodowlanych.–Botanika–Przyroda. Available online: https://sklep.raraavis.krakow.pl/p/112/21411/kulesza-witold-klucz-do-oznaczania-drzew-i-krzewow-dzikich-i-hodowlanych--botanika-przyroda.html (accessed on 26 November 2019).
- Åström, H.; Hæggström, C.A. What happens with the tree rings when the bird-cherry (Prunus padus L.) is defoliated by the moth bird-cherry ermine (Yponomeuta evonymellus Linnæus, 1758)? Memo. Soc. pro Fauna Flora Fenn. 2018, 94, 78–83. [Google Scholar]
- Podbielkowski, Z. Słownik roślin użytkowych; PWRiL: Warszawa, Poland, 1980. [Google Scholar]
- Uusitalo, M. European bird cherry (Prunus padus L.)—A biodiverse wild plant for horticulture; MTT Agrifood Research Finland: Jokioinen, Finland, 2004; Volume 61, ISBN 9517299192. [Google Scholar]
- Halarewicz, A. Właściwości ekologiczne i skutki rozprzestrzeniania się czeremchy amerykańskiej Padus serotina (Ehrh.) Borkh. w wybranych fitocenozach leśnych; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2012. [Google Scholar]
- Amini, L.; Mojab, F.; Jahanfar, S.; Sepidarkish, M.; Raoofi, Z.; Maleki-Hajiagha, A. Efficacy of Salvia officinalis extract on the prevention of insulin resistance in euglycemic patients with polycystic ovary syndrome: A double-blinded placebo-controlled clinical trial. Complement. Ther. Med. 2020, 48, 102245. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Huang, J.; Zhou, L.; Chen, S.; Wang, Z.; Ma, L.; Wang, D.; Wang, G.; Wang, S.; Liang, C.; et al. Efficacy and Safety of Serenoa repens Extract Among Patients with Benign Prostatic Hyperplasia in China: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial. Urology 2019, 129, 172–179. [Google Scholar] [CrossRef]
- Abdollahi, F.; Mobadery, T. The effect of aromatherapy with bitter orange (Citrus aurantium) extract on anxiety and fatigue in type 2 diabetic patients. Adv. Integr. Med. 2020, 7, 3–7. [Google Scholar] [CrossRef]
- Widjajakusuma, E.C.; Jonosewojo, A.; Hendriati, L.; Wijaya, S.; Ferawati; Surjadhana, A.; Sastrowardoyo, W.; Monita, N.; Muna, N.M.; Fajarwati, R.P.; et al. Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. f.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine 2019, 55, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Shakouri, A.; Adljouy, N.; Balkani, S.; Mohamadi, M.; Hamishehkar, H.; Abdolalizadeh, J.; Kazem Shakouri, S. Effectiveness of topical gel of medical leech (Hirudo medicinalis) saliva extract on patients with knee osteoarthritis: A randomized clinical trial. Complement. Ther. Clin. Pract. 2018, 31, 352–359. [Google Scholar] [CrossRef]
- Chae, J.; Lee, S.; Lee, S. Potential Efficacy of Allergen Removed Rhus Verniciflua Stokes Extract to Maintain Progression-Free Survival of Patients With Advanced Hepatobiliary Cancer. Explore 2018, 14, 300–304. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Sircelj, H. Wild Prunus Fruit Species as a Rich Source of Bioactive Compounds. J. Food Sci. 2016, 81, C1928–C1937. [Google Scholar] [CrossRef]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, J.I.; Yahia, E.M.; Rivera-Pastrana, D.M.; Rojas-Molina, A.; Zavala-Sánchez, M.Á. Nutraceutical value of black cherry prunus serotina ehrh. Fruits: Antioxidant and antihypertensive properties. Molecules 2013, 18, 14597–14612. [Google Scholar] [CrossRef] [PubMed]
- García-Aguilar, L.; Rojas-Molina, A.; Ibarra-Alvarado, C.; Rojas-Molina, J.I.; Vázquez-Landaverde, P.A.; Luna-Vázquez, F.J.; Zavala-Sánchez, M.A. Nutritional value and volatile compounds of black cherry (prunus serotina) seeds. Molecules 2015, 20, 3479–3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, J.F. Fruits of warm climates, Pomegranate; J.F. Morton: Miami, FL, USA, 1987; ISBN 0961018410. [Google Scholar]
- Shang, X.; Zhang, J.; Ma, Y.; Wang, L. Preliminary identification of candidate genes associated with the peach fruit sorbitol content based on comparative transcriptome analysis. Sci. Hortic. (Amsterdam). 2020, 263, 109151. [Google Scholar] [CrossRef]
- Yu, C.Y.; Cheng, H.Y.; Cheng, R.; Qi, K.J.; Gu, C.; Zhang, S.L. Expression analysis of sorbitol transporters in pear tissues reveals that PbSOT6/20 is associated with sorbitol accumulation in pear fruits. Sci. Hortic. (Amsterdam) 2019, 243, 595–601. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Z.; Chen, C.; Zhang, L.; Zhu, S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef]
- Bae, H.; Yun, S.K.; Jun, J.H.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H. Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J. Appl. Bot. Food Qual. 2014, 87, 24–29. [Google Scholar] [CrossRef]
- Song, H.; Li, Y.; Xu, X.; Zhang, J.; Zheng, S.; Hou, L.; Xing, G.; Li, M. Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). Sci. Hortic. (Amsterdam). 2020, 261, 108988. [Google Scholar] [CrossRef]
- Daka, J.J.; Munyati, O.M.; Nyirenda, J. Iron chlorophyll-a as biomimic catalyst for the green synthesis of polyaniline nanostructures: Evaluation, characterization and optimization. Sustain. Chem. Pharm. 2020, 15, 100194. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Ordaz-Galindo, A.; Wesche-Ebeling, P.; Wrolstad, R.E.; Rodriguez-Saona, L.; Argaiz-Jamet, A. Purification and identification of Capulin (Prunus serotina Ehrh) anthocyanins. Food Chem. 1999, 65, 201–206. [Google Scholar] [CrossRef]
- Radulović, N.S.; Crossed D Signorcrossed D Signević, A.S.; Zlatković, B.K.; Palić, R.M. GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae). Chem. Pap. 2009, 63, 377–384. [Google Scholar] [CrossRef]
- Konić-Ristić, A.; Šavikin, K.; Zdunić, G.; Janković, T.; Juranic, Z.; Menković, N.; Stanković, I. Biological activity and chemical composition of different berry juices. Food Chem. 2011, 125, 1412–1417. [Google Scholar] [CrossRef]
- Zuo, A.; Wang, S.; Liu, L.; Yao, Y.; Guo, J. Understanding the effect of anthocyanin extracted from Lonicera caerulea L. on alcoholic hepatosteatosis. Biomed. Pharmacother. 2019, 117, 109087. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Shibu, M.A.; Fan, M.J.; Chen, M.C.; Viswanadha, V.P.; Lin, Y.L.; Lai, C.H.; Lin, K.H.; Ho, T.J.; Kuo, W.W.; et al. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. J. Nutr. Biochem. 2016, 31, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Singh, I.; Rose’ Meyer, R. Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells. Chem. Biol. Interact. 2020, 317, 108940. [Google Scholar] [CrossRef] [PubMed]
- Satué-Gracia, M.T.; Heinonen, M.; Frankel, E.N. Anthocyanins as Antioxidants on Human Low-Density Lipoprotein and Lecithin-Liposome Systems. J. Agric. Food Chem. 1997, 45, 3362–3367. [Google Scholar] [CrossRef]
- Palonen, P.; Weber, C. Fruit color stability, anthocyanin content, and shelf life were not correlated with ethylene production rate in five primocane raspberry genotypes. Sci. Hortic. (Amsterdam). 2019, 247, 9–16. [Google Scholar] [CrossRef]
- Barik, S.K.; Russell, W.R.; Moar, K.M.; Cruickshank, M.; Scobbie, L.; Duncan, G.; Hoggard, N. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters. J. Nutr. Biochem. 2020, 78. [Google Scholar] [CrossRef]
- Zou, L.; Zhong, G.Y.; Wu, B.; Yang, Y.; Li, S.; Liang, Z. Effects of sunlight on anthocyanin accumulation and associated co-expression gene networks in developing grape berries. Environ. Exp. Bot. 2019, 166, 103811. [Google Scholar] [CrossRef]
- Tokarz, A. Zywnosc naturalnym zrodlem zwiazkow przeciwnowotworowych - Wiadomości Zielarskie. Bibl. Nauk. Yadda 1997, 39, 8–10. [Google Scholar]
- Lauridsen, C.; Theil, P.K.; Jensen, S.K. Composition of α-tocopherol and fatty acids in porcine tissues after dietary supplementation with vitamin E and different fat sources. Anim. Feed Sci. Technol. 2013, 179, 93–102. [Google Scholar] [CrossRef]
- Fairus, S.; Cheng, H.M.; Sundram, K. Antioxidant status following postprandial challenge of two different doses of tocopherols and tocotrienols. J. Integr. Med. 2020, 18, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Gamel, T.H.; Linssen, J.P.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A. Effect of seed treatments on the chemical composition of two amaranth species: Oil, sugars, fibres, minerals and vitamins. J. Sci. Food Agric. 2006, 86, 82–89. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; De Biaggi, M.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. New findings in prunus padus l. Fruits as a source of natural compounds: Characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules 2018, 23, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linster, C.L.; Van Schaftingen, E. Vitamin C: Biosynthesis, recycling and degradation in mammals. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Einbond, L.S.; Reynertson, K.A.; Luo, X.D.; Basile, M.J.; Kennelly, E.J. Anthocyanin antioxidants from edible fruits. Food Chem. 2004, 84, 23–28. [Google Scholar] [CrossRef]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of processing on the bioaccessibility of bioactive compounds—A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Nakamura, S.; Oku, T. Bioavailability of 2-O-α-d-glucopyranosyl-l-ascorbic acid as ascorbic acid in healthy humans. Nutrition 2009, 25, 686–691. [Google Scholar] [CrossRef]
- Singh, R.; Mahdi, A.A.; Singh, R.K.; Lee Gierke, C.; Cornelissen, G. Effect of gender, age, diet and smoking status on the circadian rhythm of ascorbic acid (vitamin C) of healthy Indians. J. Appl. Biomed. 2018, 16, 180–185. [Google Scholar] [CrossRef]
- Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 2006, 23, 394–411. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef]
- Cör, D.; Knez, Ž.; Hrnčič, M.K. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacchino, S.A.; Butassi, E.; Di Liberto, M.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017, 37, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.M.; Zhang, L.Y.; Zhang, X.; Bai, H.B.; Liang, D.E.; Ma, L.F.; Shan, W.G.; Zhan, Z.J. Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus. Phytochemistry 2014, 108, 171–176. [Google Scholar] [CrossRef]
- Yazaki, K.; Arimura, G.I.; Ohnishi, T. “Hidden” terpenoids in plants: Their biosynthesis, localization and ecological roles. Plant Cell Physiol. 2017, 58, 1615–1621. [Google Scholar] [CrossRef] [Green Version]
- Magiera, A.; Marchelak, A.; Michel, P.; Owczarek, A.; Olszewska, M.A. Lipophilic extracts from leaves, inflorescences and fruits of Prunus padus L. as potential sources of corosolic, ursolic and oleanolic acids with anti-inflammatory activity. Nat. Prod. Res. 2019, 6419, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tu, M.; Yang, X.; Xu, J.; Yu, Z. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit. Postharvest Biol. Technol. 2020, 161, 111081. [Google Scholar] [CrossRef]
- Ghnimi, S.; Al-Shibli, M.; Al-Yammahi, H.R.; Al-Dhaheri, A.; Al-Jaberi, F.; Jobe, B.; Kamal-Eldin, A. Reducing sugars, organic acids, size, color, and texture of 21 Emirati date fruit varieties (Phoenix dactylifera, L.). NFS J. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Johnson-Cicalese, J.; Singh, A.P.; Vorsa, N. Characterization and quantification of flavonoids and organic acids over fruit development in American cranberry (Vaccinium macrocarpon) cultivars using HPLC and APCI-MS/MS. Plant Sci. 2017, 262, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.A.; Kwapisz, A. Metabolite profiling and antioxidant activity of Prunus padus L. flowers and leaves. Nat. Prod. Res. 2011, 25, 1115–1131. [Google Scholar] [CrossRef]
- Khalifa, I.; Zhu, W.; Li, K.K.; Li, C.M. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review. J. Funct. Foods 2018, 40, 28–43. [Google Scholar] [CrossRef]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018, 269, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Proestos, C.; Sereli, D.; Komaitis, M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem. 2006, 95, 44–52. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Hollman, P.C.H.; Hertog, M.G.L.; Katan, M.B. Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in the Netherlands. J. Agric. Food Chem. 1992, 40, 2379–2383. [Google Scholar] [CrossRef]
- Waridel, P.; Wolfender, J.L.; Ndjoko, K.; Hobby, K.R.; Major, H.J.; Hostettmann, K. Evaluation of quadrupole time-of-flight tandem mass spectrometry and ion-trap multiple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers. Proc. J. Chromatogr. A 2001, 926, 29–41. [Google Scholar] [CrossRef]
- Koleckar, V.; Kubikova, K.; Rehakova, Z.; Kuca, K.; Jun, D.; Jahodar, L.; Opletal, L. Condensed and Hydrolysable Tannins as Antioxidants Influencing the Health. Mini-Reviews Med. Chem. 2008, 8, 436–447. [Google Scholar] [CrossRef]
- Swain, E.; Li, C.P.; Poulton, J.E. Development of the potential for cyanogenesis in maturing black cherry (Prunus serotina Ehrh.) fruits. Plant Physiol. 1992, 98, 1423–1428. [Google Scholar] [CrossRef] [Green Version]
- Drochioiu, G.; Arsene, C.; Murariu, M.; Oniscu, C. Analysis of cyanogens with resorcinol and picrate. Food Chem. Toxicol. 2008, 46, 3540–3545. [Google Scholar] [CrossRef]
- Santos Pimenta, L.P.; Schilthuizen, M.; Verpoorte, R.; Choi, Y.H. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using 1H-NMR spectroscopy. Phytochem. Anal. 2014, 25, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.N.; San, B.; Koyuncu, F.; Yildirim, F. Variability of phenolics, α-tocopherol and amygdalin contents of selected almond (Prunus amygdalus Batsch.) genotypes. J. Food, Agric. Environ. 2010, 8, 76–79. [Google Scholar]
- Zhou, C.; Chen, K.; Sun, C.; Chen, Q.; Zhang, W.; Li, X. Determination of oleanolic acid, ursolic acid and amygdalin in the flower of Eriobotrya japonica Lindl. by HPLC. Biomed. Chromatogr. 2007, 21, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin content of seeds, kernels and food products commercially- available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nout, M.J.R.; Tunçel, H.C.; Brimer, L. Microbial degradation of amygdalin of bitter apricot seeds (Prunus armeniaca). Int. J. Food Microbiol. 1995, 24, 407–412. [Google Scholar] [CrossRef]
- Petkovsek, M.M.; Slatnar, A.; Stampar, F.; Veberic, R. The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef]
- Hyun, T.K.; Kim, H.C.; Kim, J.S. In vitro screening for antioxidant, antimicrobial, and antidiabetic properties of some Korean native plants on Mt. Halla, Jeju Island. Indian J. Pharm. Sci. 2015, 77, 668–674. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Comparative studies on biological activities of Prunus padus and P. spinosa. Fitoterapia 2004, 75, 77–80. [Google Scholar] [CrossRef]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Romo-Mancillas, A.; López-Vallejo, F.H.; Solís-Gutiérrez, M.; Rojas-Molina, J.I.; Rivero-Cruz, F. Role of nitric oxide and hydrogen sulfide in the vasodilator effect of ursolic acid and uvaol from black cherry prunus serotina fruits. Molecules 2016, 21, 78. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Cha, D.S.; Jeon, H. Anti-inflammatory and anti-nociceptive properties of Prunus padus. J. Ethnopharmacol. 2012, 144, 379–386. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- McCune, L.M.; Kubota, C.; Stendell-Hollis, N.R.; Thomson, C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 1–12. [Google Scholar] [CrossRef]
- Karaman, Ş.; Tütem, E.; Başkan, K.S.; Apak, R. Comparison of antioxidant capacity and phenolic composition of peel and flesh of some apple varieties. J. Sci. Food Agric. 2013, 93, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC-DAD-ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef] [PubMed]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; Van Buren, L.; Wagner, E.; Wiseman, S.; Van De Put, F.; Dacombe, C.; Rice-Evans, C.A. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Bacchetti, T.; Belleggia, A.; Neri, D. Cherry antioxidants: From farm to table. Molecules 2010, 15, 6993–7005. [Google Scholar] [CrossRef] [PubMed]
- Chew, A.L.; Jessica, J.J.A.; Sasidharan, S. Antioxidant and antibacterial activity of different parts of Leucas aspera. Asian Pac. J. Trop. Biomed. 2012, 2, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Modi, S.R.; Collins, J.J.; Relman, D.A. Antibiotics and the gut microbiota. J. Clin. Invest. 2014, 124, 4212–4218. [Google Scholar] [CrossRef] [Green Version]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [Green Version]
- Vaseeharan, B.; Thaya, R. Medicinal plant derivatives as immunostimulants: An alternative to chemotherapeutics and antibiotics in aquaculture. Aquac. Int. 2014, 22, 1079–1091. [Google Scholar] [CrossRef]
- Ahmad, I.; Mehmood, Z.; Mohammad, F. Screening of some Indian medicinal plants for their antimicrobial properties. J. Ethnopharmacol. 1998, 62, 183–193. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Szczepaniak, O.; Kmiecik, D.; Przeor, M.; Gramza-Michałowska, A.; Cielecka-Piontek, J.; Smuga-Kogut, M.; Szulc, P. Composition and in vitro effects of cultivars of humulus lupulus L. Hops on cholinesterase activity and microbial growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobus-Cisowska, J.; Szymanowska, D.; Maciejewska, P.; Kmiecik, D.; Gramza-Michałowska, A.; Kulczyński, B.; Cielecka-Piontek, J. In vitro screening for acetylcholinesterase and butyrylcholinesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron. J. Biotechnol. 2019, 37, 1–10. [Google Scholar] [CrossRef]
- Gupta, A.; Mahajan, S.; Sharma, R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol. Reports 2015, 6, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Dubey, J.; Kumar, M. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected common human pathogenic microorganisms. Asian Pacific J. Trop. Dis. 2016, 6, 15–20. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of Scottish plants for antibacterial activity. J. Ethnopharmacol. 2002, 83, 73–77. [Google Scholar] [CrossRef]
- Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol. 2000, 32. [Google Scholar]
- Ramdanis, R.; Soemiati, A.; Mun’im, A. Isolation and α-Glucosidase inhibitory activity of endophytic fungi from mahogany (Swietenia macrophylla King) seeds. Int. J. Med. Arom. Plants 2012, 2. [Google Scholar]
- Zhang, Y.; Ren, C.; Lu, G.; Cui, W.; Mu, Z.; Gao, H.; Wang, Y. Purification, characterization and anti-diabetic activity of a polysaccharide from mulberry leaf. Regul. Toxicol. Pharmacol. 2014, 70, 687–695. [Google Scholar] [CrossRef]
- Hunyadi, A.; Herke, I.; Veres, K.; Erdei, A.; Simon, A.; Tóth, G. Volatile glycosides from the leaves of Morus alba with a potential contribution to the complex anti-diabetic activity. Nat. Prod. Commun. 2014, 9, 145–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, N.; Murakami, T.; Kadoya, M.; Matsuda, H.; Yamahara, J.; Yoshikawa, M. New hypoglycemic constituents in “gymnemic acid” from Gymnema sylvestre. Chem. Pharm. Bull. 1996, 44, 469–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugasundaram, K.R.; Panneerselvam, C.; Samudram, P.; Shanmugasundaram, E.R.B. Enzyme changes and glucose utilisation in diabetic rabbits: The effect of Gymnema sylvestre, R.Br. J. Ethnopharmacol. 1983, 7, 205–234. [Google Scholar] [CrossRef]
- Sahib, A.S. Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial. J. Intercult. Ethnopharmacol. 2016, 5, 108–113. [Google Scholar] [CrossRef]
- Gaber, E. El-Desoky Antidiabetic and hypolipidemic effects of Ceylon cinnamon (Cinnamomum verum) in alloxan-diabetic rats. J. Med. Plants Res. 2012, 6, 1685–1691. [Google Scholar] [CrossRef]
- Nagalievska, M.; Sabadashka, M.; Hachkova, H.; Sybirna, N. Galega officinalis extract regulate the diabetes mellitus related violations of proliferation, functions and apoptosis of leukocytes. BMC Complement. Altern. Med. 2018, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Venkateswaran, S.; Pari, L. Antioxidant effect of Phaseolus vulgaris in streptozotocin-induced diabetic rats. Asia Pac. J. Clin. Nutr. 2002, 11, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics-2013 update: A Report from the American Heart Association. Circulation 2013, 127. [Google Scholar] [CrossRef]
- Bakris, G.; Sarafidis, P.; Agarwal, R.; Ruilope, L. Review of blood pressure control rates and outcomes. J. Am. Soc. Hypertens. 2014, 8, 127–141. [Google Scholar] [CrossRef]
- Kang, K.T. Endothelium-derived relaxing factors of small resistance arteries in hypertension. Toxicol. Res. 2014, 30, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Akpanabiatu, M.I.; Umoh, I.B.; Udosen, E.O.; Udoh, A.E.; Edet, E.E. Rat serum electrolytes, lipid profile and cardiovascular activity on Nauclea latifolia leaf extract administration. Indian J. Clin. Biochem. 2005, 20, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, L.; Balaraman, R. Effect of green tea extract on doxorubicin induced cardiovascular abnormalities: Antioxidant action. Iran. J. Pharm. Res. 2011, 10, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Feringa, H.H.H.; Laskey, D.A.; Dickson, J.E.; Coleman, C.I. The Effect of Grape Seed Extract on Cardiovascular Risk Markers: A Meta-Analysis of Randomized Controlled Trials. J. Am. Diet. Assoc. 2011, 111, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torres, I.; Torres-Narváez, J.C.; Pedraza-Chaverri, J.; Rubio-Ruiz, M.E.; Díaz-Díaz, E.; Del Valle-Mondragón, L.; Martínez-Memije, R.; Varela López, E.; Guarner-Lans, V. Effect of the aged garlic extract on cardiovascular function in metabolic syndrome rats. Molecules 2016, 21, 1425. [Google Scholar] [CrossRef] [PubMed]
- Arcanjo, D.D.R.; de Albuquerque, A.C.M.; Neto, B.M.; Santana, L.C.L.R.; Silva, N.C.B.; Moita, M.M.; das Graccedil, M.; dos Santos Soares, M.J. Phytochemical screening and evaluation of cytotoxic, antimicrobial and cardiovascular effects of Gomphrena globosa L. (Amaranthaceae). J. Med. Plants Res. 2011, 5, 2006–2010. [Google Scholar]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Betancur, I.; Benjumea, D.; Gómez, J.E.; Mejía, N.; León, J.F. Antinociceptive activity of essential oils from wild growing and micropropagated plants of Renealmia alpinia (Rottb.) maas. Rec. Nat. Prod. 2019, 13, 10–17. [Google Scholar] [CrossRef]
- Kadi, I.; Ouinten, M.; Gourine, N.; Yousfi, M. Synergistic antinociceptive activity of combined aqueous extracts of Artemisia campestris and Artemisia herba-alba in several acute pain models. Nat. Prod. Res. 2019, 33, 875–878. [Google Scholar] [CrossRef]
- Reis Simas, D.L.; Mérida-Reyes, M.S.; Muñoz-Wug, M.A.; Cordeiro, M.S.; Giorno, T.B.S.; Taracena, E.A.; Oliva-Hernández, B.E.; Martínez-Arévalo, J.V.; Fernandes, P.D.; Pérez-Sabino, J.F.; et al. Chemical composition and evaluation of antinociceptive activity of the essential oil of Stevia serrata Cav. from Guatemala. Nat. Prod. Res. 2019, 33, 577–579. [Google Scholar] [CrossRef]
- Rakel, D.P.; Rindfleisch, A. Inflammation: Nutritional, botanical, and mind-body influences. South. Med. J. 2005, 98, 303–310. [Google Scholar] [CrossRef]
- Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science (80-.). 2013, 339, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.B.; Jeong, H.J. Rheosmin, a naturally occurring phenolic compound inhibits LPS-induced iNOS and COX-2 expression in RAW264.7 cells by blocking NF-κB activation pathway. Food Chem. Toxicol. 2010, 48, 2148–2153. [Google Scholar] [CrossRef]
- Dinarello, C.A. Anti-inflammatory Agents: Present and Future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dylewska-Grzelakowska, J. Kosmetyka stosowana; WSiP: Warszawa, Poland, 2012; pp. 68–80, 187–199. [Google Scholar]
- Seo, E.J.; Hong, E.S.; Choi, M.H.; Kim, K.S.; Lee, S.J. The antioxidant and skin whitening effect of Artemisia iwayomogi extracts. Korean J. Food Sci. Technol. 2012, 44, 89–93. [Google Scholar] [CrossRef]
- Malinka, W. Zarys chemii kosmetycznej; Volumed: Wrocław, Poland, 1999; pp. 231–233. [Google Scholar]
- Kaisangsr, N.; Selamassakul, O.; Sonklin, C.; Laohakunjit, N.; Kerdchoechuen, O.; Rungruang, R. Phenolic compounds and biological Activites of coffee extract for cosmetic product; Shibaura Institute of Technology: Tokyo, Japan, 2020; Volume 1. [Google Scholar]
- Muyima, N.Y.O.; Zulu, G.; Bhengu, T.; Popplewell, D. The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation. Flavour Fragr. J. 2002, 17, 258–266. [Google Scholar] [CrossRef]
- Kerdudo, A.; Burger, P.; Merck, F.; Dingas, A.; Rolland, Y.; Michel, T.; Fernandez, X. Développement d’un ingrédient naturel: Étude de cas d’un conservateur naturel. Comptes Rendus Chim. 2016, 19, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Hwang, D.; Kim, H.; Shin, H.; Jeong, H.; Kim, J.; Kim, D. Cosmetic effects of Prunus padus bark extract. Korean J. Chem. Eng. 2014, 31, 2280–2285. [Google Scholar] [CrossRef]
Domain | Eukaryota |
---|---|
Kingdom | Plantae |
Clade | Vascular plants |
Clade | Seed plants |
Class | Angiosperms |
Clade | Rosids |
Order | Rosales |
Family | Rosaceae |
Genus | Prunus |
P. padus | P. serotina | |
---|---|---|
Country of origin | Europe, Asia Minor | North America |
Height of trees | up to 15 m | up to 25 m |
Leaves | Smaller, finely serrated | Elongated, sharpened, more serrated |
Veins network (leaves) | Dense | Poorly visible |
Fruits | Bitter | Sweeter |
Flowering | April/May | May/June |
Inflorescence | Suspended or rarely elevated | Elevated or ascending |
Fruits | Petals broadly inversely egg-shaped, 10–15 mm long, almost twice as long as stamens. Hairy flower bottom. | The serrated edges of the calyx are permanent and remain on the fruit. The fruit is unripe pink or reddish, then dark red to black. Smooth pip |
Bark, aroma | The bark smells good. Torn buds smell like almonds. | Torn bark with a characteristic, sharp, relatively pleasant smell, similar to that of blackcurrant. |
Class | Component | [30] | [31] | [32] | |
---|---|---|---|---|---|
P. padus | P. serotina | P. serotina | |||
Fruits | Fruits | Seeds Raw | Seeds Toasted | ||
Moisture | 81.18 ± 0.081 | 8.92 ± 0.42 | 10.75 ± 0.35 | ||
Ash | 0.86 ± 0.11% | 3.19 ± 0.18 | 2.72 ± 0.21 | ||
Mineral | Ca | 12.90 ± 1.90 | 192.30 ± 0.58 | 127.11 ± 17.51 | |
Fe | 9.49 ± 0.3 | 1.21 ± 0.003 | |||
Mg | 21.20 ± 0.20 | 249.15 ± 0.34 | 216.68 ± 18.75 | ||
P | 28.10 ± 0.40 | 439.0 ± 0.16 | 323.40 ± 0.14 | ||
K | 184.30 ± 3.50 | 873.22 ± 12.64 | 454.82 ± 0.41 | ||
Zn | 3.40 ± 0.10 | 2.96 ± 0.24 | |||
Na | 22.40 ± 1.60 | 82.98 ± 0.90 | 23.59 ± 0.8 | ||
Protein | 2.10 ± 0.01 | 37 ± 0.16 | 36.55 ± 0.22 | ||
Aminoacid | Asp | 112.29 mg/g | 116.97 mg/g | ||
Glu | 256.84 mg/g | 27.73 mg/g | |||
Ser | 32.84 mg/g | 42.11 mg/g | |||
His | 21.60 mg/g | 21.29 mg/g | |||
Gly | 37.43 mg/g | 38.82 mg/g | |||
Thr | 52.85 mg/g | 59.16 mg/g | |||
Arg | 84.24 mg/g | 87.42 mg/g | |||
Ala | 41.47 mg/g | 44.06 mg/g | |||
Tyr | 48.75 mg/g | 60.99 mg/g | |||
Met | 8.93 mg/g | 9.83 mg/g | |||
Val | 45.48 mg/g | 45.62 mg/g | |||
Phe | 48.64 mg/g | 52.00 mg/g | |||
Ile | 39.17 mg/g | 40.33 mg/g | |||
Leu | 75.10 mg/g | 82.11 mg/g | |||
Lys | 8.85 mg/g | 11.17 mg/g | |||
Fat | Total | 0.05 ± 0.01 | 40.37 ± 0.73 | 39.97 ± 0.20 | |
Carbohydrates | 129.28 ± 3.47 | 12.23 ± 0.79 | 7.76 ± 2.24 | 8.65 ± 4.28 | |
Sugars | Glucose | 62.19 ± 1.92 | |||
Fructose | 33.34 ± 1.32 | ||||
Sorbitol | 33.73 ± 1.51 | ||||
Crude Fiber | 3.58 ± 0.03 | 10.73 ± 1.49 | 12.12 ± 4.06 |
Class | Component | Result | Species | Plant Part | Reference |
---|---|---|---|---|---|
Chlorophyll | Chlorophyll A | 42.58 ± 1.92 mg/kg FW | P. padus | Fruits | [30] |
Chlorophyll B | 22.43 ± 1.30 mg/kg FW | P. padus | Fruits | [30] | |
Alfa-Caroten | 0.05 ± 0.01 mg/kg FW | P. padus | Fruits | [30] | |
Beta-Caroten | 3.06 ± 0.17 mg/kg FW | P. padus | Fruits | [30] | |
Anthocyanins | Cyanidin-2-galactoside | 33.69 ± 2.52 mg/kg FW | P. padus | Fruits | [30] |
Cyanidin-3-glucoside | 1501.53 ± 61.32 mg/kg FW | P. padus | Fruits | [30] | |
272 mg/100 g | P. serotina | Fruits | [41] | ||
Cyanidin-3-rutinoside | 623.68 ± 46.97 mg/kg FW | P. padus | Fruits | [30] | |
Cyanidin rhamnosyl hexoside | 13.09 ± 1.00 mg/kg FW | P. padus | Fruits | [30] | |
Tocopherols | Tocopherol alfa | 6.51 ± 0.50 mg/kg FW | P. padus | Fruits | [30] |
Tocopherol gama | 1.35 ± 0.12 mg/kg FW | P. padus | Fruits | [30] | |
Tocopherol delta | 2.48 ± 0.22 mg/kg FW | P. padus | Fruits | [30] | |
Vitamin C | Ascorbic acid | 25.20 ± 3.48 mg/100 FW | P. padus | Fruits | [30] |
Dehydroascorbic acid | 50.87 ± 16.23 mg/100 FW | P. padus | Fruits | [30] | |
Terpen | Limonene | 31.40 ± 5.65 mg/100 FW | P. padus | Fruits | [30] |
Phellandrene | 8.51 ± 2.69 mg/100 FW | P. padus | Fruits | [30] | |
Sabinene | 1.21 ± 0.18 mg/100 FW | P. padus | Fruits | [30] | |
γ-terpinene | 65.52 ± 6.25 mg/100 FW | P. padus | Fruits | [30] | |
Ursolic acid | X | P. serotina | Fruits | [31] | |
Uvaol | X | P. serotina | Fruits | [31] | |
Cis-Linalool oxide | 0.7% | P. padus | Flowers | [42] | |
Trans s-Linalool oxide | 0.1% | P. padus | Flowers | [42] | |
(Z)-8-Hydroxylinalool | 30.4% | P. padus | Flowers | [42] | |
(E)-β-Farnesene | 0.2% | P. padus | Flowers | [42] | |
(E, E)-α-Farnesene | 0.1% | P. padus | Flowers | [42] |
Class | Component | Result | Species | Plant Part | Reference |
---|---|---|---|---|---|
Cinnamic acid derivatives | Caffeic acid | 6.61 ± 1.35 mg/100g FW | P. padus | Fruits | [55] |
Chlorogenic acid | 10.48 ± 0.28 mg/100g FW | P. padus | Fruits | [55] | |
1.39–1.94% DW | P. padus | Flowers | [71] | ||
Coumaric acid | 12.20 ± 3.07 mg/100g FW | P. padus | Fruits | [55] | |
Ferulic acid | 10.45 ± 3.65 mg/100g FW | P. padus | Fruits | [55] | |
5-p-Coumaroylquinic acid 1 | 16.14 ± 1.11 mg/kg FW | P. padus | Fruits | [30] | |
5-p-Coumaroylquinic acid 2 | 2.25 ± 0.05 mg/kg FW | P. padus | Fruits | [30] | |
Caffeic acid hexoside1 | 11.71 ± 1.45 mg/kg FW | P. padus | Fruits | [30] | |
p-Coumaric acid hexoside 1 | 10.25 ± 1.00 mg/kg FW | P. padus | Fruits | [30] | |
5-Caffeoylquinic acid 1 | 357.30 ± 14.08 mg/kg FW | P. padus | Fruits | [30] | |
5-Caffeolquinic acid 2 | 48.25 ± 1.70 mg/kg FW | P. padus | Fruits | [30] | |
X | P. serotina | Fruits | [31] | ||
Dicaffeoylquinic acid | 15.40 ± 1.08 mg/kg FW | P. padus | Fruits | [30] | |
Hydroxy-benzoic Acid derivatives | Ellagic acid | 11.41 ± 1.25 mg/100g FW | P. padus | Fruits | [55] |
Gallic acid | 3.54 ± 0.81 mg/100g FW | P. padus | Fruits | [55] | |
X | P. serotina | Fruits | [31] | ||
Vanillic acid | X | P. serotina | Fruits | [31] | |
Flavones | Apigenin rhamnoside | 24.99 ± 1.61 mg/kg FW | P. padus | Fruits | [30] |
Flavonols | Hyperoside | 7.38 ± 0.41 mg/100g FW | P. padus | Fruits | [55] |
0.15–0.23% DW | P. padus | Flowers | [71] | ||
Quercetin | 11.86 ± 2.36 mg/100g FW | P. padus | Fruits | [55] | |
1.37–1.56% DW | P. padus | Flowers | [71] | ||
Quercitrin | 16.37 ± 3.51 mg/100g FW | P. padus | Fruits | [55] | |
X | P. serotina | Fruits | [31] | ||
Rutin | 2.67 ± 1.02 mg/100g FW | P. padus | Fruits | [55] | |
X | P. serotina | Fruits | [31] | ||
Quercetin acetyl hexoside | 2.48 ± 0.09 mg/kg FW | P. padus | Fruits | [30] | |
Quercetin dihexoside | 7.49 ± 0.54 mg/kg FW | P. padus | Fruits | [30] | |
Quercetin hexosyl pentoside 3 | 223.45 ± 10.20 mg/kg FW | P. padus | Fruits | [30] | |
X | P. serotina | Fruits | [31] | ||
Quercetin-3-galactoside | 52.80 ± 1.41 mg/kg FW | P. padus | Fruits | [30] | |
Quercetin-3-glucoside | 21.40 ± 1.34 mg/kg FW | P. padus | Fruits | [30] | |
Quercetin-3-rhamnoside | 1.98 ± 0.38 mg/kg FW | P. padus | Fruits | [30] | |
Quercetin-3-rutinosie | 64.70 ± 21.18 mg/kg FW | P. padus | Fruits | [30] | |
Quercetin 3-O-β-galactopyranoside | X | P. padus | Flowers | [71] | |
Quercetin diglycosides | 1.74–1.91% DW | P. padus | Spring leaves | [71] | |
1.67–1.78% DW | P. padus | Flowers | [71] | ||
Isorhamnetin-3-rutinoside | 1.22 ± 0.03 mg/kg FW | P. padus | Fruits | [30] | |
Isorhamnetin diglycoside | 0.36–0.59% DW | P. padus | Flowers | [71] | |
Kaempferol hexoside pentoside | 0.72 ± 0.03 mg/kg FW | P. padus | Fruits | [30] | |
X | P. serotina | Fruits | [31] | ||
Kaempferol hexoside 1 | 1.06 ± 0.14 mg/kg FW | P. padus | Fruits | [30] | |
X | P. serotina | Fruits | [31] | ||
Kaempferol hexoside 2 (glu) | 1.43 ± 0.05 mg/kg FW | P. padus | Fruits | [30] | |
X | P. serotina | Fruits | [31] | ||
Kaempferl-3-rutinoside | 2.81 ± 0.29 mg/kg FW | P. padus | Fruits | [30] | |
Catechins | Epicatechin | 25.43 ± 3.16 mg/100g FW | P. padus | Fruits | [55] |
95.22 ± 10.60 mg/kg FW | P. padus | Fruits | [30] | ||
Catechin | 56.66 ± 16.88 mg/100g FW | P. padus | Fruits | [55] | |
Tannins | Castalagin | 53.95 ± 8.90 mg/100g FW | P. padus | Fruits | [55] |
Vescalagin | 26.66 ± 5.97 mg/100g FW | P. padus | Fruits | [55] | |
Organic acids | Citric acid | 217.24 ± 14.95 mg/100g FW | P. padus | Fruits | [55] |
24.76 ± 1.32 mg/kg FW | P. padus | Fruits | [30] | ||
Oxalic acid | 12.16 ± 2.19 mg/100g FW | P. padus | Fruits | [55] | |
Quinic acid | 324.48 ± 57.21 mg/100g FW | P. padus | Fruits | [55] | |
6.45 ± 0.25 mg/kg FW | P. padus | Fruits | [30] | ||
Malic acid | 18.71 ± 0.81 mg/kg FW | P. padus | Fruits | [30] | |
Shikimic acid | 2.66 ± 0.16 mg/kg FW | P. padus | Fruits | [30] | |
Fumaric acid | 80.08 ± 3.19 mg/kg FW | P. padus | Fruits | [30] |
Species | Value | Reference |
---|---|---|
P. serotina (leaves) | 20.95 ± 0.25 mg/g | [82] |
Prunus amygdalus Batsch. (fruit) | 6.37 mg/g (oil) | [83] |
Prunus amygdalus L. (fruit) | 0.12 ± 0.06 mg/g | [85] |
Eriobotrya japonica Lindl. (flower) | 50.76 ± 0.92 µg/mL | [84] |
Prunus armeniaca L. (raw seeds) | 118 (29) µmol HCN equivalents/g DW | [86] |
Amygdalus communis L. (nectar) | 6.7 (ppm) | [87] |
Prunus mume L. (fruit) | 17.49 ± 0.26 mg/g | [85] |
Prunus domestica L. (fruit) | 10.00 ± 0.14 mg/g | [85] |
Prunus persica L. (peach, fruit) | 6.81 ± 0.02 mg/g | [85] |
Prunus avium L. (red, fruit) | 3.89 ± 0.31 mg/g | [85] |
Prunus avium L. (black, fruit) | 2.68 ± 0.02 mg/g | [85] |
Prunus persica L. (nectarine, fruit) | 0.12 ± 0.01 mg/g | [85] |
Activity | Method | Extract | Species | Plant Part | Organism | Result/Observed Effect | Reference |
---|---|---|---|---|---|---|---|
Antioxidant Activity | FRAP | Acetone | P. padus | Frozen Fruits | 31.54 ± 0.26 mM trolox/kg | [30] | |
FRAP | Methanol | P. padus | Fruits | 17.78 ± 0.84 mmol Fe 2+x kg−1 | [55] | ||
FRAP | Methanol | P. padus | Leaves | 100μg/mL (concentration) 0.34 ± 0.04 μg/mL | [88] | ||
FRAP | Methanol | P. padus | Leaves | 200 μg/mL (concentration) 0.62 ± 0.01 μg/mL | [88] | ||
FRAP | Methanol | P. padus | Leaves | 300 μg/mL (concentration) 0.88 ± 0.00 μg/mL | [88] | ||
FRAP | Methanol | P. padus | Branch | 100μg/mL (concentration) 0.51 ± 0.01 | [88] | ||
Methanol | P. padus | Branch | 200 μg/mL (concentration) 0.74 ± 0.01 | [88] | |||
Methanol | P. padus | Branch | 300 μg/mL (concentration) 0.99 ± 0.00 | [88] | |||
FRAP | Water | P. serotina | Fresh Fruits | 1455.2 ± 92.5 μmol TE/100 g of FW | [31] | ||
FRAP | Water | P. serotina | Flesh Fruits | 1100.7 ± 35.4 μmol TE/100 g of FW | [31] | ||
FRAP | Water | P. serotina | Peel Fruits | 1991.4 ± 40.1 μmol TE/100 g of FW | [31] | ||
DPPH | Methanol | P. padus | Flowers | 1.43–1.49 g g−1 | [71] | ||
DPPH | Methanol | P. padus | Autumn Leaves | 1.68 g g−1 | [71] | ||
DPPH | Methanol | P. padus | Spring Leaves | 2.10–2.29 g g−1 | [71] | ||
DPPH | Methanol | P. padus | Summer Leaves | 1.81–1.93 g g−1 | [71] | ||
DPPH | Methanol | P. padus | Flowers | 1.78–1.84 g g−1 | [71] | ||
DPPH | Methanol | P. padus | Autumn Leaves | 2.49 g g−1 | [71] | ||
DPPH | Methanol | P. padus | Spring Leaves | 4.27–4.92 g g−1 | [71] | ||
DPPH | Methanol | P. padus | Summer Leaves | 3.12–3.95 g g−1 | [71] | ||
DPPH | Water | P. serotina | Fresh Fruits | 2056.7 ± 108.0 μmol TE/100 g of FW | [31] | ||
DPPH | Water | P. serotina | Flesh Fruits | 1764.6 ± 170.4 μmol TE/100 g of FW | [31] | ||
DPPH | Water | P. serotina | Peel Fruits | 2681.6 ± 180.0 μmol TE/100 g of FW | [31] | ||
Antimicrobial | MIC | Methanol | P. padus | Branch | Bacillus Atrophaeus | 250 μg/mL | [89] |
MIC | Methanol | P. padus | Leaves | Bacillus Atrophaeus | 500 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Kocuria rhizophila | 125 μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Kocuria rhizophila | >1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Micrococcus luteus | >1000μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Micrococcus luteus | >1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Staphylococcus epidermidis | 250 μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Staphylococcus epidermidis | >1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Bacillus subtilis | 500 μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Bacillus subtilis | 500 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Klebsiella pneumoniae | 1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Klebsiella pneumoniae | >1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Enterobacter cloacae | 500 μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Enterobacter cloacae | >1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Salmonella enterica | 500 μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Salmonella enterica | >1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Branch | Pseudomonas aeruginosa | 1000 μg/mL | [89] | |
MIC | Methanol | P. padus | Leaves | Pseudomonas aeruginosa | 1000 μg/mL | [89] | |
MIC | Dichloromethane | P. padus | Seeds | Enterococcus faecalis | 1.0 mg/mL | [89] | |
MIC | Methanol | P. padus | Seeds | L. plantarum | 1.0 × 10−2 mg/mL | [89] | |
MIC | Methanol | P. padus | Seeds | P. mirabilis | 1.0 × 10−2 mg/mL | [89] | |
MIC | Methanol | P. padus | Seeds | S. aureus | 1.0 × 10−4 mg/mL | [89] | |
MIC | Dichloromethane | P. padus | Seeds | S. hominis | 1.0 mg/mL | [89] | |
MIC | Methanol | P. padus | Seeds | S. hominis | 1.0 × 10−2 mg/mL | [89] | |
Antidiabetic | The α-glucosidase inhibitory effect | Methanol | P. padus | Leaves | 1.0 ± 0.1 µg/mL | [88] | |
The α-glucosidase inhibitory effect | Methanol | P. padus | Branch | 82.7 ± 4.2 µg/mL | [88] | ||
Cardiovascular activity | NOS Enzymatic activity assay | Dichloromethane | P. serotina | Fruits | Wistar male rats 250–300 g | Ursolic acid (EC50 = 21.5 ± 3.5 µg/mL; Emax = 97.7% ± 3.9%); Uvaol (EC50 = 19.3 ± 2.5 µg/mL; Emax = 93.4% ± 5.1%) caused a significant concentration-dependent relaxation of the aorta. ACh (EC50 = 8.7 ± 0.8 µg/mL; Emax = 69.5% ± 5.7%), used as positive control, was more potent than ursolic acid and uvaol, but showed lower efficacy than both triterpenes. The nitrite concentration increased, when aortic tissue was incubated with ursolic acid ((NO2′) = 7.95 ± 0.22µM) and uvaol ((NO2′) = 7.55 ± 0.17µM); both triterpenes induced a higher nitrite concentration than that of ACh ((NO2’) = 5.5 ± 0.47µM). Similarly, quantification of H2S showed that stimulation of aortic tissue with ursolic acid ((H2S) = 234 ± 12.7µM) and uvaol ((H2S) = 253 ± 6.8µM) increased four times the H2S concentration with respect to the control. In the presence of ACh, H2S levels were only three times higher than those of the control; the vasodilator effect produced by ursolic acid involves activation of the NO/cGMP and H2S/KATP channel pathways, possibly through direct activation of NOS and CSE. | [90] |
Anti-inflammatory-nociceptive properties | Measurement of iNOS enzyme activity Western blot analysis Trypsin-induced paw edema Acute toxicity test Tail immersion test Hot plate test Acetic acid-induced writhing test Formalin test | Methanol | P. padus | Dried stem | ICR mice (6 weeks old) weighing 20–25 g and C57BL/6 mice (5 weeks old) weighing 18–22 g | Tested material delayed reaction times to a nociceptive stimulus 60 min after oral administration (38.61% at 250 mg/kg and 68.51% at 500 mg/kg, po0.001).The anti-nociceptive effects of MPP (250, 500 mg/kg) occurred between 30 and 90 min and maximum analgesia was reached at 60 min (37.98%, after 0.01 and 62.18%, after 0.001 respectively).The treatment with MPP induced a significant decrease in the number of writhing motions dose dependently (52.5% at 250 mg/kg, po0.001 and 72.8% at 500 mg/kg, po0.001). P. padus shown anti-inflammatory properties not only by suppressing various inflammatory mediators in vitro but also by reducing inflammatory swelling in vivo. A strong anti-nociceptive effect through the central and peripheral mechanism acting as a partial opioid agonist was also demonstrated. | [91] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telichowska, A.; Kobus-Cisowska, J.; Szulc, P. Phytopharmacological Possibilities of Bird Cherry Prunus padus L. and Prunus serotina L. Species and Their Bioactive Phytochemicals. Nutrients 2020, 12, 1966. https://doi.org/10.3390/nu12071966
Telichowska A, Kobus-Cisowska J, Szulc P. Phytopharmacological Possibilities of Bird Cherry Prunus padus L. and Prunus serotina L. Species and Their Bioactive Phytochemicals. Nutrients. 2020; 12(7):1966. https://doi.org/10.3390/nu12071966
Chicago/Turabian StyleTelichowska, Aleksandra, Joanna Kobus-Cisowska, and Piotr Szulc. 2020. "Phytopharmacological Possibilities of Bird Cherry Prunus padus L. and Prunus serotina L. Species and Their Bioactive Phytochemicals" Nutrients 12, no. 7: 1966. https://doi.org/10.3390/nu12071966
APA StyleTelichowska, A., Kobus-Cisowska, J., & Szulc, P. (2020). Phytopharmacological Possibilities of Bird Cherry Prunus padus L. and Prunus serotina L. Species and Their Bioactive Phytochemicals. Nutrients, 12(7), 1966. https://doi.org/10.3390/nu12071966