Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion
Abstract
:1. Introduction
2. Dietary Oxalate Intake and Urinary Oxalate Excretion
2.1. Quantifying Oxalate Consumption
- (1)
- The daily intake of oxalate on a molar basis is much less than calcium, approximately one-tenth (2.5 mmol vs. 25 mmol);
- (2)
- The amount of bound oxalate ingested is higher than bound calcium;
- (3)
- The amount of oxalate ingested can be difficult to determine due to the variability of oxalate in plants and plant-based foods. These differences may be due to growth conditions, genetic divergence and analytical variability in oxalate analyses [34];
- (4)
- FFQs are subject to errors and when targeting a single nutrient, they should be validated by comparison with another technique such as a weighed 3–4-day food record [35].
2.2. Relationship between Dietary Oxalate and Urinary Oxalate
3. Dietary Oxalate and the Gut
3.1. Gut Absorption of Dietary Oxalate
3.2. Gut Microbial Oxalate Degradation
4. Precursors of Endogenous Oxalate Production
4.1. Amino Acids and Proteins
4.2. Other Sources of Glyoxylate
4.3. Fructose, Glucose and Pentose Sugars
4.4. Ascorbic Acid
5. Oxalate and the Kidney
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scales, C.D.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Prevalence of kidney stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieske, J.C.; Rule, A.D.; Krambeck, A.E.; Williams, J.C.; Bergstralh, E.J.; Mehta, R.A.; Moyer, T.P. Stone composition as a function of age and sex. Clin. J. Am. Soc. Nephrol. 2014, 9, 2141–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prochaska, M.; Taylor, E.; Ferraro, P.M.; Curhan, G. Relative Supersaturation of 24-Hour Urine and Likelihood of Kidney Stones. J. Urol. 2018, 199, 1262–1266. [Google Scholar] [CrossRef] [PubMed]
- Baumann, J.M. From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis. World J. Nephrol. 2014, 3, 256. [Google Scholar] [CrossRef]
- Rodgers, A. Aspects of calcium oxalate crystallization: Theory, in vitro studies, and in vivo implementation. J. Am. Soc. Nephrol. 1999, 10, S351–S354. [Google Scholar]
- Pak, C.Y.C.; Adams-Huet, B.; Poindexter, J.R.; Pearle, M.S.; Peterson, R.D.; Moe, O.W. Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 2004, 66, 2032–2037. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.P.; Goodman, H.O.; Assimos, D.G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001, 59, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Lange, D. Dietary habits may influence oxalate degradation by intestinal bacteria commentary on: The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Urology 2014, 84, 1263–1264. [Google Scholar] [CrossRef]
- Hatch, M.; Freel, R.W. The Roles and Mechanisms of Intestinal Oxalate Transport in Oxalate Homeostasis. Semin. Nephrol. 2008, 28, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Madduma-Liyanage, K.; Mobley, J.A.; Assimos, D.G.; Holmes, R.P. Ascorbic acid intake and oxalate synthesis. Urolithiasis 2016, 44, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.P.; Ambrosius, W.T.; Assimos, D.G. Dietary oxalate loads and renal oxalate handling. J. Urol. 2005, 174, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Curhan, G.C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 2007, 18, 2198–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, E.N.; Curhan, G.C. Determinants of 24-hour urinary oxalate excretion. Clin. J. Am. Soc. Nephrol. 2008, 3, 1453–1460. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, P.M.; Curhan, G.C.; Gambaro, G.; Taylor, E.N. Total, dietary, and supplemental Vitamin C intake and risk of incident kidney stones. Am. J. Kidney Dis. 2016, 67, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.P.; Goodman, H.O.; Assimos, D.G.; Schwille, P.O.; Messa, P. Dietary oxalate and its intestinal absorption. Scanning Microsc. 1995, 9, 1109–1120. [Google Scholar]
- Lewandowski, S.; Rodgers, A.; Schloss, I. The influence of a high-oxalate/low-calcium diet on calcium oxalate renal stone risk factors in non-stone-forming black and white South African subjects. BJU Int. 2001, 87, 307–311. [Google Scholar] [CrossRef]
- Traxer, O.; Huet, B.; Poindexter, J.; Pak, C.Y.C.; Pearle, M.S. Effect of ascorbic acid consumption on urinary stone risk factors. J. Urol. 2003, 170, 397–401. [Google Scholar] [CrossRef]
- Chai, W.; Liebman, M.; Kynast-Gales, S.; Massey, L. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers. Am. J. Kidney Dis. 2004, 44, 1060–1069. [Google Scholar] [CrossRef]
- Knight, J.; Jiang, J.; Assimos, D.G.; Holmes, R.P. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int. 2006, 70, 1929–1934. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Holmes, R.P.; Assimos, D.G. Intestinal and renal handling of oxalate loads in normal individuals and stone formers. Urol. Res. 2007, 35, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Easter, L.H.; Neiberg, R.; Assimos, D.G.; Holmes, R.P. Increased protein intake on controlled oxalate diets does not increase urinary oxalate excretion. Urol. Res. 2009, 37, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.; Assimos, D.G.; Easter, L.; Holmes, R.P. Metabolism of fructose to oxalate and glycolate. Horm. Metab. Res. 2010, 42, 868–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieske, J.C.; Tremaine, W.J.; De Simone, C.; O’Connor, H.M.; Li, X.; Bergstralh, E.J.; Goldfarb, D.S. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010, 78, 1178–1185. [Google Scholar] [CrossRef] [Green Version]
- Bergsland, K.J.; Zisman, A.L.; Asplin, J.R.; Worcester, E.M.; Coe, F.L. Evidence for net renal tubule oxalate secretion in patients with calcium kidney stones. Am. J. Physiol. Ren. Physiol. 2011, 300. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Knight, J.; Easter, L.H.; Neiberg, R.; Holmes, R.P.; Assimos, D.G. Impact of Dietary Calcium and Oxalate, and Oxalobacter formigenes Colonization on Urinary Oxalate Excretion. J. Urol. 2011, 186, 135–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, J.; Assimos, D.G.; Callahan, M.F.; Holmes, R.P. Metabolism of primed, constant infusions of [1,2-13C 2] glycine and [1-13C1] phenylalanine to urinary oxalate. Metabolism 2011, 60, 950–956. [Google Scholar] [CrossRef]
- Lange, J.N.; Wood, K.D.; Mufarrij, P.W.; Callahan, M.F.; Easter, L.; Knight, J.; Holmes, R.P.; Assimos, D.G. The impact of dietary calcium and oxalate ratios on stone risk. Urology 2012, 79, 1226–1229. [Google Scholar] [CrossRef]
- Pang, R.; Linnes, M.P.; O’Connor, H.M.; Li, X.; Bergstralh, E.; Lieske, J.C. Controlled metabolic diet reduces calcium oxalate supersaturation but not oxalate excretion after bariatric surgery. Urology 2012, 80, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Lange, J.N.; Mufarrij, P.W.; Easter, L.; Knight, J.; Holmes, R.P.; Assimos, D.G. Fish oil supplementation and urinary oxalate excretion in normal subjects on a low-oxalate diet. Urology 2014, 84, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Fargue, S.; Milliner, D.S.; Knight, J.; Olson, J.B.; Lowther, W.T.; Holmes, R.P. Hydroxyproline metabolism and oxalate synthesis in primary hyperoxaluria. J. Am. Soc. Nephrol. 2018, 29, 1615–1623. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Patel, M.; Thomas, V.; Knight, J.; Holmes, R.P.; Mitchell, T. Dietary Oxalate Induces Urinary Nanocrystals in Humans. Kidney Int. Rep. 2020. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. A Prospective Study of Dietary Calcium and Other Nutrients and the Risk of Symptomatic Kidney Stones. N. Engl. J. Med. 1993, 328, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Dependence of oxalate absorption on the daily calcium intake. J. Am. Soc. Nephrol. 2004, 15, 1567–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massey, L.K. Food Oxalate: Factors Affecting Measurement, Biological Variation, and Bioavailability. J. Am. Diet. Assoc. 2007, 107, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Steinemann, N.; Grize, L.; Ziesemer, K.; Kauf, P.; Probst-Hensch, N.; Brombach, C. Relative validation of a food frequency questionnaire to estimate food intake in an adult population. Food Nutr. Res. 2017, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, T.; Kumar, P.; Reddy, T.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Dietary oxalate and kidney stone formation. Am. J. Physiol. Ren. Physiol. 2019, 316, F409–F413. [Google Scholar] [CrossRef]
- Holmes, R.P.; Kennedy, M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int. 2000, 57, 1662–1667. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.P.; Knight, J.; Assimos, D.G. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease. Urolithiasis 2016, 44, 27–32. [Google Scholar] [CrossRef]
- Hatch, M.; Freel, R.W. Intestinal transport of an obdurate anion: Oxalate. Urol. Res. 2005, 33, 1–16. [Google Scholar] [CrossRef]
- Witting, C.; Langman, C.B.; Assimos, D.; Baum, M.A.; Kausz, A.; Milliner, D.; Tasian, G.; Worcester, E.; Allain, M.; West, M.; et al. Pathophysiology and Treatment of Enteric Hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2020. [Google Scholar] [CrossRef]
- Abratt, V.R.; Reid, S.J. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. In Advances in Applied Microbiology; Academic Press Inc.: Cambridge, MA, USA, 2010; Volume 72, pp. 63–87. [Google Scholar]
- Allison, M.J.; Dawson, K.A.; Mayberry, W.R.; Foss, J.G. Oxalobacter formigenes gen. nov., sp. nov.: Oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 1985, 141, 1–7. [Google Scholar] [CrossRef]
- PeBenito, A.; Nazzal, L.; Wang, C.; Li, H.; Jay, M.; Noya-Alarcon, O.; Contreras, M.; Lander, O.; Leach, J.; Dominguez-Bello, M.G.; et al. Comparative prevalence of Oxalobacter formigenes in three human populations. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, J.; Deora, R.; Assimos, D.G.; Holmes, R.P. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urol. Res. 2013, 41, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, S.H.; Richardson, A.J.; Kaul, P.; Holmes, R.P.; Allison, M.J.; Stewart, C.S. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 2002, 68, 3841–3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siener, R.; Bangen, U.; Sidhu, H.; Hönow, R.; Von Unruh, G.; Hesse, A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013, 83, 1144–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, D.W.; Kelly, J.P.; Curhan, G.C.; Anderson, T.E.; Dretler, S.P.; Preminger, G.M.; Cave, D.R. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 2008, 19, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, H.; Schmidt, M.E.; Cornelius, J.G.; Van Thamilsel, S.; Khan, S.R.; Hesse, A.; Peck, A.B. Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: Possible prevention by gut recolonization or enzyme replacement therapy. J. Am. Soc. Nephrol. 1999, 10, S334–S340. [Google Scholar] [PubMed]
- Hatch, M.; Cornelius, J.; Allison, M.; Sidhu, H.; Peck, A.; Freel, R.W. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006, 69, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Ticinesi, A.; Nouvenne, A.; Meschi, T. Gut microbiome and kidney stone disease: Not just an Oxalobacter story. Kidney Int. 2019, 96, 25–27. [Google Scholar] [CrossRef]
- Miller, A.W.; Choy, D.; Penniston, K.L.; Lange, D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int. 2019, 96, 180–188. [Google Scholar] [CrossRef]
- Milliner, D.; Hoppe, B.; Groothoff, J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 2018, 46, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, D.S.; Modersitzki, F.; Asplin, J.R. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2007, 2, 745–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz, R.R.N.; Marques, N.C.; Froeder, L.; Menon, V.B.; Siliano, P.R.; Baxmann, A.C.; Heilberg, I.P. Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol. Res. 2009, 37, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Burns, Z.; Knight, J.; Fargue, S.; Holmes, R.; Assimos, D.; Wood, K. Future treatments for hyperoxaluria. Curr. Opin. Urol. 2020, 30, 171–176. [Google Scholar] [CrossRef]
- Lingeman, J.E.; Pareek, G.; Easter, L.; Pease, R.; Grujic, D.; Brettman, L.; Langman, C.B. ALLN-177, oral enzyme therapy for hyperoxaluria. Int. Urol. Nephrol. 2019, 51, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Allison, M.J.; Littledike, E.T.; James, L.F. Changes in Ruminal Oxalate Degradation Rates Associated with Adaptation to Oxalate Ingestion. J. Anim. Sci. 1977, 45, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Ticinesi, A.; Milani, C.; Guerra, A.; Allegri, F.; Lauretani, F.; Nouvenne, A.; Mancabelli, L.; Lugli, G.A.; Turroni, F.; Duranti, S.; et al. Understanding the gut-kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut 2018, 67, 2097–2106. [Google Scholar] [CrossRef]
- Tasian, G.E.; Jemielita, T.; Goldfarb, D.S.; Copelovitch, L.; Gerber, J.S.; Wu, Q.; Denburg, M.R. Oral antibiotic exposure and kidney stone disease. J. Am. Soc. Nephrol. 2018, 29, 1731–1740. [Google Scholar] [CrossRef]
- Liao, L.L.; Richardson, K.E. The metabolism of oxalate precursors in isolated perfused rat livers. Arch. Biochem. Biophys. 1972, 153, 438–448. [Google Scholar] [CrossRef]
- Farinelli, M.P.; Richardson, K.E. Oxalate synthesis from [14C1]glycollate and [14C1]glycoxylate in the hepatectomized rat. BBA Gen. Subj. 1983, 757, 8–14. [Google Scholar] [CrossRef]
- Gibbs, D.A.; Hauschild, S.; Watts, R.W.E. Glyoxylate Oxidation in Rat Liver and Kidney. J. Biochem. 1977, 82, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, M.; Maeda-Nakai, E.; Yamakawa, K.; Yamamoto, I.; Kawamura, J.; Tada, S.; Ichiyama, A. The formation of oxalate from glycolate in rat and human liver. BBA Gen. Subj. 1990, 1036, 24–33. [Google Scholar] [CrossRef]
- Wood, K.D.; Holmes, R.P.; Erbe, D.; Liebow, A.; Fargue, S.; Knight, J. Reduction in urinary oxalate excretion in mouse models of Primary Hyperoxaluria by RNA interference inhibition of liver lactate dehydrogenase activity. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2203–2209. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Pursell, N.; Gierut, J.; Saxena, U.; Zhou, W.; Dills, M.; Diwanji, R.; Dutta, C.; Koser, M.; Nazef, N.; et al. Specific Inhibition of Hepatic Lactate Dehydrogenase Reduces Oxalate Production in Mouse Models of Primary Hyperoxaluria. Mol. Ther. 2018, 26, 1983–1995. [Google Scholar] [CrossRef] [Green Version]
- Frederick, E.W.; Rabkin, M.T.; Richie, R.H.; Smith, L.H. Studies on Primary Hyperoxaluria. N. Engl. J. Med. 1963, 269, 821–829. [Google Scholar] [CrossRef]
- Danpure, C.J.; Jennings, P.R. Peroxisomal alanine: Glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986, 201, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Cramer, S.D.; Ferree, P.M.; Lin, K.; Milliner, D.S.; Holmes, R.P. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Mol. Genet. 1999, 8, 2063–2069. [Google Scholar] [CrossRef] [Green Version]
- Rumsby, G.; Cregeen, D.P. Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase. Biochim. Biophys. Acta Gene Struct. Expr. 1999, 1446, 383–388. [Google Scholar] [CrossRef]
- Belostotsky, R.; Seboun, E.; Idelson, G.H.; Milliner, D.S.; Becker-Cohen, R.; Rinat, C.; Monico, C.G.; Feinstein, S.; Ben-Shalom, E.; Magen, D.; et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 2010, 87, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Hockaday, T.D.R.; Clayton, J.E.; Frederick, E.W.; Smith, L.H. Primary hyperoxaluria. Medicine 1964, 43, 315–345. [Google Scholar] [CrossRef]
- Holmes, R.P.; Assimos, D.G.; Goodman, H.O. Genetic and dietary influences on urinary oxalate excretion. Urol. Res. 1998, 26, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hellman, L.; Burns, J.J. Metabolism of L-ascorbic acid-1-C14 in man. J. Biol. Chem. 1958, 230, 923–930. [Google Scholar] [PubMed]
- Simpson, G.L.W.; Ortwerth, B.J. The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim. Biophys. Acta Mol. Basis Dis. 2000, 1501, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Takayama, T.; Fujita, K.; Suzuki, K.; Sakaguchi, M.; Fujie, M.; Nagai, E.; Watanabe, S.; Ichiyama, A.; Ogawa, Y. Control of oxalate formation from L-hydroxyproline in liver mitochondria. J. Am. Soc. Nephrol. 2003, 14, 939–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, J.; Holmes, R.P. Mitochondrial hydroxyproline metabolism: Implications for primary hyperoxaluria. Am. J. Nephrol. 2005, 25, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.P.; Assimos, D.G. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J. Urol. 1998, 160, 1617–1624. [Google Scholar] [CrossRef]
- Gambardella, R.L.; Richardson, K.E. The pathways of oxalate formation from phenylalanine, tyrosine, tryptophan and ascorbic acid in the rat. BBA Gen. Subj. 1977, 499, 156–168. [Google Scholar] [CrossRef]
- Elder, T.D.; Wyngaarden, J.B. The biosynthesis and turnover of oxalate in normal and hyperoxaluric subjects. J. Clin. Investig. 1960, 39, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Crawhall, J.C.; Scowen, E.F.; De Mowbray, R.R.; Watts, R.W.E. Conversion of glycine to oxalate in a normal subject. Lancet 1959, 274, 810. [Google Scholar] [CrossRef]
- Atkins, G.L.; Dean, B.M.; Griffin, W.J.; Watts, R.W. Quantitative aspects of ascorbic acid metabolism in man. J. Biol. Chem. 1964, 239, 2975–2980. [Google Scholar]
- Harris, K.S.; Richardson, K.E. Glycolate in the diet and its conversion to urinary oxalate in the rat. Investig. Urol. 1980, 18, 106–109. [Google Scholar]
- Liebow, A.; Li, X.; Racie, T.; Hettinger, J.; Bettencourt, B.R.; Najafian, N.; Haslett, P.; Fitzgerald, K.; Holmes, R.P.; Erbe, D.; et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J. Am. Soc. Nephrol. 2017, 28, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Dutta, C.; Avitahl-Curtis, N.; Pursell, N.; Larsson Cohen, M.; Holmes, B.; Diwanji, R.; Zhou, W.; Apponi, L.; Koser, M.; Ying, B.; et al. Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria type 1. Mol. Ther. 2016, 24, 770–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabaleta, N.; Barberia, M.; Martin-Higueras, C.; Zapata-Linares, N.; Betancor, I.; Rodriguez, S.; Martinez-Turrillas, R.; Torella, L.; Vales, A.; Olagüe, C.; et al. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat. Commun. 2018, 9, 5454. [Google Scholar] [CrossRef]
- Abordo, E.A.; Minhas, H.S.; Thornalley, P.J. Accumulation of α-oxoaldehydes during oxidative stress: A role in cytotoxicity. Biochem. Pharmacol. 1999, 58, 641–648. [Google Scholar] [CrossRef]
- Shangari, N.; O’Brien, P.J. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem. Pharmacol. 2004, 68, 1433–1442. [Google Scholar] [CrossRef]
- Lange, J.N.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Glyoxal formation and its role in endogenous oxalate synthesis. Adv. Urol. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, J.; Wood, K.D.; Lange, J.N.; Assimos, D.G.; Holmes, R.P. Oxalate formation from glyoxal in erythrocytes. Urology 2016, 88, e11–e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arribas-Lorenzo, G.; Morales, F.J. Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants. J. Agric. Food Chem. 2010, 58, 2966–2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, A.; Rodrigues, J.A.; Almeida, P.J.; Oliva-Teles, M.T. Determination of glyoxal, methylglyoxal, and diacetyl in selected beer and wine, by HPLC with UV spectrophotometric detection, after derivatization with o-phenylenediamine. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 2061–2069. [Google Scholar] [CrossRef]
- De Revel, G.; Bertrand, A. A method for the detection of carbonyl compounds in wine: Glyoxal and methylglyoxal. J. Sci. Food Agric. 1993, 61, 267–272. [Google Scholar] [CrossRef]
- Hirayama, T.; Yamada, N.; Nohara, M.; Fukui, S. The existence of the 1,2-dicarbonyl compounds glyoxal, methyl glyoxal and diacetyl in autoxidised edible oils. J. Sci. Food Agric. 1984, 35, 1357–1362. [Google Scholar] [CrossRef]
- Nagao, M.; Fujita, Y.; Wakabayashi, K.; Nukaya, H.; Kosuge, T.; Sugimura, T. Mutagens in coffee and other beverages. Environ. Health Perspect. 1986, 67, 89–91. [Google Scholar] [CrossRef]
- Nakamura, M.; Yamaguchi, M.; Junichiishtoa, I.; Xuan-Xuan, Z.; Yoshitake, T. Determination of glyoxal, methylglyoxal, diacethyl, and 2,3-pentanedione in fermented foods by high-performance liquid chromatography with fluorescence detection. J. Liq. Chromatogr. 1994, 17, 203–211. [Google Scholar] [CrossRef]
- Taylor, E.N.; Curhan, G.C. Fructose consumption and the risk of kidney stones. Kidney Int. 2008, 73, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.U.; Dumoulin, G.; Henriet, M.T.; Regnard, J. Increase in urinary calcium and oxalate after fructose infusion. Horm. Metab. Res. 1995, 27, 155–158. [Google Scholar] [CrossRef]
- Marriott, B.P.; Cole, N.; Lee, E. National Estimates of Dietary Fructose Intake Increased from 1977 to 2004 in the United States. J. Nutr. 2009, 139, 1228S–1235S. [Google Scholar] [CrossRef] [Green Version]
- Dornas, W.C.; de Lima, W.G.; Pedrosa, M.L.; Silva, M.E. Health Implications of High-Fructose Intake and Current Research. Adv. Nutr. 2015, 6, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Bais, R.; James, H.M.; Rofe, A.M.; Conyers, R.A.J. The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate form xylitol. Biochem. J. 1985, 230, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.M.; Saari, J.C.; Tolbert, B.M. Ascorbic acid metabolism in man. Am. J. Clin. Nutr. 1966, 19, 371–378. [Google Scholar] [CrossRef]
- Thomas, L.D.K.; Elinder, C.G.; Tiselius, H.G.; Wolk, A.; Åkesson, A. Ascorbic acid supplements and kidney stone incidence among men: A prospective study. JAMA Intern. Med. 2013, 173, 386–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashour, S.; Turner, J.F.; Merrell, R. Acute renal failure, oxalosis, and vitamin C supplementation: A case report and review of the literature. Chest 2000, 118, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.M.; Conway, L.T.; Crosson, J.T.; Smith, C.L.; Abraham, P.A. Acute Oxalate Nephropathy After Massive Ascorbic Acid Administration. Arch. Intern. Med. 1985, 145, 950–951. [Google Scholar] [CrossRef]
- Nasr, S.H.; Kashtanova, Y.; Levchuk, V.; Markowitz, G.S. Secondary oxalosis due to excess vitamin C intake. Kidney Int. 2006, 70, 1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantoni, O.; Guidarelli, A.; Fiorani, M. Mitochondrial Uptake and Accumulation of Vitamin C: What Can We Learn from Cell Culture Studies? Antioxid. Redox Signal. 2018, 29, 1502–1515. [Google Scholar] [CrossRef] [PubMed]
- Osswald, H.; Hautmann, R. Renal Elimination Kinetics and Plasma Half-Life of Oxalate in Man. Urol. Int. 1979, 34, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Robijn, S.; Hoppe, B.; Vervaet, B.A.; D’Haese, P.C.; Verhulst, A. Hyperoxaluria: A gut-kidney axis. Kidney Int. 2011, 80, 1146–1158. [Google Scholar] [CrossRef] [Green Version]
- Mount, D.B.; Romero, M.F. The SLC26 gene family of multifunctional anion exchangers. Pflug. Arch. Eur. J. Physiol. 2004, 447, 710–721. [Google Scholar] [CrossRef]
- Weinman, E.J.; Frankfurt, S.J.; Ince, A.; Sansom, S. Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat. J. Clin. Investig. 1978, 61, 801–806. [Google Scholar] [CrossRef]
- Giafi, C.F.; Rumsby, G. Kinetic analysis and tissue distribution of human D-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann. Clin. Biochem. 1998, 35, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Cregeen, D.P.; Williams, E.L.; Hulton, S.; Rumsby, G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum. Mutat. 2003, 22, 497. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Johnson, L.C.; Knight, J.; Callahan, M.F.; Riedel, T.J.; Holmes, R.P.; Todd Lowther, W. Metabolism of [13C5]hydroxyproline in vitro and in vivo: Implications for primary hyperoxaluria. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Chou, C.L.; Knepper, M.A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 2015, 26, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.; Holmes, R.P.; Cramer, S.D.; Takayama, T.; Salido, E. Hydroxyproline metabolism in mouse models of primary hyperoxaluria. Am. J. Physiol. Ren. Physiol. 2012, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ref. | Year | Number of Participants | Subject Population | Variables or Interventions Studied | Clinical Outcome | Findings/Conclusions |
---|---|---|---|---|---|---|
A. Large cohort studies utilizing food frequency questionnaires | ||||||
[12] | 2007 | 240,681 | Female registered nurses and male health professionals | Dietary oxalate | Kidney stone risk | Oxalate intake was not strongly associated with stone risk |
[13] | 2008 | 3348 | Female registered nurses and male health professionals | Dietary oxalate, ascorbic acid supplementation | Urinary oxalate | The impact of dietary oxalate on urinary oxalate was small; ascorbic acid supplementation significantly increased urinary oxalate |
[14] | 2016 | 197,271 | Female registered nurses and male health professionals | Dietary and supplemental ascorbic acid intake | Kidney stone risk | Total and supplemental ascorbic acid intakes were associated with increased stone risk for men, but not women |
B. Small cohort studies utilizing controlled diets | ||||||
[15] | 1995 | 2 | Normal healthy subjects | Dietary oxalate (oxalate-free formula) | Urinary oxalate | Intestinal absorption of oxalate contributes significantly to urinary oxalate |
[7] | 2001 | 12 | Normal healthy subjects | Dietary oxalate (10–250 mg/day), dietary calcium (391–1002 mg/day) | Urinary oxalate | Dietary oxalate accounts for up to 50% of urinary oxalate, depending on calcium intake |
[16] | 2001 | 22 | Normal healthy subjects | High-oxalate, low-calcium diet | Urinary oxalate | White participants had significantly higher urinary oxalate compared to black participants |
[17] | 2003 | 24 | Kidney stone formers (n = 12) and normal healthy subjects (n = 12) | Oral ascorbic acid supplementation (2 g/d) | Urinary oxalate | Ascorbic acid supplementation significantly increased urinary oxalate in both stone formers and normal subjects |
[18] | 2004 | 48 | Kidney stone formers (n = 29) and normal healthy subjects (n = 19) | Oral load of 13C-oxalate and oral ascorbic acid supplementation (2 g/d) | Urinary oxalate | Stone formers had higher oxalate absorption. Ascorbic acid supplementation increased urinary oxalate |
[11] | 2005 | 6 | Normal healthy subjects | Oral oxalate loads (0–8 mmole) | Urinary oxalate | Oxalate is rapidly filtered and secreted by the kidney following an oral load in a dose-dependent fashion |
[19] | 2006 | 10 | Normal healthy subjects | Oral hydroxyproline in the form of gelatin | Urinary oxalate | Hydroxyproline metabolism contributes 5–20% of urinary oxalate derived from endogenous synthesis |
[20] | 2007 | 12 | Kidney stone formers (n = 6) and normal healthy subjects (n = 6) | Oral oxalate loads (0–8 mmole) | Urinary oxalate | No significant difference in urinary oxalate excretion between stone formers and normal subjects |
[21] | 2009 | 11 | Normal healthy subjects | Dietary protein (0.6–1.8 g/kg body weight) | Urinary oxalate | Increased protein intake is not associated with increased urinary oxalate excretion |
[22] | 2010 | 7 | Normal healthy subjects | Dietary fructose (4–21% of calories) | Urinary oxalate | No change in urinary oxalate was observed with increasing fructose intake |
[23] | 2010 | 40 | Hyperoxaluric calcium oxalate stone formers | Probiotic preparations | Urinary oxalate | The probiotics tested did not reduce urinary oxalate excretion under conditions of dietary oxalate restriction |
[24] | 2011 | 29 | Idiopathic hypercalciurics (n = 19), bariatric stone formers (n = 2), normal healthy subjects (n = 8) | Diet containing 92 mg oxalate | Urinary oxalate | Urinary oxalate excretion and renal oxalate secretion were significantly higher in patients compared to healthy subjects |
[25] | 2011 | 22 | Normal healthy subjects | Colonization with Oxalobacter formigenes | Urinary oxalate | Colonization with O. formigenes decreases urinary oxalate excretion under conditions of low calcium and moderate calcium intake |
[26] | 2011 | 6 | Normal healthy subjects | Infusions of 13C-glycine and 13C-phenylalanine | Urinary oxalate | Glycine and phenylalaine make minor contributions to endogenous oxalate production and urinary oxalate excretion |
[27] | 2012 | 10 | Normal healthy subjects | Dietary calcium/oxalate balance | Urinary oxalate | Ingesting large quantities of oxalate likely does not impact calcium oxalate stone risk if recommended daily dietary calcium is consumed |
[28] | 2012 | 9 | Bariatric stone formers | Normal calcium, low oxalate diet | Urinary oxalate | No significant change in urinary oxalate on controlled diet compared to self-selected diet |
[29] | 2014 | 15 | Normal healthy subjects | Fish oil supplementation | Urinary oxalate | Fish oil supplementation does not decrease urinary oxalate during periods of extremely low dietary oxalate |
[30] | 2018 | 28 | Primary hyperoxaluria types 1/2/3 (n = 19), normal healthy subjects (n = 9) | Infusion of 15N, 13C-hydroxyproline | Urinary oxalate | Hydroxyproline contributes 15% to endogenous oxalate production in healthy subjects, with greater contribution in all primary hyperoxalurias |
[31] | 2020 | 14 | Normal healthy subjects | Single oral oxalate load (8 mmole) | Urinary oxalate | Urinary oxalate increases 5 h after consumption of a blended preparation of fruits and vegetables |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crivelli, J.J.; Mitchell, T.; Knight, J.; Wood, K.D.; Assimos, D.G.; Holmes, R.P.; Fargue, S. Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients 2021, 13, 62. https://doi.org/10.3390/nu13010062
Crivelli JJ, Mitchell T, Knight J, Wood KD, Assimos DG, Holmes RP, Fargue S. Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients. 2021; 13(1):62. https://doi.org/10.3390/nu13010062
Chicago/Turabian StyleCrivelli, Joseph J., Tanecia Mitchell, John Knight, Kyle D. Wood, Dean G. Assimos, Ross P. Holmes, and Sonia Fargue. 2021. "Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion" Nutrients 13, no. 1: 62. https://doi.org/10.3390/nu13010062
APA StyleCrivelli, J. J., Mitchell, T., Knight, J., Wood, K. D., Assimos, D. G., Holmes, R. P., & Fargue, S. (2021). Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients, 13(1), 62. https://doi.org/10.3390/nu13010062