Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Analytical Procedures
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Clinical Chemistry and Biochemical Characteristics
3.3. Vitamins D, E and Beta-Carotene
3.4. Urinary Parameters
3.5. Nutrient Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, T.Y. Intestinal epithelial barrier dysfunction in Crohn’s disease. Proc. Soc. Exp. Biol. Med. 1997, 214, 318–327. [Google Scholar] [CrossRef] [PubMed]
- DeMeo, M.T.; Mutlu, E.A.; Keshavarzian, A.; Tobin, M.C. Intestinal permeation and gastrointestinal disease. J. Clin. Gastroenterol. 2002, 34, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Catalioto, R.M.; Maggi, C.A.; Giuliani, S. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr. Med. Chem. 2011, 18, 398–426. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 103. [Google Scholar] [CrossRef] [Green Version]
- Othman, M.O.; Harb, D.; Barkin, J.A. Introduction and practical approach to exocrine pancreatic insufficiency for the practicing clinician. Int. J. Clin. Pract. 2018, 72, e13066. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Godebu, E.; Horgan, S.; Mirheydar, H.S.; Sur, R.L. The effect of restrictive bariatric surgery on urolithiasis. J. Endourol. 2013, 27, 242–244. [Google Scholar] [CrossRef]
- Vujasinovic, M.; Valente, R.; Thorell, A.; Rutkowski, W.; Haas, S.L.; Arnelo, U.; Martin, L.; Löhr, J.M. Pancreatic exocrine insufficiency after bariatric surgery. Nutrients 2017, 9, 1241. [Google Scholar] [CrossRef] [Green Version]
- Capurso, G.; Traini, M.; Piciucchi, M.; Signoretti, M.; Arcidiacono, P.G. Exocrine pancreatic insufficiency: Prevalence, diagnosis, and management. Clin. Exp. Gastroenterol. 2019, 12, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Perbtani, Y.; Forsmark, C.E. Update on the diagnosis and management of exocrine pancreatic insufficiency. F1000Research 2019, 8. [Google Scholar] [CrossRef]
- Knudsen, L.; Marcussen, H.; Fleckenstein, P.; Pedersen, E.B.; Jarnum, S. Urolithiasis in chronic inflammatory bowel disease. Scand. J. Gastroenterol. 1978, 13, 433–436. [Google Scholar] [CrossRef]
- Pardi, D.S.; Tremaine, W.J.; Sandborn, W.J.; McCarthy, J.T. Renal and urologic complications of inflammatory bowel disease. Am. J. Gastroenterol. 1998, 93, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, S.R.; Mendonça, T.; Oliveira, P.; Oliveira, T.; Dias, J.; Lopes, T. Urolithiasis and Crohn’s disease. Urol. Ann. 2016, 8, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Hesse, A.; Brändle, E.; Wilbert, D.; Köhrmann, K.U.; Alken, P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur. Urol. 2003, 44, 709–713. [Google Scholar] [CrossRef]
- Scales, C.D.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Prevalence of kidney stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Terribile, M.; Capuano, M.; Cangiano, G.; Carnovale, V.; Ferrara, P.; Petrarulo, M.; Marangella, M. Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol. Dial. Transplant. 2006, 21, 1870–1875. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, C.L.; Jeng, L.B. Association between chronic pancreatitis and urolithiasis: A population-based cohort study. PLoS ONE 2018, 13, e0194019. [Google Scholar] [CrossRef] [Green Version]
- Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis 2016, 44, 33–43. [Google Scholar] [CrossRef]
- Earnest, D.L.; Johnson, G.; Williams, H.E.; Admirand, W.H. Hyperoxaluria in patients with ileal resection: An abnormality in dietary oxalate absorption. Gastroenterology 1974, 66, 1114–1122. [Google Scholar] [CrossRef]
- Dobbins, J.W.; Binder, H.J. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 1976, 70, 1096–1100. [Google Scholar] [CrossRef]
- Andersson, H.; Jagenburg, R. Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy. Gut 1974, 15, 360–366. [Google Scholar] [CrossRef] [Green Version]
- McDonald, G.B.; Earnest, D.L.; Admirand, W.H. Hyperoxaluria correlates with fat malabsorption in patients with sprue. Gut 1977, 18, 561–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, R.S.; Churchill, D.N. Urolithiasis complicating inflammatory bowel disease. J. Urol. 1992, 148, 974–978. [Google Scholar] [CrossRef]
- Sidhu, H.; Hoppe, B.; Hesse, A.; Tenbrock, K.; Brömme, S.; Rietschel, E.; Peck, A.B. Absence of Oxalobacter formigenes in cystic fibrosis patients: A risk factor for hyperoxaluria. Lancet 1998, 352, 1026–1029. [Google Scholar] [CrossRef]
- Fairfield, K.M.; Fletcher, R.H. Vitamins for chronic disease prevention in adults. JAMA 2002, 287, 3116–3126. [Google Scholar] [CrossRef]
- Duggan, S.N.; Smyth, N.D.; O’Sullivan, M.; Feehan, S.; Ridgway, P.F.; Conlon, K.C. The prevalence of malnutrition and fat-soluble vitamin deficiencies in chronic pancreatitis. Nutr. Clin. Pract. 2014, 29, 348–354. [Google Scholar] [CrossRef]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef]
- Martinez-Moneo, E.; Stigliano, S.; Hedström, A.; Kaczka, A.; Malvik, M.; Waldthaler, A.; Maisonneuve, P.; Simon, P.; Capurso, G. Deficiency of fat-soluble vitamins in chronic pancreatitis: A systematic review and meta-analysis. Pancreatology 2016, 16, 988–994. [Google Scholar] [CrossRef]
- Fabisiak, N.; Fabisiak, A.; Watala, C.; Fichna, J. Fat-soluble vitamin deficiencies and inflammatory bowel disease: Systematic review and meta-analysis. J. Clin. Gastroenterol. 2017, 51, 878–889. [Google Scholar] [CrossRef]
- Yokota, T.; Tsuchiya, K.; Furukawa, T.; Tsukagoshi, H.; Miyakawa, H.; Hasamura, Y. Vitamin E deficiency in acquired fat malabsorption. J. Neurol. 1990, 237, 103–106. [Google Scholar] [CrossRef]
- Duggan, S.N.; Smyth, N.D.; Murphy, A.; MacNaughton, D.; O’Keefe, S.J.D.; Conlon, K.C. High prevalence of osteoporosis in patients with chronic pancreatitis: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2014, 12, 219–228. [Google Scholar] [CrossRef]
- Mouli, V.P.; Ananthakrishnan, A.N. Review article: Vitamin D and inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2014, 39, 125–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabbani, T.A.; Koutroubakis, I.E.; Schoen, R.E.; Ramos-Rivers, C.; Shah, N.; Swoger, J.; Regueiro, M.; Barrie, A.; Schwartz, M.; Hashash, J.G.; et al. Association of vitamin D level with clinical status in inflammatory bowel disease: A 5-year longitudinal study. Am. J. Gastroenterol. 2016, 111, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Alteheld, B.; Terjung, B.; Junghans, B.; Bitterlich, N.; Stehle, P.; Metzner, C. Change in the fatty acid pattern of erythrocyte membrane phospholipids after oral supplementation of specific fatty acids in patients with gastrointestinal diseases. Eur. J. Clin. Nutr. 2010, 64, 410–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siener, R.; Petzold, J.; Bitterlich, N.; Alteheld, B.; Metzner, C. Determinants of urolithiasis in patients with intestinal fat malabsorption. Urology 2013, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hönow, R.; Hesse, A. Comparison of extraction methods for the determination of soluble and total oxalate in foods by HPLC-enzyme-reactor. Food Chem. 2002, 78, 511–521. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Hönow, R. Oxalate-rich foods. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raederstorff, D.; Wyss, A.; Calder, P.C.; Weber, P.; Eggersdorfer, M. Vitamin E function and requirements in relation to PUFA. Br. J. Nutr. 2015, 114, 1113–1122. [Google Scholar] [CrossRef] [Green Version]
- Andersson, H.; Bosaeus, I.; Fasth, S.; Hellberg, R.; Hultén, L. Cholelithiasis and urolithiasis in Crohn’s disease. Scand. J. Gastroenterol. 1987, 22, 253–256. [Google Scholar] [CrossRef]
- Akerlund, J.E.; Bjorkhem, I.; Angelin, B.; Liljeqvist, L.; Einarsson, K. Apparent selective bile acid malabsorption as a consequence of ileal exclusion: Effects on bile acid, cholesterol, and lipoprotein metabolism. Gut 1994, 35, 1116–1120. [Google Scholar] [CrossRef] [Green Version]
- Burton, G.W.; Ingold, K.U. Vitamin E as an in vitro and in vivo antioxidant. Ann. N. Y. Acad. Sci. 1989, 570, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Biesalski, H.K.; Böhles, H.; Esterbauer, H.; Fürst, P.; Gey, F.; Hundsdörfer, G.; Kasper, H.; Sies, H.; Weisburger, J. Antioxidant vitamins in prevention. Clin. Nutr. 1997, 16, 151–155. [Google Scholar] [CrossRef]
- Sikkens, E.C.M.; Cahen, D.L.; Koch, A.D.; Braat, H.; Poley, J.W.; Kuipers, E.J.; Bruno, M.J. The prevalence of fat-soluble vitamin deficiencies and a decreased bone mass in patients with chronic pancreatitis. Pancreatology 2013, 13, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.B.; Greer, P.; Sandhu, B.S.; Alkaade, S.; Wilcox, C.M.; Anderson, M.A.; Sherman, S.; Gardner, T.B.; Lewis, M.D.; Guda, N.M.; et al. Nutrition and inflammatory biomarkers in chronic pancreatitis patients. Nutr. Clin. Pract. 2019, 34, 387–399. [Google Scholar] [CrossRef]
- D’Odorico, A.; Bortolan, S.; Cardin, R.; D’Inca’, R.; Martines, D.; Ferronato, A.; Sturniolo, G.C. Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease. Scand. J. Gastroenterol. 2001, 36, 1289–1294. [Google Scholar]
- Geerling, B.J.; Badart-Smook, A.; Stockbrügger, R.W.; Brummer, R.J. Comprehensive nutritional status in patients with long-standing Crohn disease currently in remission. Am. J. Clin. Nutr. 1998, 67, 919–926. [Google Scholar] [CrossRef]
- Sampietro, G.M.; Cristaldi, M.; Cervato, G.; Maconi, G.; Danelli, P.; Cervellione, R.; Rovati, M.; Bianchi Porro, G.; Cestaro, B.; Taschieri, A.M. Oxidative stress, vitamin A and vitamin E behaviour in patients submitted to conservative surgery for complicated Crohn’s disease. Dig. Liver Dis. 2002, 34, 696–701. [Google Scholar] [CrossRef]
- Siwamogsatham, O.; Dong, W.; Binongo, J.N.; Chowdhury, R.; Alvarez, J.A.; Feinman, S.J.; Enders, J.; Tangpricha, V. Relationship between fat-soluble vitamin supplementation and blood concentrations in adolescent and adult patients with cystic fibrosis. Nutr. Clin. Pract. 2014, 29, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Lindkvist, B.; Phillips, M.E.; Dominguez-Munoz, J.E. Clinical, anthropometric and laboratory nutritional markers of pancreatic exocrine insufficiency: Prevalence and diagnostic use. Pancreatology 2015, 15, 589–597. [Google Scholar] [CrossRef]
- Sitrin, M.D.; Lieberman, F.; Jensen, W.E.; Noronha, A.; Milburn, C.; Addington, W. Vitamin E deficiency and neurologic disease in adults with cystic fibrosis. Ann. Intern. Med. 1987, 107, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Somerset, S. Dietary intake and nutritional status of micronutrients in adults with cystic fibrosis in relation to current recommendations. Clin. Nutr. 2016, 35, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Waniek, S.; Di Giuseppe, R.; Esatbeyoglu, T.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Nöthlings, U.; Koch, M.; Schlesinger, S.; Rimbach, G.; et al. Vitamin E (α- and γ-Tocopherol) levels in the community: Distribution, clinical and biochemical correlates, and association with dietary patterns. Nutrients 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendich, A. ß-Carotene and the immune response. Proc. Nutr. Soc. 1991, 50, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Wendland, B.E.; Aghdassi, E.; Tam, C.; Carrrier, J.; Steinhart, A.H.; Wolman, S.L.; Baron, D.; Allard, J.P. Lipid peroxidation and plasma antioxidant micronutrients in Crohn disease. Am. J. Clin. Nutr. 2001, 74, 259–264. [Google Scholar] [CrossRef]
- Lembcke, B.; Geibel, K.; Kirchhoff, S.; Lankisch, P.G. Serum ß-carotene: A simple static laboratory parameter for the diagnosis of steatorrhoea. Dtsch. Med. Wochenschr. 1989, 114, 243–247. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef] [Green Version]
- Gubatan, J.; Chou, N.D.; Nielsen, O.H.; Moss, A.C. Systematic review with meta-analysis: Association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2019, 50, 1146–1158. [Google Scholar] [CrossRef]
- Ham, N.S.; Hwang, S.W.; Oh, E.H.; Kim, J.; Lee, H.S.; Park, S.H.; Yang, D.H.; Ye, B.D.; Byeon, J.S.; Myung, S.J.; et al. Influence of severe vitamin D deficiency on the clinical course of inflammatory bowel disease. Dig. Dis. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Robberecht, E.; Vandewalle, S.; Wehlou, C.; Kaufman, J.M.; De Schepper, J. Sunlight is an important determinant of vitamin D serum concentrations in cystic fibrosis. Eur. J. Clin Nutr. 2011, 65, 574–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabenberg, M.; Scheidt-Nave, C.; Busch, M.A.; Rieckmann, N.; Hintzpeter, B.; Mensink, G.B.M. Vitamin D status among adults in Germany—results from the German health interview and examination survey for adults (DEGS1). BMC Public Health 2015, 15, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallav, K.; Riche, D.; May, W.L.; Sanchez, P.; Gupta, N.K. Predictors of vitamin D deficiency in inflammatory bowel disease and health: A Mississippi perspective. World J. Gastroenterol. 2017, 23, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Elkoushy, M.A.; Sabbagh, R.; Unikowsky, B.; Andonian, S. Prevalence and metabolic abnormalities of vitamin D-inadequate patients presenting with urolithiasis to a tertiary stone clinic. Urology 2012, 79, 781–785. [Google Scholar] [CrossRef]
- Ticinesi, A.; Nouvenne, A.; Ferraro, P.M.; Folesani, G.; Lauretani, F.; Allegri, F.; Guerra, A.; Cerundolo, N.; Aloe, R.; Lippi, G.; et al. Idiopathic calcium nephrolithiasis and hypovitaminosis D: A case-control study. Urology 2016, 87, 40–45. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, J.; Lu, Y.; Zhang, Z.; Qin, B.; Gao, H.; Wang, Y.; Zhu, J.; Wang, Q.; Zhu, Y.; et al. Association between circulating vitamin D level and urolithiasis: A systematic review and meta-analysis. Nutrients 2017, 9. [Google Scholar] [CrossRef]
- Malihi, Z.; Wu, Z.; Stewart, A.W.; Lawes, C.M.; Scragg, R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 104, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Tungsanga, K.; Sriboonlue, P.; Futrakul, P.; Yachantha, C.; Tosukhowong, P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol. Res. 2005, 33, 65–69. [Google Scholar] [CrossRef]
- Holoch, P.A.; Tracy, C.R. Antioxidants and self-reported history of kidney stones: The national health and nutrition examination survey. J. Endourol. 2011, 25, 1903–1908. [Google Scholar] [CrossRef]
Stone Formers | Non-Stone Formers | p Value | |
---|---|---|---|
Patients (n) | 10 | 41 | |
• Men (n) | 6 (60%) | 12 (29%) | 0.138 |
• Women (n) | 4 (40%) | 29 (71%) | |
Age (years) | 56.1 ± 12.6 | 48.3 ± 14.2 | 0.136 |
Height (cm) 1 | 171.3 ± 5.9 | 170.5 ± 9.6 | 0.260 |
Weight (kg) 1 | 74.9 ± 15.0 | 70.4 ± 12.4 | 0.454 |
Body mass index (kg/m2) 1 | 25.4 ± 4.3 | 24.3 ± 4.5 | 0.436 |
Waist circumference (cm; men) 1 | 100 ± 11 | 92 ± 9 | 0.219 |
Waist circumference (cm; women) | 79 ± 5 | 83 ± 11 | 0.611 |
Systolic blood pressure (mm Hg) | 129 ± 17 | 125 ± 25 | 0.337 |
Diastolic blood pressure (mm Hg) | 86 ± 12 | 83 ± 12 | 0.469 |
Resting heart rate (1/min) | 70 ± 11 | 68 ± 9 | 0.974 |
Smokers (n) | 3 (30%) | 11 (27%) | 1.000 |
Confirmed diagnosis | 10 | 41 | 0.298 |
Exocrine pancreatic insufficiency | 6 | 15 | |
• Previous pancreatic surgery | 4 a | 2 b | |
Crohn’s disease | 2 | 13 | |
• Small bowel resection | 0 | 3 | |
• Colon resection | 0 | 1 | |
• Small bowel and colon resection | 2 | 6 | |
Cystic fibrosis | 0 | 2 | |
Celiac disease | 0 | 5 | |
Primary biliary cirrhosis | 1 | 1 | |
Liver cirrhosis | 0 | 1 | |
Short bowel syndrome | 1 | 0 | |
Idiopathic malabsorption | 0 | 4 |
SF (n = 10) | NSF (n = 41) | Total (n = 51) | SF (n = 10) | NSF (n = 41) | Total (n = 51) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Baseline | Baseline | Week 2 | Week 2 | Week 2 | |||||
Mean ± SD | Mean ± SD | Mean ± SD | p Value a | Mean ± SD | Mean ± SD | Mean ± SD | p Value a | p Value b | p Value c | |
Total protein (g/L) | 72.1 ± 4.7 | 72.2 ± 5.1 | 72.1 ± 4.9 | 0.958 | 72.3 ± 4.5 | 72.6 ± 6.4 | 72.6 ± 6.1 | 0.703 | 0.793 | 0.968 |
Albumin (g/L) 1 | 42.5 ± 4.7 | 43.0 ± 4.4 | 42.9 ± 4.4 | 0.766 | 43.3 ± 5.7 | 43.0 ± 4.7 | 43.0 ± 4.9 | 0.689 | 0.994 | 0.392 |
Creatinine (mg/dL) | 0.93 ± 0.29 | 0.81 ± 0.19 | 0.83 ± 0.22 | 0.223 | 0.87 ± 0.29 | 0.82 ± 0.26 | 0.83 ± 0.27 | 0.784 | 0.341 | 0.109 |
Total cholesterol (mg/dL) | 169 ± 53 | 206 ± 50 | 199 ± 52 | 0.036 | 166 ± 57 | 209 ± 53 | 200 ± 56 | 0.022 | 0.998 | 0.129 |
HDL cholesterol (mg/dL) | 43 ± 9 | 56 ± 15 | 54 ± 15 | 0.003 | 42 ± 11 | 56 ± 16 | 54 ± 16 | 0.004 | 0.532 | 0.686 |
LDL cholesterol (mg/dL) | 103 ± 45 | 127 ± 44 | 123 ± 45 | 0.072 | 100 ± 45 | 130 ± 46 | 124 ± 47 | 0.041 | 0.666 | 0.363 |
Triglycerides (mg/dL) | 129 ± 75 | 129 ± 114 | 129 ± 106 | 0.704 | 111 ± 51 | 120 ± 79 | 118 ± 74 | 0.967 | 0.551 | 0.237 |
AST (U/L) | 34 ± 14 | 30 ± 45 | 31 ± 40 | 0.005 | 30 ± 11 | 29 ± 40 | 29 ± 36 | 0.022 | 0.074 | 0.014 |
GGT (U/L) | 71 ± 113 | 36 ± 33 | 43 ± 58 | 0.967 | 62 ± 85 | 37 ± 39 | 42 ± 51 | 0.893 | 0.756 | 0.643 |
Uric acid (mg/dL) | 4.8 ± 0.9 | 4.7 ± 1.2 | 4.7 ± 1.1 | 0.856 | 4.5 ± 1.1 | 4.8 ± 1.2 | 4.7 ± 1.2 | 0.627 | 0.294 | 0.308 |
8-Isoprostanes (pmol/L) 1 | 28.40 ± 17.39 | 28.79 ± 28.67 | 28.71 ± 26.64 | 0.624 | 23.24 ± 13.48 | 27.15 ± 25.99 | 26.38 ± 23.99 | 0.991 | 0.249 | 0.436 |
Magnesium (mmol/L) 1 | 0.75 ± 0.11 | 0.79 ± 0.07 | 0.78 ± 0.08 | 0.369 | 0.75 ± 0.09 | 0.80 ± 0.08 | 0.79 ± 0.09 | 0.053 | 0.890 | 0.628 |
Homocysteine (µmol/L) | 10.85 ± 3.98 | 11.46 ± 5.25 | 11.34 ± 4.99 | 0.986 | 11.24 ± 4.75 | 11.62 ± 5.17 | 11.55 ± 5.05 | 0.876 | 0.617 | 0.524 |
Folic acid (ng/mL] | 8.28 ± 4.62 | 7.44 ± 5.22 | 7.61 ± 5.07 | 0.344 | 8.27 ± 4.19 | 7.15 ± 4.20 | 7.37 ± 4.18 | 0.307 | 0.950 | 0.949 |
Beta-carotene (µmol/L) | 0.27 ± 0.45 | 0.49 ± 0.41 | 0.45 ± 0.42 | 0.006 | 0.28 ± 0.42 | 0.49 ± 0.41 | 0.44 ± 0.41 | 0.011 | 0.632 | 0.752 |
Vitamin A (µmol/L) | 1.39 ± 0.85 | 1.55 ± 0.61 | 1.52 ± 0.66 | 0.447 | 1.36 ± 0.82 | 1.50 ± 0.61 | 1.47 ± 0.65 | 0.392 | 0.101 | 0.599 |
Vitamin D (nmol/L) | 48.57 ± 31.49 | 49.64 ± 23.93 | 49.43 ± 25.24 | 0.788 | 54.29 ± 32.59 | 55.30 ± 22.24 | 55.10 ± 24.23 | 0.752 | <0.001 | 0.752 |
Vitamin E (µmol/L) | 23.30 ± 17.88 | 29.54 ± 9.77 | 28.31 ± 11.84 | 0.039 | 34.05 ± 25.67 | 46.80 ± 15.69 | 44.30 ± 18.48 | 0.036 | <0.001 | 0.168 |
Vitamin D | SF (n = 10) | NSF (n = 41) | Total (n = 51) | p Value | |
---|---|---|---|---|---|
nmol/L | n (%) | n (%) | n (%) | ||
Baseline | <50 | 7 (70%) | 25 (61%) | 32 (63%) | 0.725 |
≥50 | 3 (30%) | 16 (39%) | 19 (37%) | ||
Week 2 | <50 | 6 (60%) | 22 (54%) | 28 (55%) | 1.000 |
≥50 | 4 (40%) | 19 (46%) | 23 (45%) |
Vitamin E | SF (n = 10) | NSF (n = 41) | Total (n = 51) | p Value | |
---|---|---|---|---|---|
µmol/L | n (%) | n (%) | n (%) | ||
Baseline | <12 | 2 (20%) | 1 (2%) | 3 (6%) | 0.132 |
12–29 | 5 (50%) | 22 (54%) | 27 (53%) | ||
≥30 | 3 (30%) | 18 (44%) | 21 (41%) | ||
Week 2 | <12 | 2 (20%) | 0 (0%) | 2 (4%) | 0.002 |
12–29 | 4 (40%) | 5 (12%) | 9 (18%) | ||
≥30 | 4 (40%) | 36 (88%) | 40 (78%) |
SF (n = 10) | NSF (n = 41) | Total (n = 51) | SF (n = 10) | NSF (n = 41) | Total (n = 51) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Baseline | Baseline | Week 2 | Week 2 | Week 2 | |||||
Mean ± SD | Mean ± SD | Mean ± SD | p Value a | Mean ± SD | Mean ± SD | Mean ± SD | p Value a | p Value b | p Value c | |
Volume (L/24 h) | 2.296 ± 0.889 | 2.142 ± 0.765 | 2.172 ± 0.784 | 0.472 | 2.060 ± 1.107 | 2.220 ± 0.914 | 2.189 ± 0.945 | 0.479 | 0.951 | 0.201 |
Density (g/cm3) | 1.008 ± 0.005 | 1.008 ± 0.005 | 1.008 ± 0.005 | 0.747 | 1.010 ± 0.006 | 1.008 ± 0.005 | 1.008 ± 0.005 | 0.275 | 0.396 | 0.195 |
pH | 6.01 ± 0.67 | 6.04 ± 0.48 | 6.03 ± 0.52 | 0.775 | 5.91 ± 0.62 | 6.10 ± 0.51 | 6.06 ± 0.53 | 0.299 | 0.634 | 0.193 |
Sodium (mmol/24 h) | 168 ± 66 | 146 ± 67 | 150 ± 67 | 0.253 | 185 ± 60 | 150 ± 63 | 157 ± 63 | 0.127 | 0.477 | 0.717 |
Potassium (mmol/24 h) | 51 ± 22 | 58 ± 18 | 56 ± 19 | 0.330 | 51 ± 21 | 56 ± 21 | 55 ± 21 | 0.586 | 0.869 | 0.803 |
Calcium (mmol/24 h) | 3.55 ± 2.33 | 3.61 ± 1.99 | 3.60 ± 2.04 | 0.991 | 4.15 ± 2.54 | 3.84 ± 2.11 | 3.90 ± 2.18 | 0.735 | 0.064 | 0.379 |
Magnesium (mmol/24 h) | 2.84 ± 1.90 | 3.51 ± 1.78 | 3.38 ± 1.80 | 0.392 | 3.31 ± 2.29 | 3.81 ± 1.39 | 3.71 ± 1.59 | 0.379 | 0.003 | 0.583 |
Ammonium (mmol/24 h) | 25.4 ± 16.6 | 23.6 ± 11.6 | 23.9 ± 12.5 | 0.895 | 31.4 ± 17.3 | 23.8 ± 15.5 | 25.3 ± 16.0 | 0.049 | 0.294 | 0.010 |
Chloride (mmol/24 h) | 199 ± 74 | 179 ± 67 | 183 ± 68 | 0.307 | 220 ± 64 | 178 ± 65 | 186 ± 66 | 0.069 | 0.967 | 0.319 |
Phosphate (mmol/24 h) | 26.8 ± 13.1 | 25.1 ± 7.5 | 25.4 ± 8.7 | 0.824 | 31.5 ± 16.2 | 26.0 ± 8.6 | 27.1 ± 10.5 | 0.461 | 0.223 | 0.140 |
Sulfate (mmol/24 h) | 16.8 ± 7.6 | 17.1 ± 5.6 | 17.0 ± 6.0 | 0.752 | 19.5 ± 5.6 | 18.5 ± 6.5 | 18.7 ± 6.3 | 0.843 | 0.017 | 0.330 |
Creatinine (mmol/24 h) | 9.76 ± 3.69 | 10.35 ± 2.74 | 10.23 ± 2.92 | 0.379 | 12.11 ± 4.54 | 10.46 ± 3.66 | 10.78 ± 3.86 | 0.354 | 0.249 | 0.008 |
Uric acid (mmol/24 h) | 2.59 ± 1.14 | 3.17 ± 0.82 | 3.06 ± 0.91 | 0.175 | 3.14 ± 1.04 | 3.23 ± 0.82 | 3.21 ± 0.85 | 0.735 | 0.273 | 0.105 |
Oxalate (mmol/24 h) | 0.649 ± 0.442 | 0.395 ± 0.215 | 0.445 ± 0.287 | 0.049 | 0.659 ± 0.292 | 0.378 ± 0.168 | 0.433 ± 0.225 | 0.002 | 0.900 | 0.168 |
Citrate (mmol/24 h) | 1.630 ± 1.645 | 2.933 ± 1.848 | 2.678 ± 1.868 | 0.039 | 1.606 ± 1.824 | 3.156 ± 1.968 | 2.852 ± 2.021 | 0.027 | 0.091 | 0.199 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siener, R.; Machaka, I.; Alteheld, B.; Bitterlich, N.; Metzner, C. Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis. Nutrients 2020, 12, 3110. https://doi.org/10.3390/nu12103110
Siener R, Machaka I, Alteheld B, Bitterlich N, Metzner C. Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis. Nutrients. 2020; 12(10):3110. https://doi.org/10.3390/nu12103110
Chicago/Turabian StyleSiener, Roswitha, Ihsan Machaka, Birgit Alteheld, Norman Bitterlich, and Christine Metzner. 2020. "Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis" Nutrients 12, no. 10: 3110. https://doi.org/10.3390/nu12103110
APA StyleSiener, R., Machaka, I., Alteheld, B., Bitterlich, N., & Metzner, C. (2020). Effect of Fat-Soluble Vitamins A, D, E and K on Vitamin Status and Metabolic Profile in Patients with Fat Malabsorption with and without Urolithiasis. Nutrients, 12(10), 3110. https://doi.org/10.3390/nu12103110