Magnesium Picolinate Improves Bone Formation by Regulation of RANK/RANKL/OPG and BMP-2/Runx2 Signaling Pathways in High-Fat Fed Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. BMD and Bone Mineral Content Analyses
2.4. Western Blot Analyses
2.5. Statistical Analysis
3. Results
3.1. BMD
3.2. Bone Ca, P, Mg, and Zn Levels
3.3. Bone Protein Levels
3.4. The Correlation between BMD, Ca, P, Mg, Zn, and Target Protein Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houillier, P. Mechanisms and regulation of renal magnesium transport. Annu. Rev. Physiol. 2014, 76, 411–430. [Google Scholar] [CrossRef]
- Rude, R.K.; Singer, F.R.; Gruber, H.E. Skeletal and hormonal effects of magnesium deficiency. J. Am. Coll. Nutr. 2009, 28, 131–141. [Google Scholar] [CrossRef]
- de Baaij, J.H.; Hoenderop, J.G.; Bindels, R.J. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef]
- Belluci, M.M.; Schoenmaker, T.; Rossa-Junior, C.; Orrico, S.R.; de Vries, T.J.; Everts, V. Magnesium deficiency results in an increased formation of osteoclasts. J. Nutr. Biochem. 2013, 24, 1488–1498. [Google Scholar] [CrossRef]
- Rude, R.; Kirchen, M.; Gruber, H.; Meyer, M.; Luck, J.; Crawford, D. Magnesium deficiency-induced osteoporosis in the rat: Uncoupling of bone formation and bone resorption. Magnes. Res. 1999, 12, 257–267. [Google Scholar]
- Rude, R.K.; Gruber, H.E.; Wei, L.Y.; Frausto, A. Immunolocalization of RANKL is increased and OPG decreased during dietary magnesium deficiency in the rat. Nutr. Metab. 2005, 2, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belluci, M.M.; de Molon, R.S.; Rossa, C., Jr.; Tetradis, S.; Giro, G.; Cerri, P.S.; Marcantoni, E., Jr.; Orrico, S.R.P. Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J. Nutr. Biochem. 2020, 77, 108301. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-Z.; Wang, J.-L.; Xu, J.-K.; Zhang, X.-T.; Liu, B.-Y.; Huang, L.; Zhang, R.; Zu, H.-Y.; He, X.; Mi, J.; et al. Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model. Biomaterials 2020, 238, 119828. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ren, L.; Liu, C.; Yuan, Y.; Lin, X.; Tan, L.; Chen, S.; Yang, K.; Mei, X. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4470–4474. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, G.; Tan, L.; Yang, K.; Ai, H. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 506–511. [Google Scholar] [CrossRef]
- World Health Organisation. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 2 April 2021).
- Wallis, N.; Raffan, E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes 2020, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, G.R.; Shimano, R.C.; Tida, J.A.; Yamanaka, J.S.; Fukada, S.Y.; Issa, J.P.M.; Shimano, A.C.; Tavares, J.M. Influence of High-Fat Diet on Bone Tissue: An Experimental Study in Growing Rats. J. Nutr. Health Aging 2017, 21, 1337–1343. [Google Scholar] [CrossRef] [Green Version]
- Jatkar, A.; Kurland, I.J.; Judex, S. Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism. Calcif. Tissue Int. 2017, 100, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.C.; Vullings, J.; van de Loo, F.A.J. Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. Nutrition 2019, 70, 110486. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Kanis, J.A.; Odén, A.; McCloskey, E.; Chapurlat, R.D.; Christiansen, C.; Cummings, S.R.; Diez-Perez, A.; Eisman, J.A.; Fujiwara, S. A meta-analysis of the association of fracture risk and body mass index in women. J. Bone Miner. Res. 2014, 29, 223–233. [Google Scholar] [CrossRef]
- López-Gómez, J.J.; Castrillón, J.L.P.; de Luis Román, D.A. Impact of obesity on bone metabolism. Endocrinol. Nutr. 2016, 63, 551–559. [Google Scholar] [CrossRef]
- Xiao, Y.; Cui, J.; Li, Y.-X.; Shi, Y.-H.; Wang, B.; Le, G.-W.; Wang, Z.-P. Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity. Nutrition 2011, 27, 214–220. [Google Scholar] [CrossRef]
- Gautam, J.; Choudhary, D.; Khedgikar, V.; Kushwaha, P.; Singh, R.S.; Singh, D.; Tiwari, S.; Trivedi, R. Micro-architectural changes in cancellous bone differ in female and male C57BL/6 mice with high-fat diet-induced low bone mineral density. Br. J. Nutr. 2014, 111, 1811–1821. [Google Scholar] [CrossRef] [Green Version]
- Adhikary, S.; Kothari, P.; Choudhary, D.; Tripathi, A.K.; Trivedi, R. Glucocorticoid aggravates bone micro-architecture deterioration and skeletal muscle atrophy in mice fed on high-fat diet. Steroids 2019, 149, 108416. [Google Scholar] [CrossRef]
- Kurstjens, S.; Smeets, B.; Overmars-Bos, C.; Dijkman, H.B.; den Braanker, D.J.W.; de Bel, T.; Bindels, R.J.M.; Tack, C.J.J.; Hoenderop, J.G.J.; de Baaij, J.H.F. Renal phospholipidosis and impaired magnesium handling in high-fat-diet-fed mice. FASEB J. 2019, 33, 7192–7201. [Google Scholar] [CrossRef]
- Wohl, G.R.; Loehrke, L.; Watkins, B.A.; Zernicke, R.F. Effects of high-fat diet on mature bone mineral content, structure, and mechanical properties. Calcif. Tissue Int. 1998, 63, 74–79. [Google Scholar] [CrossRef]
- Rylander, R. Bioavailability of Magnesium Salts—A Review. J. Pharm. Nutr. Sci. 2014, 4, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Siener, R.; Jahnen, A.; Hesse, A. Bioavailability of magnesium from different pharmaceutical formulations. Urol. Res. 2011, 39, 123–127. [Google Scholar] [CrossRef]
- Nelson, D.J.; Komorowski, J.R. Magnesium Picolinate Compositions and Methods of Use. U.S. Patent 20180098976A1, 12 April 2018. [Google Scholar]
- Orhan, C.; Tuzcu, M.; Deeh Defo, P.B.; Sahin, N.; Ojalvo, S.P.; Sylla, S.; Komorowski, J.R.; Sahin, K. Effects of a Novel Magnesium Complex on Metabolic and Cognitive Functions and the Expression of Synapse-Associated Proteins in Rats Fed a High-Fat Diet. Biol. Trace Elem. Res. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Orhan, C.; Er, B.; Deeh, P.B.D.; Bilgic, A.A.; Ojalvo, S.P.; Komorowski, J.R.; Sahin, K. Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regulation Nrf2 and NF-kappaB Signaling Pathways in High-Fat Diet Rats. Biol. Trace Elem. Res. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Bertinato, J.; Plouffe, L.J.; Lavergne, C.; Ly, C. Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet. Magnes. Res. 2014, 27, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Erten, F.; Tuzcu, M.; Orhan, C.; Ozercan, I.H.; Balci, T.A.; Tuzcu, Z.; Juturu, V.; Sahin, K. Mango Ginger Supplementation May Protect Bone Damage Induced By Methotrexate In Rats. Acta Pol. Pharm. Drug Res. 2019, 76, 305–312. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Patsch, J.M.; Kiefer, F.W.; Varga, P.; Pail, P.; Rauner, M.; Stupphann, D.; Resch, H.; Moser, D.; Zysset, P.K.; Stulnig, T.M.; et al. Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism 2011, 60, 243–249. [Google Scholar] [CrossRef]
- Denova-Gutiérrez, E.; Méndez-Sánchez, L.; Muñoz-Aguirre, P.; Tucker, K.L.; Clark, P. Dietary Patterns, Bone Mineral Density, and Risk of Fractures: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1922. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.-S.; Kim, J.-C.; Kim, J.-S.; Kim, S.H. Effects of Swimming Exercise on Serum Irisin and Bone FNDC5 in Rat Models of High-Fat Diet-Induced Osteoporosis. J. Sports Sci. Med. 2019, 18, 596–603. [Google Scholar]
- Kwon, Y.M.; Kim, G.W.; Yim, H.W.; Paek, Y.J.; Lee, K.S. Association between dietary fat intake and bone mineral density in Korean adults: Data from Korea National Health and Nutrition Examination Survey IV (2008–2009). Osteoporos. Int. 2015, 26, 969–976. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodríguez-Morán, M. Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. Diabetes Metab. Res. Rev. 2006, 22, 471–476. [Google Scholar] [CrossRef]
- Mahdavi-Roshan, M.; Ebrahimi, M.; Ebrahimi, A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin. Cases Miner. Bone Metab. 2015, 12, 18–21. [Google Scholar] [CrossRef]
- Mutlu, M.; Argun, M.; Kilic, E.; Saraymen, R.; Yazar, S. Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J. Int. Med. Res. 2007, 35, 692–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Miao, J.; Sun, S.; Luo, Z.; Xia, Z.; Guo, B.; Liu, F.; Chen, Y.; Ying, D.; Miao, B.; et al. The effect of dietary magnesium and caseinphosphopeptides on bone metabolism in rats. Food Funct. 2017, 8, 4487–4495. [Google Scholar] [CrossRef] [PubMed]
- Farsinejad-Marj, M.; Saneei, P.; Esmaillzadeh, A. Dietary magnesium intake, bone mineral density and risk of fracture: A systematic review and meta-analysis. Osteoporos. Int. 2016, 27, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Karaaslan, F.; Mutlu, M.; Mermerkaya, M.U.; Karaoğlu, S.; Saçmaci, Ş.; Kartal, Ş. Comparison of bone tissue trace-element concentrations and mineral density in osteoporotic femoral neck fractures and osteoarthritis. Clin. Interv. Aging 2014, 9, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xu, P.; Wang, C.; Ha, X.; Gu, Y.; Wang, Y.; Zhang, J.; Xie, J. The effects of fat-induced obesity on bone metabolism in rats. Obes. Res. Clin. Pract. 2017, 11, 454–463. [Google Scholar] [CrossRef]
- Macri, E.V.; Chaves, M.M.G.; Rodriguez, P.N.; Mandalunis, P.; Zeni, S.; Lifshitz, F.; Friedman, S.M. High-fat diets affect energy and bone metabolism in growing rats. Eur. J. Nutr. 2012, 51, 399–406. [Google Scholar] [CrossRef]
- Huang, R.L.; Yuan, Y.; Tu, J.; Zou, G.M.; Li, Q. Exaggerated inflammatory environment decreases BMP-2/ACS-induced ectopic bone mass in a rat model: Implications for clinical use of BMP-2. Osteoarthr. Cartil. 2014, 22, 1186–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Li, M.; Wang, S.; Xiao, Z.; Xiong, Y.; Wang, G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front. Cell Dev. Biol. 2020, 8, 601224. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.; Duan, Y. Magnesium Lithospermate B Protects against Lipopolysaccharide-Induced Bone Loss by Inhibiting RANKL/RANK Pathway. Front. Pharmacol. 2018, 9, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, Y.J.; Kim, M.H. Calcium and Magnesium Supplementation Improves Serum OPG/RANKL in Calcium-Deficient Ovariectomized Rats. Calcif. Tissue Int. 2010, 87, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, X.-Y.; Feng, Y.-F.; Ma, Z.-S.; Ma, T.-C.; Zhang, Y.; Li, X.; Wang, L.; Lei, W. Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol. Trace Elem. Res. 2017, 179, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Q.; Mao, X. Magnesium Enhances Osteogenesis of BMSCs by Tuning Osteoimmunomodulation. BioMed Res. Int. 2019, 2019, 7908205. [Google Scholar] [CrossRef]
- Diaz-Tocados, J.M.; Herencia, C.; Martinez-Moreno, J.M.; Montes de Oca, A.; Rodriguez-Ortiz, M.E.; Vergara, N.; Blanco, A.; Steppan, S.; Almaden, Y.; Rodriguez, M.; et al. Magnesium Chloride promotes Osteogenesis through Notch signaling activation and expansion of Mesenchymal Stem Cells. Sci. Rep. 2017, 7, 7839. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Picos, P.; Eames, B.F. On the evolutionary relationship between chondrocytes and osteoblasts. Front. Genet. 2015, 6, 297. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, R.; Hata, K.; Nakamura, E.; Murakami, T.; Takahata, Y. Transcriptional network systems in cartilage development and disease. Histochem. Cell Biol. 2018, 149, 353–363. [Google Scholar] [CrossRef]
- Yue, J.; Jin, S.; Gu, S.; Sun, R.; Liang, Q. High concentration magnesium inhibits extracellular matrix calcification and protects articular cartilage via Erk/autophagy pathway. J. Cell. Physiol. 2019, 234, 23190–23201. [Google Scholar] [CrossRef]
- Li, R.W.; Kirkland, N.T.; Truong, J.; Wang, J.; Smith, P.N.; Birbilis, N.; Nisbet, D.R. The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. A 2014, 102, 4346–4357. [Google Scholar] [CrossRef] [PubMed]
- Duque, G.; Vidal, C.; Li, W.; Al Saedi, A.; Khalil, M.; Lim, C.K.; Myers, D.E.; Guillemin, G.J. Picolinic Acid, a Catabolite of Tryptophan, Has an Anabolic Effect on Bone In Vivo. J. Bone Miner. Res. 2020, 35, 2275–2288. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.; Li, W.; Santner-Nanan, B.; Lim, C.K.; Guillemin, G.J.; Ball, H.J.; Hunt, N.H.; Nanan, R.; Duque, G. The kynurenine pathway of tryptophan degradation is activated during osteoblastogenesis. Stem Cells 2015, 33, 111–121. [Google Scholar] [CrossRef] [PubMed]
Control Diet | High-Fat Diet | |
---|---|---|
Ingredients, % | ||
Casein | 20.00 | 20.00 |
Cornstarch | 57.95 | 15.00 |
Sucrose | 5.00 | 14.95 |
Soy oil | 7.00 | - |
Beef tallow | - | 40.00 |
Cellulose | 5.00 | 5.00 |
Vitamin-mineral premix ** | 4.50 | 4.50 |
L- cysteine | 0.30 | 0.30 |
Choline bitartrate | 0.25 | 0.25 |
Analyses | ||
Crude protein, % | 17.90 | 17.90 |
Eter extract, % | 6.90 | 39.90 |
Crude fiber, % | 5.00 | 5.00 |
Ash, % | 4.2 | 4.2 |
Metabolic energy, kcal/kg | 3820 | 4810 |
Step 1 | Step 2 | Step 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
°C | Time (min) | Power (%) | °C | Time (min) | Power (%) | °C | Time (min) | Power (%) | |
Bone Tissue | 145 | 10 | 80 | 160 | 10 | 80 | 190 | 20 | 80 |
Diet Samples | 130 | 8 | 80 | 155 | 5 | 80 | 170 | 12 | 80 |
Tibia BMD, mg/cm2 | Femur BMD, mg/cm2 | |
---|---|---|
Control | 222.18 ± 3.69 | 234.68 ± 3.96 |
MgO | 225.83 ± 3.26 | 230.51 ± 3.52 |
MgPic | 226.01 ± 2.38 | 231.6 ± 1.93 |
HFD | 171.86 ± 3.43 ***, +++,### | 186.88 ± 3.32 ***,+++,### |
HFD + MgO | 184.72 ± 1.48 ***,+++,###,$$ | 196.92 ± 2.95 ***,+++,### |
HFD + MgPic | 196.65 ± 2.47 ***,+++,###,$$$ | 209.46 ± 2.94 ***,+++,###,$$$ |
p < 0.001 | p < 0.001 |
Ca (mg/g) | P (mg/g) | Mg (mg/g) | Zn (mg/g) | |
---|---|---|---|---|
Control | 191.61 ± 2.75 | 141.61 ± 1.91 | 4.53 ± 0.13 | 230.60 ± 2.55 |
MgO | 193.46 ± 1.64 | 142.27 ± 1.76 | 6.28 ± 0.19 *** | 226.62 ± 5.95 |
MgPic | 194.51 ± 2.73 | 143.37 ± 1.87 | 7.1 ± 0.18 *** | 272.70 ± 4.01 |
HFD | 170.88 ± 2.84 ***, +++, ### | 118.37 ± 1.96 ***, +++, ### | 3.26 ± 0.07 ***, +++, ### | 176.23 ± 1.60 ***, ++ |
HFD + MgO | 177.91 ± 2.02 ***, ++, ### | 122.57 ± 2.69 ***, +++, ### | 4.11 ± 2.75 +++, ###, $$ | 189.53 ± 2.22 ***, ++, $$ |
HFD + MgPic | 184.46 ± 1.83 #, $$ | 132.06 ± 2.75 *, +, #, $$, & | 5.13 ± 0.13 ++, ###, $$$, && | 195.90 ± 2.07 ***, +, $$$ |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Femur BMD | Ca | P | Mg | Zn | Rank | Rankl | OPG | IGF−1 | BMP2 | OCN | COL1A1 | Runx2 | Osx | SOX9 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tibia BMD | 0.893 | 0.776 | 0.824 | 0.768 | 0.899 | −0.864 | −0.930 | 0.876 | 0.883 | 0.800 | 0.703 | 0.917 | 0.868 | 0.774 | −0.863 |
Femur BMD | 0.745 | 0.847 | 0.687 | 0.859 | −0.839 | −0.925 | 0.834 | 0.866 | 0.772 | 0.702 | 0.873 | 0.847 | 0.801 | −0.828 | |
Ca | 0.743 | 0.730 | 0.747 | −0.810 | −0.830 | 0.799 | 0.771 | 0.759 | 0.609 | 0.821 | 0.797 | 0.672 | −0.737 | ||
P | 0.718 | 0.826 | −0.798 | −0.861 | 0.779 | 0.817 | 0.741 | 0.655 | 0.813 | 0.788 | 0.712 | −0.834 | |||
Mg | 0.724 | −0.807 | −0.739 | 0.870 | 0.693 | 0.710 | 0.740 | 0.855 | 0.689 | 0.489 | −0.756 | ||||
Zn | −0.804 | −0.909 | 0.840 | 0.878 | 0.716 | 0.661 | 0.857 | 0.856 | 0.760 | −0.816 | |||||
RANK | 0.908 | −0.868 | −0.860 | −0.875 | −0.863 | −0.919 | −0.924 | −0.831 | 0.821 | ||||||
RANKL | −0.879 | −0.948 | −0.872 | −0.719 | −0.931 | −0.936 | −0.870 | 0.877 | |||||||
OPG | 0.821 | 0.834 | 0.795 | 0.958 | 0.852 | 0.707 | −0.796 | ||||||||
IGF−1 | 0.822 | 0.653 | 0.863 | 0.892 | 0.832 | −0.822 | |||||||||
BMP2 | 0.779 | 0.897 | 0.904 | 0.763 | −0.751 | ||||||||||
OCN | 0.810 | 0.767 | 0.682 | −0.690 | |||||||||||
COL1A1 | 0.905 | 0.793 | −0.865 | ||||||||||||
Runx2 | 0.894 | −0.740 | |||||||||||||
Osx | −0.700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahin, E.; Orhan, C.; Balci, T.A.; Erten, F.; Sahin, K. Magnesium Picolinate Improves Bone Formation by Regulation of RANK/RANKL/OPG and BMP-2/Runx2 Signaling Pathways in High-Fat Fed Rats. Nutrients 2021, 13, 3353. https://doi.org/10.3390/nu13103353
Sahin E, Orhan C, Balci TA, Erten F, Sahin K. Magnesium Picolinate Improves Bone Formation by Regulation of RANK/RANKL/OPG and BMP-2/Runx2 Signaling Pathways in High-Fat Fed Rats. Nutrients. 2021; 13(10):3353. https://doi.org/10.3390/nu13103353
Chicago/Turabian StyleSahin, Emre, Cemal Orhan, Tansel Ansal Balci, Fusun Erten, and Kazim Sahin. 2021. "Magnesium Picolinate Improves Bone Formation by Regulation of RANK/RANKL/OPG and BMP-2/Runx2 Signaling Pathways in High-Fat Fed Rats" Nutrients 13, no. 10: 3353. https://doi.org/10.3390/nu13103353
APA StyleSahin, E., Orhan, C., Balci, T. A., Erten, F., & Sahin, K. (2021). Magnesium Picolinate Improves Bone Formation by Regulation of RANK/RANKL/OPG and BMP-2/Runx2 Signaling Pathways in High-Fat Fed Rats. Nutrients, 13(10), 3353. https://doi.org/10.3390/nu13103353