The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy—Current Reports
Abstract
:1. Introduction
2. Bioactive Compounds in Nigella sativa
3. Antioxidant, Immunomodulating, and Anti-Inflammatory Activity of Black Cumin in Rheumatoid Arthritis
4. Nigella sativa and Rheumatoid Arthritis In Vitro, Animal, and Clinical Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Giannini, D.; Antonucci, M.; Petrelli, F.; Bilia, S.; Alunno, A.; Puxeddu, I. One year in review 2020: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2020, 38, 387–397. [Google Scholar] [PubMed]
- Vallerand, I.A.; Patten, S.B.; Barnabe, C. Depression and the risk of rheumatoid arthritis. Curr. Opin. Rheumatol. 2019, 31, 279–284. [Google Scholar] [CrossRef]
- Alam, J.; Jantan, I.; Bukhari, S.N.A. Rheumatoid arthritis: Recent advances on its etiology; role of cytokines and pharmacotherapy. Biomed. Pharmacother. 2017, 92, 615–633. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, K.; Nossent, J.; Preen, D.; Keen, H.; Inderjeeth, C. The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatol. Int. 2021, 41, 863–877. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. Rheumatoid Arthritis. Australian Institution of Health and Welfare. Available online: https://www.aihw.gov.au/reports/arthritis-other-musculoskeletal-conditions/rheumatoid-arthritis/contents/who-gets-rheumatoid-arthritis (accessed on 18 June 2021).
- Seoane-Mato, D.; Sánchez-Piedra, C.; Silva-Fernández, L.; Sivera, F.; Blanco, F.J.; Pérez Ruiz, F.; Juan-Mas, A.; Pego-Reigosa, J.M.; Martí, N.Q.; Cortés Verdú, R. Prevalence of rheumatic diseases in adult population in Spain (EPISER 2016 study): Aims and methodology. Reumatol. Clin. 2019, 15, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Batko, B.; Stajszczyk, M.; Świerkot, J.; Urbański, K.; Raciborski, F.; Jędrzejewski, M.; Wiland, P. Prevalence and clinical characteristics of rheumatoid arthritis in Poland: A nationwide study. Arch. Med. Sci. 2019, 15, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, C.H.; Saraux, A.; Le Bihan, E.; Fardellone, P.; Guggenbuhl, P.; Fautrel, B.; Masson, C.; Chary-Valckenaere, I.; Cantagrel, A.; Juvin, R.; et al. Rheumatoid arthritis and spondyloarthropathies: Geographical variations in prevalence in France. J. Rheumatol. 2007, 34, 117–122. [Google Scholar] [PubMed]
- Rossini, M.; Rossi, E.; Bernardi, D.; Viapiana, O.; Gatti, D.; Idolazzi, L.; Caimmi, C.; Derosa, M.; Adami, S. Prevalence and incidence of rheumatoid arthritis in Italy. Rheumatol. Int. 2014, 34, 659–664. [Google Scholar] [CrossRef]
- Zlatković-Švenda, M.I.; Stojanović, R.M.; Šipetić-Grujičić, S.; Guillemin, F. Prevalence of rheumatoid arthritis in Serbia. Rheumatol. Int. 2014, 34, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Slimani, S.; Ladjouze-Rezig, A. Prevalence of rheumatoid arthritis in an urban population of Algeria: A prospective study. Rheumatology 2014, 53, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.P.; Alfredsson, L.; Karlson, E.W. Environmental influences on risk for rheumatoid arthritis. Curr. Opin. Rheumatol. 2009, 21, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Tobón, G.J.; Youinou, P.; Saraux, A. The environment; geo-epidemiology; and autoimmune disease: Rheumatoid arthritis. J. Autoimmun. 2010, 35, 10–14. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef]
- Pabón-Porras, M.A.; Molina-Ríos, S.; Flórez-Suárez, J.B.; Coral-Alvarado, P.X.; Méndez-Patarroyo, P.; Quintana-López, G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med. 2019, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.A.; Saag, K.G.; Bridges, S.L., Jr.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1–26. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Sparks, J.A. Rheumatoid Arthritis. Ann. Intern. Med. 2019, 170, ITC1–ITC16. [Google Scholar] [CrossRef] [PubMed]
- Lindler, B.N.; Long, K.E.; Taylor, N.A.; Lei, W. Use of Herbal Medications for Treatment of Osteoarthritis and Rheumatoid Arthritis. Medicines 2020, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Adib-Hajbaghery, M.; Rafiee, S. Medicinal plants use by elderly people in Kashan; Iran. Nurs. Midwifery Stud. 2018, 7, 67–73. [Google Scholar] [CrossRef]
- Darakhshan, S.; Bidmeshki Pour, A.; Hosseinzadeh Colagar, A.; Sisakhtnezhad, S. Thymoquinone and its therapeutic potentials. Pharmacol. Res. 2015, 95, 138–158. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Amin, B.; Hosseinzadeh, H. Black Cumin (Nigella sativa) and Its Active Constituent; Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta Med. 2016, 82, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and Anti-inflammatory Effects of Thymoquinone. Cardiovasc. Hematol. Disord. Drug Targets 2018, 18, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gholamnezhad, Z.; Shakeri, F.; Saadat, S.; Ghorani, V.; Boskabady, M.H. Clinical and experimental effects of Nigella sativa and its constituents on respiratory and allergic disorders. Avicenna J. Phytomed. 2019, 9, 195–212. [Google Scholar] [PubMed]
- Saadat, S.; Aslani, M.R.; Ghorani, V.; Keyhanmanesh, R.; Boskabady, M.H. The effects of Nigella sativa on respiratory; allergic and immunologic disorders; evidence from experimental and clinical studies; a comprehensive and updated review. Phytother. Res. 2021, 35, 2968–2996. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Khan, I.A.; Shahbaz, M.; Qaisrani, T.B.; Fatmawati, S.; Abu-Izneid, T.; Imran, A.; Rahman, K.U.; Gondal, T.A. Thymoquinone: A novel strategy to combat cancer: A review. Biomed. Pharmacother. 2018, 106, 390–402. [Google Scholar] [CrossRef]
- Korak, T.; Ergül, E.; Sazci, A. Nigella sativa and Cancer: A Review Focusing on Breast Cancer; Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity. Curr. Pharm. Biotechnol. 2020, 21, 1176–1185. [Google Scholar] [CrossRef]
- Askari, G.; Rouhani, M.H.; Ghaedi, E.; Ghavami, A.; Nouri, M.; Mohammadi, H. Effect of Nigella sativa (black seed) supplementation on glycemic control: A systematic review and meta-analysis of clinical trials. Phytother. Res. 2019, 33, 1341–1352. [Google Scholar] [CrossRef]
- Mahmoodi, M.R.; Mohammadizadeh, M. Therapeutic potentials of Nigella sativa preparations and its constituents in the management of diabetes and its complications in experimental animals and patients with diabetes mellitus: A systematic review. Complement. Ther. Med. 2020, 50, 102391. [Google Scholar] [CrossRef]
- Ardiana, M.; Pikir, B.S.; Santoso, A.; Hermawan, H.O.; Al-Farabi, M.J. Effect of Nigella sativa Supplementation on Oxidative Stress and Antioxidant Parameters: A Meta-Analysis of Randomized Controlled Trials. Sci. World J. 2020, 2020, 2390706. [Google Scholar] [CrossRef] [PubMed]
- Fallah Huseini, H.; Amini, M.; Mohtashami, R.; Ghamarchehre, M.E.; Sadeqhi, Z.; Kianbakht, S.; Fallah Huseini, A. Blood pressure lowering effect of Nigella sativa L. seed oil in healthy volunteers: A randomized; double-blind; placebo-controlled clinical trial. Phytother. Res. 2013, 27, 1849–1853. [Google Scholar] [CrossRef] [PubMed]
- Pakkir Maideen, N.M.; Balasubramanian, R.; Ramanathan, S. Nigella Sativa (Black seeds); a Potential herb for the Pharmacotherapeutic Management of Hypertension-A Review. Curr. Cardiol. Rev. 2020, 17, e230421187786. [Google Scholar] [CrossRef]
- Asgary, S.; Sahebkar, A.; Goli-Malekabadi, N. Ameliorative effects of Nigella sativa on dyslipidemia. J. Endocrinol. Investig. 2015, 38, 1039–1046. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol. 2015, 28, 295–304. [Google Scholar] [CrossRef]
- Benhelima, A.; Kaid-Omar, Z.; Hemida, H.; Benmahdi, T.; Addou, A. Nephroprotective And Diuretic Effect of Nigella Sativa L Seeds Oil On Lithiasic Wistar Rats. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 204–214. [Google Scholar] [CrossRef]
- Dajani, E.Z.; Shahwan, T.G.; Dajani, N.E. Overview of the preclinical pharmacological properties of Nigella sativa (black seeds): A complementary drug with historical and clinical significance. J. Physiol. Pharmacol. 2016, 67, 801–817. [Google Scholar]
- Tekbas, A.; Huebner, J.; Settmacher, U.; Dahmen, U. Plants and Surgery: The Protective Effects of Thymoquinone on Hepatic Injury-A Systematic Review of In Vivo Studies. Int. J. Mol. Sci. 2018, 19, 1085. [Google Scholar] [CrossRef] [Green Version]
- Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Shaterzadeh-Yazdi, H.; Farkhondeh, T. An Overview of Hepatoprotective Effects of Thymoquinone. Recent Pat. Food Nutr. Agric. 2018, 9, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Samadipour, E.; Rakhshani, M.H.; Kooshki, A.; Amin, B. Local Usage of Nigella sativa Oil as an Innovative Method to Attenuate Primary Dysmenorrhea: A Randomized Double-blind Clinical Trial. Oman Med. J. 2020, 35, e167. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, S.; Zargaran, A.; Farzaei, M.H.; Iranpanah, A.; Heydarpour, F.; Najafi, F.; Rahimi, R. The effect of a hydrogel made by Nigella sativa L. on acne vulgaris: A randomized double-blind clinical trial. Phytother. Res. 2020, 34, 3052–3062. [Google Scholar] [CrossRef]
- Koshak, A.; Wei, L.; Koshak, E.; Wali, S.; Alamoudi, O.; Demerdash, A.; Qutub, M.; Pushparaj, P.N.; Heinrich, M. Nigella sativa Supplementation Improves Asthma Control and Biomarkers: A Randomized; Double-Blind; Placebo-Controlled Trial. Phytother. Res. 2017, 31, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K. Is Nigella sativa supplementation effective for asthma? Am. J. Emerg. Med. 2020, 38, 1959–1960. [Google Scholar] [CrossRef]
- He, T.; Xu, X. The influence of Nigella sativa for asthma control: A meta-analysis. Am. J. Emerg. Med. 2020, 38, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. A Review on Possible Therapeutic Effect of Nigella sativa and Thymoquinone in Neurodegenerative Diseases. CNS Neurol. Disord. Drug Targets 2018, 17, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Cobourne-Duval, M.K.; Taka, E.; Mendonca, P.; Soliman, K.F.A. Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J. Neuroimmunol. 2018, 320, 87–97. [Google Scholar] [CrossRef]
- Houghton, P.J.; Zarka, R.; de las Heras, B.; Hoult, J.R. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995, 61, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.L.; Chen, X.Y.; Zhu, L.; Chen, H.B.; Ho, H.M.; Yeung, W.-P.; Zhao, Z.-Z.; Yi, T. Review on Saussurea laniceps; a potent medicinal plant known as “snow lotus”: Botany; phytochemistry and bioactivities. Phytochem. Rev. 2016, 15, 537–565. [Google Scholar] [CrossRef]
- Yi, T.; Zhu, L.; Zhu, G.Y.; Tang, Y.N.; Xu, J.; Fan, J.-Y.; Zhao, Z.-Z.; Chen, H.-B. HSCCC-based strategy for preparative separation of in vivo metabolites after administration of an herbal medicine: Saussurea laniceps; a case study. Sci. Rep. 2016, 6, 33036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry; pharmacology; and therapeutic uses of black seed (Nigella sativa). Chin. J. Nat. Med. 2016, 14, 732–745. [Google Scholar] [CrossRef]
- Greenish, H.G. Contribution to the chemistry of Nigella sativa. Pharmac. J. Trans. 1880, 10, 909–911. [Google Scholar]
- Al-Jassir, M.S. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem. 1992, 45, 239–242. [Google Scholar] [CrossRef]
- Al-Saleh, I.A.; Billedo, G.; El–Doush, I.I. Levels of selenium; DLa-tocopherol; DL-g-tocopherol; all-trans-retinol; thymoquinone and thymol in different brands of Nigella sativa seeds. J. Food Comp. Anal. 2006, 19, 167–175. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Morsel, J.T. Analysis of glycolipids from black cumin (Nigella sativa L.); coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) oilseeds. Food Chem. 2003, 80, 197–204. [Google Scholar] [CrossRef]
- Mamun, M.A.; Absar, N. Major nutritional compositions of black cumin seeds cultivated in Bangladesh and the physicochemical characteristics of its oil. Int. Food Res. J. 2018, 25, 2634–2639. [Google Scholar]
- Ghahramanloo, K.H.; Kamalidehghan, B.; Akbari Javar, H.; Teguh Widodo, R.; Majidzadeh, K.; Noordin, M.I. Comparative analysis of essential oil composition of iranian and indian nigella sativa L. Extracted using supercritical fluid extraction and solvent extraction. Drug Design. Dev. Ther. 2017, 11, 2221–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop, R.M.; Trifa, A.P.; Popolo, A.; Chedea, V.S.; Militaru, C.; Bocsan, I.C.; Buzoianu, A.D. Nigella sativa: Valuable perspective in the management of chronic diseases. Iran J. Basic Med. Sci. 2020, 23, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Juhaimi, F.; Matthäus, B.; Ghafoor, K.; ElBabiker, E.F.; Ozcan, F.F. Fatty acids; tocopherols; minerals contents of Nigella sativa and Trigonella foenum-graecum seed and seed oils. Rivista Italiana Delle Sostanze Grasse 2016, 93, 165–171. [Google Scholar]
- Shafiq, H.; Ahmad, A.; Masud, T.; Kaleem, M. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran J. Basic Med. Sci. 2014, 17, 967–979. [Google Scholar]
- Adamska, A.; Stefanowicz-Hajduk, J.; Ochocka, J.R. Alpha-Hederin; the Active Saponin of Nigella sativa; as an Anticancer Agent Inducing Apoptosis in the SKOV-3 Cell Line. Molecules 2019, 24, 2958. [Google Scholar] [CrossRef] [Green Version]
- Isik, S.; Kartal, M.; Erdem, S.A. Quantitative analysis of thymoquinone in Nigella Sativa, L. (Black Cumin) seeds and commercial seed oils and seed oil capsules from Turkey. Ankara Üniversitesi Eczacılık Fakültesi Dergisi 2017, 41, 34–41. [Google Scholar] [CrossRef]
- Tavakkoli, A.; Mahdian, V.; Razavi, B.M.; Hosseinzadeh, H. Review on Clinical Trials of Black Seed (Nigella sativa) and Its Active Constituent; Thymoquinone. J. Pharmacopunct. 2017, 20, 179–193. [Google Scholar] [CrossRef]
- Shomar, B. Major and trace elements in Nigella sativa provide a potential mechanism for its healing effects. J. Med. Plants Res. 2012, 6, 4836–4843. [Google Scholar] [CrossRef]
- Haseena, S.; Aithal, M.; Das, K.K.; Saheb, S.H. Phytochemical analysis of Nigella sativa and its effect on reproductive system. J. Pharm. Sci. Res. 2015, 7, 514–517. [Google Scholar]
- Herlina Aziz, S.A.; Kurniawati, A.; Faridah, D.N. Changes of thymoquinone; thymol; and malondialdehyde content of black cumin (Nigella sativa L.) in response to Indonesia tropical. J. Biosci. 2017, 24, 156–161. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J. Herb. Med. 2021, 25, 100404. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.A.; Nagi, M.N.; El-Khatib, A.S.; Al-Bekairi, A.M. Effects of thymoquinone on antioxidant enzyme activities; lipid peroxidation and DT-diaphorase in different tissues of mice: A possible mechanism of action. Cell Biochem. Funct. 2002, 20, 143–151. [Google Scholar] [CrossRef]
- Khalife, K.H.; Lupidi, G. Nonenzymatic reduction of thymoquinone in physiological conditions. Free Radic. Res. 2007, 41, 153–161. [Google Scholar] [CrossRef]
- Burits, M.; Bucar, F. Antioxidant activity of Nigella sativaessential oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef]
- Hadi, V.; Kheirouri, S.; Alizadeh, M.; Khabbazi, A.; Hosseini, H. Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: A randomized; double-blind; placebo-controlled clinical trial. Avicenna J. Phytomed. 2016, 6, 34–43. [Google Scholar] [PubMed]
- Aravilli, R.K.; Vikram, S.L.; Kohila, V. Phytochemicals as potential antidotes for targeting NF-κB in rheumatoid arthritis. 3 Biotech 2017, 7, 253. [Google Scholar] [CrossRef]
- Akram Khan, M.; Afzal, M. Chemical composition of Nigella sativa Linn: Part 2 Recent advances. Inflammopharmacology 2016, 24, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamy, S.M.; Tan, B.K. Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. J. Ethnopharmacol. 2000, 70, 1–7. [Google Scholar] [CrossRef]
- Abdel-Zaher, A.O.; Abdel-Rahman, M.S.; Elwasei, F.M. Protective effect of Nigella sativa oil against tramadol-induced tolerance and dependence in mice: Role of nitric oxide and oxidative stress. Neurotoxicology 2011, 32, 725–733. [Google Scholar] [CrossRef]
- Mor, A.; Abramson, S.B.; Pillinger, M.H. The fibroblast-like synovial cell in rheumatoid arthritis: A key player in inflammation and joint destruction. Clin. Immunol. 2005, 115, 118–128. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Umar, S.; Zargan, J.; Umar, K.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem. Biol. Interact. 2012, 197, 40–46. [Google Scholar] [CrossRef]
- Romas, E.; Sims, N.A.; Hards, D.K.; Lindsay, M.; Quinn, J.W.; Ryan, P.F.; Dunstan, C.R.; Martin, T.J.; Gillespie, M.T. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am. J. Pathol. 2002, 161, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K.A.; Haqqi, T.M. Bioavailable constituents/metabolites of pomegranate (Punica granatum L) preferentially inhibit COX2 activity ex vivo and IL-1beta-induced PGE2 production in human chondrocytes in vitro. J. Inflamm. 2008, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Vaillancourt, F.; Silva, P.; Shi, Q.; Fahmi, H.; Fernandes, J.C.; Benderdour, M. Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J. Cell Biochem. 2011, 112, 107–117. [Google Scholar] [CrossRef]
- Umar, S.; Hedaya, O.; Singh, A.K.; Ahmed, S. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation. Toxicol. Appl. Pharmacol. 2015, 287, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjumand, S.; Shahzad, M.; Shabbir, A.; Yousaf, M.Z. Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2; TLR4; TNF-α; IL-1; and NFκB expression levels. Biomed. Pharmacother. 2019, 111, 958–963. [Google Scholar] [CrossRef]
- Nasuti, C.; Fedeli, D.; Bordoni, L.; Piangerelli, M.; Servili, M.; Selvaggini, R.; Gabbianelli, R. Anti-inflammatory; anti-arthritic and anti-nociceptive activities of Nigella sativa oil in a rat model of arthritis. Antioxidants 2019, 8, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faisal, R.; Ahmad, N.; Fahad, Y.S.; Chiragh, S. Anti-Arthritic Effect Of Thymoquinone In Comparison With Methotrexate On Pristane Induced Arthritis In Female Sprague Dawley Rats. J. Ayub Med. Coll. Abbottabad 2018, 30, 3–7. [Google Scholar] [PubMed]
- Faisal, R.; Shinwari, L.; Jehangir, T. Comparison of the Therapeutic Effects of Thymoquinone and Methotrexate on Renal Injury in Pristane Induced Arthritis in Rats. J. Coll. Physicians Surg. Pak. 2015, 25, 597–601. [Google Scholar]
- Faisal, R.; Imran, U. Comparative evaluation of thymoquinone and methotrexate in lung inflammation in murine model of rheumatiod arthritis. J. Postgrad. Med. Inst. 2015, 29, 88–92. [Google Scholar]
- Faisal, R.; Chiragh, S.; Popalzai, A.J.; Rehman, K.U. Anti-inflammatory effect of thymoquinone in comparison with methotrexate on pristane induced arthritis in rats. J. Pak. Med. Assoc. 2015, 65, 519–525. [Google Scholar]
- Mahboubi, M.; Mohammad Taghizadeh Kashani, L.; Mahboubi, M. Nigella sativa fixed oil as alternative treatment in management of pain in arthritis rheumatoid. Phytomedicine 2018, 46, 69–77. [Google Scholar] [CrossRef]
- Kheirouri, S.; Hadi, V.; Alizadeh, M. Immunomodulatory Effect of Nigella sativa Oil on T Lymphocytes in Patients with Rheumatoid Arthritis. Immunol. Investig. 2016, 45, 271–283. [Google Scholar] [CrossRef]
- Mahdavi, R.; Namazi, N.; Alizadeh, M.; Farajnia, S. Nigella sativa oil with a calorie-restricted diet can improve biomarkers of systemic inflammation in obese women: A randomized double-blind; placebo-controlled clinical trial. J. Clin. Lipidol. 2016, 10, 1203–1211. [Google Scholar] [CrossRef]
- Al Disi, S.S.; Anwar, M.A.; Eid, A.H. Anti-hypertensive Herbs and their Mechanisms of Action: Part, I. Front. Pharmacol. 2016, 6, 323. [Google Scholar] [CrossRef]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry; Health Benefits; Molecular Pharmacology; and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Samarghandian, S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed. Pharmacother. 2021, 138, 111492. [Google Scholar] [CrossRef]
- Khazdair, M.R.; Anaeigoudari, A.; Hashemzehi, M.; Mohebbati, R. Neuroprotective potency of some spice herbs; a literature review. J. Tradit. Complement. Med. 2018, 9, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K.; Chauhan, N.S. Plants Used as Antihypertensive. Nat. Prod. Bioprospect. 2021, 11, 155–184. [Google Scholar] [CrossRef] [PubMed]
- Jaarin, K.; Foong, W.D.; Yeoh, M.H.; Kamarul, Z.Y.; Qodriyah, H.M.; Azman, A.; Zuhair, J.S.; Juliana, A.H.; Kamisah, Y. Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats. Clinics 2015, 70, 751–757. [Google Scholar] [CrossRef]
- Musharraf, H.M.; Arman, M.S.I. Prophetic medicine is the cheapest; safest and the best remedy in the prevention and treatment of hypertension (high blood pressure)—A mini review. Int. J. Mol. Biol. 2018, 3, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Kooshki, A.; Forouzan, R.; Rakhshani, M.H.; Mohammadi, M. Effect of Topical Application of Nigella Sativa Oil and Oral Acetaminophen on Pain in Elderly with Knee Osteoarthritis: A Crossover Clinical Trial. Electron. Physician 2016, 8, 3193–3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachan, A.; Vishnoi, G.; Kumar, R. Need of standardization of herbal medicines in modern era. Int. J. Phytomed. 2016, 8, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Siddiqu, N.; Damanhouri, Z.; Bhandari, A. Physicochemical and phytochemical standardization with HPTLC fingerprinting of Nigella sativa L. seeds. Pak. J. Pharm. Sci. 2014, 27, 1175–1182. [Google Scholar] [PubMed]
- Yun, Q.; Liu, Q.; He, C.; Ma, X.; Gao, X.; Talbi, A.; Zhou, J. UPLC-Q-TOF/MS characterization, HPLC fingerprint analysis and species differentiation for quality control of Nigella glandulifera Freyn et Sint seeds and Nigella sativa L. seeds. Anal. Methods 2014, 6, 4845–4852. [Google Scholar] [CrossRef]
Nutritional Composition | Contents [%] |
Water | 3.8–7.0 |
Proteins (phenylalanine, leucine, glutamic acid, glycine, lysine, arginine, valine, aspartic acid, histidine isoleucine, methionine, and threonine) | 18.59–31.2 |
Fats (linoleic acid, oleic acid, eicodiamic acid, myristoleic acid, myristic acid, stearic acid, palmitic acid, sterols (lanosterol, campesterol, β-sitosterol, avenasterol, and stigmasterol), and arachidic acid) | 22.0–56.4 |
Carbohydrates (xylose, arabinose, rhamnose, and glucose) | 24.9–40.0 |
Dietary fiber | 3.7–4.7 |
Fat-Soluble Vitamins | [mg/kg] |
DL-α-tocopherol | 0.177 |
DL-β-tocopherol | 9.027 |
DL-γ-tocopherol | 5.427 |
All trans-retinol | 0.277 |
Water-Soluble Vitamins | [mg/kg] |
Vitamin B1 | 13–18 |
Vitamin B6 | 4–15 |
Niacin | 33–97 |
Folic acid | 400–870 |
Minerals | [mg/100 g] |
Iron | 9.10–15.40 |
Copper | 1.50–3.75 |
Sodium | 41.20–55.0 |
Potassium | 442.3–675.0 |
Calcium | 154.4–305.0 |
Zinc | 3.36–6.60 |
Phosphor | 378.12–576.90 |
Magnesium | 134.90–147.05 |
Active Compounds | Contents [%] |
---|---|
Thymoquinone | 30–48% |
Thymohydroquinone, dithymoquinone, and p-cymene | 7–15% |
Carvacrol | 6–12% |
4-Terpineol | 2–7% |
T-anethol | 1–4% |
Longifolene (a sesquiterpene) | 1–8% |
Nigellicimine, N-tlenek nigellicimine, nigellidine, nigellicine, α-hederin, saponin, carvone, limonene, and citronellol | <1% (trace amounts) |
Intervention | Dose/Duration | Study Group | Results | Bibliography |
---|---|---|---|---|
Thymoquinone | 10 mg/kg body weight /20 days | 40 male rats Sprague–Dawley | 1. TQ treatment reduced macroscopic arthritis score, CRP levels, synovitis, pannus formation, and bone erosion. 2. The level of TLR2, TLR4, IL-1, NF-κB mRNA, and TNF-α was also decreased. 3. TQ also normalized hematology markers and showed no signs of hepatotoxicity or nephrotoxicity. | Arjumand et al. (2019) [84] |
Nigella sativa oil | 1.82 mL/kg or 0.91 mL/kg (this corresponds to 1596 and 798 mg/kg respectively) /25 days | Rats with arthritis by using Freund’s complete adjuvant (CFA) | 1. Significant reduction in paw volume compared to the control group. 2. Significant antinociceptive effect in the contralateral hind paw compared to the control group. 3. No significant antinociceptive activity in the inoculated hind paw compared to the CFA control group. | Nasuti et al. (2019) [85] |
Thymoquinone |
2 mg/kg body weight /15 days | Ratswith arthritis | Significant reductions in paw weight and histopathology score (e.g., inflammatory cells and synovial hyperplasia) compared to the arthritic control. | Faisal et al. (2018) [86] |
Thymoquinone | 2 mg/kg body weight /15 days | 32 female Sprague–Dawley rats | Significant reduction in TLC (total leukocyte count) and clinical assessment of inflammation, and improvement in blood urea and serum creatinine compared to arthritis control. | Faisal et al. (2015) [87] |
Thymoquinone | 2 mg/kg body weight /15 days | Rats with arthritis | Significant reduction in TLC (total leukocyte count) and inflammatory cell counts compared to the arthritic control group. | Faisal et al. (2015) [88] |
Thymoquinone | 2 mg/kg body weight /15 days | Rats with arthritis | Significant decrease in the clinical assessment of inflammation and TLC (total leukocyte count) and normalization of DLC (differential leukocyte count). | Faisal et al. (2015) [89] |
Intervention | Dose/Duration | Study Group | Results | Bibliography |
---|---|---|---|---|
Black cumin oil capsules | 1 g/day (2 capsules, 500 mg/day) /8 weeks | n = 50 patients (39 complete completion) (intervention group n = 23; placebo group n = 16) | 1. Significant decrease in the DAS-28 score compared to the placebo group. 2. Serum IL-10 level was increased in the intervention group (p < 0.01), and there was a reduction in MDA and NO in serum in comparisonto the baseline value (p < 0.05). 3. No significant differencesin serum IL-10, TNF-α, MDA, SOD, catalase, TAC, and NOcompared to the placebo group. | Hadi et al.(2016) [72] |
Black cumin oil capsules | 1 g/day (2 capsules, 500 mg/day) /8 weeks | n = 43 women (intervention group n = 23; placebo group n = 20) | 1. Significant reduction in DAS-28 and CD8 + score comparedto the placebo group. 2. Significant increase in CD4 + / CD8 + ratio and percentage of CD4 + CD25 + regulatory T cells compared tothe placebo group. 3. No significant changes in the percentage of CD4 + T cells compared to the placebo group. | Kheirouri et al. (2016) [91] |
1st group: low-calorie diet with 3 g/day of Nigella sativa oil. 2nd group: low calorie diet with 3 g/day placebo for 8 weeks. | 3 g/day /8 weeks | n = 90 volunteers (84 years of age completed the study women) (intervention group n = 43; placebo group n = 41) | 1. Nigella sativa oil lowered levels of tumor necrosis factor TNF-α and C-reactive protein with high sensitivity compared to the placebo group. 2. There were no significant changes in the levels of interleukin-6 in the Nigella sativa group compared to the placebo group. | Mahdavi et al. (2016) [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, M.; Dereń, K.; Polak-Szczybyło, E.; Stępień, A.E. The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy—Current Reports. Nutrients 2021, 13, 3369. https://doi.org/10.3390/nu13103369
Zielińska M, Dereń K, Polak-Szczybyło E, Stępień AE. The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy—Current Reports. Nutrients. 2021; 13(10):3369. https://doi.org/10.3390/nu13103369
Chicago/Turabian StyleZielińska, Magdalena, Katarzyna Dereń, Ewelina Polak-Szczybyło, and Agnieszka Ewa Stępień. 2021. "The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy—Current Reports" Nutrients 13, no. 10: 3369. https://doi.org/10.3390/nu13103369
APA StyleZielińska, M., Dereń, K., Polak-Szczybyło, E., & Stępień, A. E. (2021). The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy—Current Reports. Nutrients, 13(10), 3369. https://doi.org/10.3390/nu13103369