Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Preparation and Characterization of Nanoliposomes
Characterization of Nanoliposomes
- Size and Zeta potential (Charge)
- b.
- Encapsulation efficiency (%EE) and drug loading (%DL)
- c.
- Drug release
- d.
- Transmission electron microscopy (TEM)
2.3. Cell Viability Assay (MTT)
2.4. Statistical Analysis
3. Results
3.1. Characterization of Nanoliposomes
3.1.1. Effect of Lipid Ratio on Particle Size, PDI, Zeta Potential and EE
3.1.2. Effect of Capsaicin Amount on Particle Size, PDI, Zeta Potential, %EE and %DL
3.1.3. Stability of Liposomal Formulations
3.2. In Vitro Anticancer Activity (Cell Viability Assay)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A375 | Malignant melanoma skin cancer |
C. annuum L. | Capsicum annuum Linnaeus |
CAP | Capsaicin |
DDs | Drug Delivery Systems |
DLS | Dynamic Light Scattering |
DMSO | Dimethyl Sulfoxide |
DPPC | 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine |
DSC | Differential Scanning Calorimetry |
DSPE-PEG2000 | 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-NPEG2000 |
EE | Encapsulation Efficiency |
EGFR | Epidermal growth factor receptor |
EMEM | Eagle’s Minimum Essential Medium |
FBS | Fetal bovine serum |
FDA | Food and Drug Administration |
HPLC | High performance liquid chromatography |
H0 | Null hypothesis |
Ha | Null hypothesis |
IC50 | Half maximal inhibitory concentration |
k562 | Myelogenous leukemia cancer cell line |
LLOD | Lower limit of Detection |
LLOQ | Lower limit of Quantitation |
MCF-7 | Breast cancer cell line, Michigan Cancer Foundation-7 |
MDA-MB-231 | Triple-negative breast cancer (TNBC) |
MEM | Minimum Essential Medium |
MTT | 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium Bromide solution |
NP | Nanoparticles |
PBS | Phosphate Buffered Saline |
PANC1 | Pancreas cancer |
PDI | Polydispersity Index |
RPMI | RPMI 1640 growth medium |
TEM | Transmission Electron Microscopy |
TRPV1 | The transient receptor potential cation channel subfamily V member 1 |
Z | Zeta |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.; Torre, L.; Jemal, A. Global cancer statistics 2018: GLO-BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islami, F.; Miller, K.; Jemal, A. Cancer burden in the United States—A review. Ann. Cancer Epidemiol. 2018, 1, 1. [Google Scholar] [CrossRef]
- Abebe, W. An Overview of Ethiopian Traditional Medicinal Plants Used for Cancer Treatment. Eur. J. Med. Plants 2016, 14, 1–16. [Google Scholar] [CrossRef]
- Sharifa, E.W.; Fuad, I.; Hayati, Y.; Zafar, A.; Wanda, K.G. Observational Study on Patient’s Satis-factions and Quality of Life (QoL) Among Cancer Patients Receiving Treatment with Palliative Care Intent in a Tertiary Hospital in Malaysia. Asian Pac. J. Cancer Prev. 2014, 15, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Kreso, A.; Dick, J.E. Evolution of the Cancer Stem Cell Model. Cell Stem Cell 2014, 14, 275–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargar, A.; Chang, S.; Kothari, A.; Snijders, A.M.; Mao, J.-H.; Wang, J.; Hernández, A.C.; Keasling, J.D.; Bivona, T.G. Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy. Chronic Dis. Transl. Med. 2019, 5, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, W.; Hillaireau, H.; Fattal, E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv. Drug Deliv. Rev. 2018, 134, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Król, M.; Pawlowski, K.; Majchrzak, K.; Szyszko, K.; Motyl, T. Why chemotherapy can fail? Pol. J. Veter. Sci. 2010, 13, 399–406. [Google Scholar]
- Hambley, T.W. Physiological Targeting to Improve Anticancer Drug Selectivity. Aust. J. Chem. 2008, 61, 647–653. [Google Scholar] [CrossRef]
- Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konradsdottir, F. Effects of cyclodextrins on drug de-livery through biological membrane. J. Pharm. Sci. 2007, 96, 2532–2546. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updates 2004, 6, 97–110. [Google Scholar] [CrossRef]
- David, B.; Wolfender, J.-L.; Dias, D. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015, 14, 299–315. [Google Scholar] [CrossRef]
- Puvača, N. Bioactive compounds in selected hot spices and medicinal plants. J. Agron. 2018, 1, 8–17. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Samydai, A.; Al-Mamoori, F.; Abdelnabi, H.; Aburjai, T. An updated review on anticancer ac-tivity of capsaicin. Int. J. Sci. Technol. Res. 2019, 8, 2625–2631. [Google Scholar]
- Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S. A Comprehensive Review of the Carcinogenic and Anticarcinogenic Potential of Capsaicin. Toxicol. Pathol. 2012, 40, 847–873. [Google Scholar] [CrossRef] [PubMed]
- Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release 2014, 196, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, W.; Jiang, X.Y.; Zhu, Y.; Omari-Siaw, E.; Deng, W.W.; Yu, J.N.; Xu, X.M.; Zhang, W.M. Oral delivery of capsaicin using MPEG-PCL NPs1. Acta Pharmacol. Sin. 2015, 36, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principal Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
- Giri, T.K.; Giri, A.; Barman, T.K.; Maity, S. Nanoliposome is a Promising Carrier of Protein and Peptide Biomolecule for the Treatment of Cancer. Anti-Cancer Agents Med. Chem. 2016, 16, 816–831. [Google Scholar] [CrossRef]
- Lv, L.; Zhuang, Y.X.; Zhang, H.W.; Tian, N.N.; Dang, W.Z.; Wu, S.Y. Capsaicin- loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed. Pharmacother. 2017, 91, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 1–40. [Google Scholar] [CrossRef]
- Abdelnabi, H.; Alshaer, W.; Azzam, H.; Alqudah, D.; Al-Samydai, A.; Aburjai, T. Loading of capsaicin-in-cyclodextrin inclusion complexes into PEGylated liposomes and the inhibitory effect on IL-8 production by MDA-MB-231 and A549 cancer cell lines. Z. Naturforschung C 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, M.; Zhang, J.; Peng, W.; Firempong, C.K.; Deng, W.; Wang, Q.; Wang, S.; Shi, F.; Yu, J.; et al. Improved oral bioavailability of Cap via liposomal nanoformulation: Preparation, in vitro drug release and pharmacokinetics in rats. Arch. Pharmacal. Res. 2015, 38, 512–521. [Google Scholar] [CrossRef]
- Alshaer, W.; Zraikat, M.; Amer, A.; Nsairat, H.; Lafi, Z.; Alqudah, D.A.; Al Qadi, E.; Alsheleh, T.; Odeh, F.; Alkaraki, A.; et al. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: In vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Adv. 2019, 9, 30976–30988. [Google Scholar] [CrossRef] [Green Version]
- Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Al-Samydai, A.; Aburjai, T.; Alshaer, W.; Azzam, H.; Al-Mamoori, F. Qualitative and Quantitative Analysis of Capsaicin from Capsicum annum Grown in Jordan. Int. J. Res. Pharm. Sci. 2019, 10, 3768–3774. [Google Scholar] [CrossRef]
- Al-Mamoori, F.; Al-Samydai, A.; Aburjai, T. Medicinal Plants for The Prevention And Management Of Nephrolithiasis: A Review. Int. J. Sci. Technol. Res. 2019, 8, 2700–2705. [Google Scholar]
- Sultana, Y.; Aqil, M. Liposomal Drug Delivery Systems: An Update Review. Curr. Drug Deliv. 2007, 4, 297–305. [Google Scholar] [CrossRef]
- Zarrabi, A.; Abadi, M.A.; Khorasani, S.; Mohammadabadi, M.; Jamshidi, A.; Torkaman, S.; Taghavi, E.; Mozafari, M.R.; Rasti, B. Nanoliposomes and Tocosomes as Multifunctional Nanocarriers for the Encapsulation of Nutraceutical and Dietary. Molecules 2020, 25, 638. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.H.; Moallem, S.A.; Mehri, S.; Shahsavand, S.; Nassirli, H.; Malaekeh-Nikouei, B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm. Biol. 2011, 49, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. Pharm. Ther. 2017, 42, 742–755. [Google Scholar]
- De Pace, R.C.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Ca, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res. 2013, 23, 187–196. [Google Scholar] [CrossRef]
- Song, H.; Zhang, J.; Han, Z.; Zhang, X.; Li, Z.; Zhang, L.; Fu, M.; Lin, C.; Ma, J. Pharmacokinetic and cytotoxic studies of pegylated liposomal daunorubicin. Cancer Chemother. Pharmacol. 2005, 57, 591–598. [Google Scholar] [CrossRef]
- Maherani, B. Encapsulation and Targeting of Biofunctional Molecules in Nanoliposomes: Study of Physico-Chemical properties and Mechanisms of Transfer through Liposome membrane. Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2012. [Google Scholar]
- Bode, A.M.; Cho, Y.-Y.; Zheng, D.; Zhu, F.; Ericson, M.E.; Ma, W.-Y.; Yao, K.; Dong, Z. Transient Receptor Potential Type Vanilloid 1 Suppresses Skin Carcinogenesis. Cancer Res. 2009, 69, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci. 2008, 65, 1566–1584. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther. 2019, 45, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Chuan, L.I.; Zhang, J.; Yu-Jiao, Z.U.; Shu-Fang, N.I.E.; Jun, C.A.O.; Qian, W.A.N.G.; Shu, W.A.N.G. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin. J. Nat. Med. 2015, 13, 641–652. [Google Scholar]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef] [PubMed]
Formula | Mean | Std. | Minimum | Maximum | ANOVA | Multiple Comparisons LSD | ||||
---|---|---|---|---|---|---|---|---|---|---|
F | p Value | (I) F | (J) F | Sig. | ||||||
Size | F # 1 | 99.48 * | 3.90 | 94.57 | 106.40 | 6.23 | 0.006 | F # 1 | F # 2 | 0.009 |
F # 2 | 118.54 * | 14.18 | 98.91 | 130.50 | F # 3 | 0.003 | ||||
F # 3 | 123.68 * | 22.72 | 95.12 | 149.00 | F # 2 | F # 1 | 0.009 | |||
- | - | - | - | - | F # 3 | 0.458 | ||||
PDI | F # 1 | 0.11 | 0.04 | 0.05 | 0.15 | 0.811 | 0.455 NS | - | - | - |
F # 2 | 0.13 | 0.04 | 0.09 | 0.19 | - | - | - | |||
F # 3 | 0.12 | 0.02 | 0.09 | 0.16 | - | - | - | |||
Charge | F # 1 | −12.44 | 0.87 | −14.20 | −11.00 | 3.04 | 0.064 NS | - | - | - |
F # 2 | −13.87 | 2.33 | −17.00 | −11.00 | - | - | - | |||
F # 3 | −14.61 | 1.99 | −17.50 | −12.20 | - | - | - | |||
%EE | F # 1 | 17.34 | 3.67 | 13.54 | 21.90 | 1.22 | 0.312 NS | - | - | - |
F # 2 | 22.38 | 6.02 | 17.11 | 32.10 | - | - | - | |||
F # 3 | 19.28 | 1.67 | 17.52 | 21.35 | - | - | - |
ANOVA | Maximum | Minimum | SD | Mean | Formula | ||
---|---|---|---|---|---|---|---|
p-Value | F | ||||||
0.328 | 1.2 | 130.5 | 98.91 | 14.2 | 118.54 | F # 2 | Size NS |
192.3 | 127.8 | 30.91 | 155.68 | F # 4 | |||
118.9 | 106.4 | 6.42 | 112.48 | F # 5 | |||
132.3 | 95.97 | 19.02 | 114.18 | F # 6 | |||
110.2 | 102.2 | 2.89 | 106.56 | F # 7 | |||
0.522 | 0.769 | 0.19 | 0.09 | 0.039 | 0.13 | F # 2 | PDI NS |
0.58 | 0.09 | 0.19 | 0.251 | F # 4 | |||
0.15 | 0.08 | 0.035 | 0.115 | F # 5 | |||
0.15 | 0.1 | 0.017 | 0.121 | F # 6 | |||
0.14 | 0.08 | 0.025 | 0.106 | F # 7 | |||
0.488 | 0.834 | −11 | −17 | 2.4 | −13.87 | F # 2 | Charge NS |
−10.2 | −13.6 | 1.31 | −12.01 | F # 4 | |||
−13.6 | −15.9 | 0.9 | −14.56 | F # 5 | |||
−11.3 | −15.7 | 1.98 | −12.91 | F # 6 | |||
−12.6 | −14.7 | 0.78 | −13.68 | F # 7 |
Mean (μM) | Std. Deviation | ANOVA | Multiple Comparisons LSD | |||||
---|---|---|---|---|---|---|---|---|
F | p-Value | (I) F | (J) F | p-Value | ||||
CAP-loaded nanoliposomes | MCF7 | 13.66 * | 5.97 | 76.83 | <0.001 | Fibro | MCF7 | <0.001 |
MDA | 39.72 * | 2.02 | MDA | <0.001 | ||||
K562 | 17.88 * | 5.97 | K562 | <0.001 | ||||
PANC-1 | 23.04 * | 2.60 | PANC-1 | <0.001 | ||||
A375 | 13.32 * | 2.53 | A375 | <0.001 | ||||
Fibro | 66.77 * | 3.70 | - | - | ||||
CAP | MCF7 | 590.81 * | 10.15 | 4488.32 | <0.001 | Fibro | MCF7 | <0.001 |
MDA | 659.35 * | 6.03 | MDA | <0.001 | ||||
K562 | 430.21 * | 5.09 | K562 | <0.001 | ||||
PANC-1 | 703.87 * | 3.16 | PANC-1 | <0.001 | ||||
A375 | 193.50 * | 2.53 | A375 | <0.001 | ||||
Fibro | 796.28 * | 3.03 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Samydai, A.; Alshaer, W.; Al-Dujaili, E.A.S.; Azzam, H.; Aburjai, T. Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes. Nutrients 2021, 13, 3995. https://doi.org/10.3390/nu13113995
Al-Samydai A, Alshaer W, Al-Dujaili EAS, Azzam H, Aburjai T. Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes. Nutrients. 2021; 13(11):3995. https://doi.org/10.3390/nu13113995
Chicago/Turabian StyleAl-Samydai, Ali, Walhan Alshaer, Emad A. S. Al-Dujaili, Hanan Azzam, and Talal Aburjai. 2021. "Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes" Nutrients 13, no. 11: 3995. https://doi.org/10.3390/nu13113995
APA StyleAl-Samydai, A., Alshaer, W., Al-Dujaili, E. A. S., Azzam, H., & Aburjai, T. (2021). Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes. Nutrients, 13(11), 3995. https://doi.org/10.3390/nu13113995