Mineral Micronutrients in Asthma
Abstract
:1. Introduction
2. Micronutrients of High Impact on Immunity and Major Features of Asthma
2.1. Copper
2.2. Selenium
2.3. Zinc
3. Micronutrients Affecting the Main Risk Factors of Asthma
3.1. Chromium
3.2. Iodine
3.3. Iron
3.4. Manganese
4. Micronutrients of Minor or Unknown Influence on the Course of Asthma
4.1. Boron
4.2. Cobalt
4.3. Fluorine
4.4. Molybdenum
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- CDC. Available online: https://www.cdc.gov/nutrition/micronutrient-malnutrition/micronutrients/index.html (accessed on 10 September 2021).
- Available online: https://apps.who.int/iris/handle/10665/325771 (accessed on 10 September 2021).
- Available online: https://www.nhs.uk/conditions/vitamins-and-minerals/others/ (accessed on 10 September 2021).
- Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients 2020, 12, 2358. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/health-topics/micronutrients#tab=tab_1 (accessed on 10 September 2021).
- GINA Global Initiative for Asthma; Global Strategy for Asthma Management and Prevention. Available online: www.ginasthma.org (accessed on 10 September 2021).
- Guo, C.-H.; Liu, P.J.; Lin, K.P.; Chen, P.C. Nutritional supplement therapy improves oxidative stress, immune response, pulmonary function, and quality of life in allergic asthma patients: An open-label pilot study. Altern. Med. Rev. 2012, 17, 42–56. [Google Scholar] [PubMed]
- Kocygit, A.; Zeyrek, D.; Keles, H.; Koylu, A. Relationship among manganese, arginase, and nitric oxide in childhood asthma. Biol. Trace Elem. Res. 2004, 102, 11–18. [Google Scholar] [CrossRef]
- Kocyigit, A.; Armutcu, F.; Gurel, A.; Ermis, B. Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma. Biol. Trace Elem. Res. 2004, 97, 31–41. [Google Scholar] [CrossRef]
- Devirgiliis, C.; Zalewski, P.D.; Perozzi, G.; Murgia, C. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat. Res. 2007, 622, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.D.; Duncan, A.; Noble, D.; Imrie, M.; O’Reilly, D.S.; Innes, J.A.; Porteous, D.J.; Greening, A.P.; Boyd, A.C. Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest 2010, 137, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Di Toro, R.; Capotorti, M.G.; Gialanella, G.; del Giudice, M.M.; Moro, R.; Perrone, L. Zinc and copper status of allergic children. Acta Paediatr. Scand. 1987, 76, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Verrills, N.M.; Irwin, J.A.; He, X.Y.; Wood, L.G.; Powell, H.; Simpson, J.L.; McDonald, V.M.; Sim, A.; Gibson, P.G. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2011, 183, 1633–1643. [Google Scholar] [CrossRef] [Green Version]
- Ariaee, N.; Farid, R.; Shabestari, F.; Shabestari, M.; Jabbari Azad, F. Trace elements status in sera of patients with allergic asthma. Rep. Biochem. Mol. Biol. 2016, 5, 20–25. [Google Scholar]
- Guo, C.H.; Liu, P.J.; Hsia, S.; Chuang, C.J.; Chen, P.C. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann. Clin. Biochem. 2011, 48, 344–351. [Google Scholar] [CrossRef]
- Moresco, M.B.; da Silveira Fleck, A.; Hornos Carneiro, M.F.; Barbosa Júnior, F.; Luis Amantea, S.; Ramos Rhoden, C. Trace elements concentration in nails and association with airway inflammation in adolescents. Biol. Trace Elem. Res. 2014, 161, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Wang, C.L.; Chen, P.C.; Yang, T.C. Linkage of some trace elements, peripheral blood lymphocytes, inflammation, and oxidative stress in patients undergoing either hemodialysis or peritoneal dialysis. Perit. Dial. Int. 2011, 31, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Caramori, G.; Adcock, I.M. Therapeutic potential of phosphate-dylinositol 3-kinase inhibitors in inflammatory respiratory disease. J. Pharmacol. Exper. Therap. 2007, 321, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, T.; Ghio, A.J.; Reed, W.; Samet, J.; Zagorski, J.; Quay, J.; Carter, J.; Dailey, L.; Hoidal, J.R.; Devlin, R.B. Copper-dependent inflammation and nuclear factor-kB activation by particulate air pollution. Am. J. Respir. Cell Mol. Biol. 1998, 19, 366–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrakhovitch, E.A.; Lordnejad, M.R.; Schliess, F.; Sies, H.; Klotz, L.O. Copper ions strongly activate the phosphoinositide-3-Kinase/Akt pathway independent of the generation of reactive oxygen species. Arch. Biochem. Biophys. 2002, 397, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Winter, N.A.; Gibson, P.G.; Fricker, M.; Simpson, J.L.; Wark, P.A.; McDonald, V.M. Hemopexin: A novel anti-inflammatory marker for distinguishing COPD from asthma. Allergy Asthma Immunol. Res. 2021, 13, 450–467. [Google Scholar] [CrossRef] [PubMed]
- Tjin, G.; White, E.S.; Faiz, A.; Sicard, D.; Tschumperlin, D.J.; Mahar, A.; Kable, E.P.W.; Burgess, J.K. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. Dis. Model. Mech. 2017, 10, 1301–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.C.; Bernhisel, A.A.; Curtin, K.; Allingham, R.R.; Ritch, R.; Wirostko, B.M. Association between chronic obstructive pulmonary disease and exfoliation syndrome: The Utah project on exfoliation syndrome. Ophthalmol. Glaucoma. 2019, 2, 3–10. [Google Scholar] [CrossRef]
- Mäki, J.M.; Sormunen, R.; Lippo, S.; Kaarteenaho-Wiik, R.; Soininen, R.; Myllyharju, J. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am. J. Pathol. 2005, 167, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Rucker, R.B.; Kosonen, T.; Clegg, M.S.; Mitchell, A.E.; Rucker, B.R.; Uriu-Hare, J.Y.; Keen, C.L. Copper, lysyl oxidase, and extracellular matrix protein cross-linking1–3. Am. J. Clin. Nutr. 1998, 67, 996S–1002S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeve, H.R.; Frederic, B.J.M.; Thunnissen, F.; Kaneko, T.; Guo, F.H.; Lewis, M.; Kavuru, M.S.; Secic, M.; Thomassen, M.J.; Erzurum, S.C. Decreased Cu, Zn-SOD activity in asthmatic airway epithelium: Correction by inhaled corticosteroid in vivo. Am. J. Physiol. 1997, 272, L148–L154. [Google Scholar] [CrossRef] [PubMed]
- Comhair, S.A.; Xu, W.; Ghosh, S.; Thunnissen, F.B.; Almasan, A.; Calhoun, W.J.; Janocha, A.J.; Zheng, L.; Hazen, S.L.; Erzurum, S.C. Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity. Am. J. Pathol. 2005, 166, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Kinnula, V.L.; Crapo, J.D. Superoxide dismutases in the lung and human lung diseases. Am. J. Respir. Crit. Care Med. 2003, 167, 1600–1619. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Geng, X.; McDermott, J.; Shen, J.; Corbin, C.; Xuan, S.; Kim, J.; Zuo, L.; Liu, Z. Copper deficiency in the lungs of TNF-α transgenic mice. Front. Physiol. 2016, 7, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, C.; Wolf, N.M.; Strydom, J.; Faherty, L.; Williams, N.C.; Kenny, S.; Donnelly, S.C.; Cloonan, S.M. Nutritional immunity: The impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir. Res. 2021, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.C.; Hoffmann, P.R. Selenium, selenoproteins and immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, K.M.; Arthur, J.R. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001, 4, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, P.R.; Berry, M.J. The influence of selenium on immune responses. Mol. Nutr. Food Res. 2008, 52, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Eukaryotic selenoproteins and selenoproteomes. Biochim. Biophys. Acta 2009, 1790, 1424–1428. [Google Scholar] [CrossRef] [Green Version]
- Norton, R.L.; Hoffmann, P.R. Selenium and asthma. Mol. Asp. Med. 2012, 33, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Misra, S.; Prabhu, K.S. Selenium and selenoproteins in prostanoid metabolism and immunity. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 484–516. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, M.F.; Ramos Rhoden, C.; Amantéa, S.L.; Barbosa, F., Jr. Low concentrations of selenium and zinc in nails are associated with childhood asthma. Biol. Trace Elem. Res. 2011, 144, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Broome, C.S.; McArdle, F.; Kyle, J.A.; Andrews, F.; Lowe, N.M.; Hart, C.A.; Arthur, J.R.; Jackson, M.J. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am. J. Clin. Nutr. 2004, 80, 154–162. [Google Scholar] [CrossRef]
- Jeong, D.-W.; Yoo, M.-H.; Kim, T.S.; Kim, J.-H.; Kim, I.Y. Protection of mice from allergen-induced asthma by selenite: Prevention of eosinophil infiltration by inhibition of NF-kappa B activation. J. Biol. Chem. 2002, 277, 17871–17876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, S.O.; Sterne, J.A.; Thompson, R.L.; Songhurst, C.E.; Margetts, B.M.; Burney, P.G. Dietary antioxidants and asthma in adults: Population-based case-control study. Am. J. Respir. Crit. Care Med. 2001, 164, 1823–1828. [Google Scholar] [CrossRef] [PubMed]
- Allan, K.; Devereux, G.J. Diet and asthma: Nutrition implications from prevention to treatment. Am. Diet. Assoc. 2011, 111, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larsen, V.; Del Giacco, S.R.; Moreira, A.; Bonini, M.; Charles, D.; Reeves, T.; Carlsen, K.-H.; Haahtela, T.; Bonini, S.; Fonseca, J.; et al. Asthma and dietary intake: An overview of systematic reviews. Allergy 2016, 71, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Kadrabová, J.; Madaric, A.; Kovaciková, Z.; Podivínsky, F.; Ginter, E.; Gazdík, F. Selenium status is decreased in patients with intrinsic asthma. Biol. Trace Elem. Res. 1996, 52, 241–248. [Google Scholar] [CrossRef]
- Omland, O.; Deguchi, Y.; Sigsgaard, T.; Hansen, J.C. Selenium serum and urine is associated to mild asthma and atopy. The SUS study. Trace Elem. Med. Biol. 2002, 16, 123–127. [Google Scholar] [CrossRef]
- Fabian, E.; Pölöskey, P.; Kósa, L.; Elmadfa, I.; Attila Réthy, L. Nutritional supplements and plasma antioxidants in childhood asthma. Wien. Klin. Wochenschr. 2013, 125, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Kuti, B.P.; Kuti, D.K.; Smith, O.S. Serum zinc, selenium and total antioxidant contents of Nigerian children with asthma: Association with disease severity and symptoms control. J. Trop Ped. 2020, 66, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Green, L.S. Asthma and oxidant stress: Nutritional, environmental, and genetic risk factors. J. Am. Coll. Nutr. 1995, 14, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Devereux, G.; Turner, S.W.; Craig, L.C.A.; McNeill, G.; Martindale, S.; Harbour, P.J.; Helms, P.J.; Seaton, A. Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am. J. Respir. Crit. Care Med. 2006, 174, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Cassano, P.A. Antioxidant nutrients and pulmonary function: The Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Epidemiol. 2000, 151, 975–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, R.N.; Navon, L.; Cassano, P.A. Relationship of serum antioxidants to asthma prevalence in youth. Am. J. Respir. Crit. Care Med. 2004, 169, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Macias, H.; Romieu, I. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J. Allergy Clin. Immunol. 2014, 133, 1237–1244. [Google Scholar] [CrossRef]
- Shaw, R.; Woodman, K.; Crane, J.; Moyes, C.; Kennedy, J.; Pearce, N. Risk factors for asthma symptoms in Kawerau children. N. Z. Med. J. 1994, 107, 387–391. [Google Scholar]
- Chen, M.; Sun, Y.; Wu, Y. Lower circulating zinc and selenium levels are associated with an increased risk of asthma: Evidence from a meta-analysis. Public Health Nutr. 2020, 23, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Baiz, N.; Chastang, J.; Ibanez, G.; Annesi-Maesano, I. Prenatal exposure to selenium may protect against wheezing in children by the age of 3 Immunity. Inflamm. Dis. 2017, 5, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.O.; Rutterford, C.M.; Lewis, S.J.; Ring, S.M.; Holloway, J.W.; Golding, J.; Henderson, A.J. Maternal selenium status in pregnancy, offspring glutathione peroxidase 4 genotype, and childhood asthma. J. Allergy Clin. Immunol. 2015, 135, 1083–1085.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkeheim, E.; Mowinckel, P.; Carlsen, K.H.; Burney, P.; Carlsen, K.C.L. Altered oxidative state in schoolchildren with asthma and allergic rhinitis. Pediatr. Allergy Immunol. 2011, 22, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, G.A.; Yee, K.C.; Ng, C.H. Elevated plasma glutathione peroxidase concentration in acute severe asthma: Comparison with plasma glutathione peroxidase activity, selenium and malondialdehyde. Scand J. Clin. Lab. Invest. 2007, 67, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.D.; Wickens, K.; Miller, J.; Ingham, T.; Lampshire, P.; Epton, M.J.; Town, G.I.; Pattemore, P.; Crane, J.; Year six New Zealand Asthma and Allergy Cohort Study Group (NZAACS6). Selenium status and allergic disease in a cohort of New Zealand children. Clin. Exp. Allergy 2012, 42, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Urushidate, S.; Matsuzaka, M.; Okubo, N.; Iwasaki, H.; Hasebe, T.; Tsuya, R.; Iwane, K.; Inoue, R.; Yamai, K.; Danjo, K.; et al. Association between concentration of trace elements in serum and bronchial asthma among Japanese general population. J. Trace Elem. Med. Biol. 2010, 24, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Picado, C.; Deulofeu, R.; Lleonart, R.; Agusti, M.; Mullol, J.; Quinto, L.; Torra, M. Dietary micronutrients/antioxidants and their relationship with bronchial asthma severity. Allergy 2001, 56, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Nwaru, B.I.; Erkkola, M.; Ahonen, S.; Kaila, M.; Kronberg-Kippila, C.; Ilonen, J.; Simell, O.; Knip, M.; Veijola, R.; Virtanen, S.M. Intake of antioxidants during pregnancy and the risk of allergies and asthma in the offspring. Eur. J. Clin. Nutr. 2011, 65, 937–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martindale, S.; McNeill, G.; Devereux, G.; Campbell, D.; Russell, G.; Seaton, A. Antioxidant intake in pregnancy in relation to wheeze and eczema in the first two years of life. Am. J. Respir. Crit. Care Med. 2005, 171, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.C.; Ayres, G.A. Diet and asthma. Respir. Med. 2000, 94, 925–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasselmark, L.; Malmgren, R.; Zetterstrom, O. Lowered platelet glutathione peroxidase activity in patients with intrinsic asthma. Allergy 1990, 45, 523–527. [Google Scholar] [CrossRef]
- Gazdík, F.; Piják, M.R.; Gazdíková, K. Need of complementary therapy with selenium in asthmatics. Nutrition 2004, 20, 950–952. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Newson, R.B.; Rayman, M.P.; Wong, A.P.L.; Tumilty, M.K.; Phillips, J.M.; Potts, J.F.; Kelly, F.J.; White, P.T.; Burney, P.G.J. Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax 2007, 62, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safaralizadeh, R.; Nourizadeh, M.; Zare, A.; Kardar, G.A.; Pourpak, Z. Influence of selenium on mast cell mediator release. Biol. Trace Elem. Res. 2013, 154, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Nasab, E.M.; Athari, S.M.; Athari, S.S. Effects of vitamin E and selenium on allergic rhinitis and asthma pathophysiology. Respir. Physiol. Neurobiol. 2021, 286, 103614. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Saw, S.; Govindaraj, D.; Arora, N. Intranasal administration of a combination of choline chloride, vitamin C, and selenium attenuates the allergic effect in a mouse model of airway disease. Free Rad Biol. Med. 2014, 73, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.R. Selenium and asthma: A complex relationship. Allergy 2008, 63, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.R.; Saux, C.J.-L.; Hoffmann, F.W.; Chang, P.S.; Bollt, O.; He, Q.; Tam, E.K.; Berry, M.J. A role for dietary selenium and selenoproteins in allergic airway inflammation. J. Immunol. 2007, 179, 3258–3267. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Rushdya, M.; Abdel-Rehim, A.S.M. The immunomodulatory role of zinc in asthmatic patients. Cytokine 2018, 110, 301–305. [Google Scholar] [CrossRef]
- Suzuki, M.; Suzuki, T.; Watanabe, M.; Hatakeyama, S.; Kimura, S.; Nakazono, A.; Honma, A.; Nakamaru, Y.; Vreugde, S.; Homma, A. Role of intracellular zinc in molecular and cellular function in allergic inflammatory diseases. Allergol. Int. 2021, 70, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Zalewski, P.D.; Truong-Tran, A.Q.; Grosser, D.; Jayaram, L.; Murgia, C.; Ruffin, R.E. Zinc metabolism in airway epithelium and airway inflammation: Basic mechanisms and clinical targets. A review. Pharmacol. Ther. 2005, 105, 127–149. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. J. Trace Elem. Med. Biol. 2014, 28, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.-M.; Kim, Y.H.; Lee, J.H.; Kim, J.S.; Park, Y.M.; Lee, J.Y. Serum zinc status and its association with allergic sensitization: The Fifth Korea National Health and Nutrition Examination Survey. Sci. Rep. 2017, 7, 12637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.S. Impact of the discovery of human zinc deficiency on health. J. Trace Elem. Med. Biol. 2014, 28, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Uysalol, M.; Uysalol, E.P.; Yilmaz, Y.; Parlakgul, G.; Ozden, T.A.; Ertem, H.V.; Omer, B.; Uzel, N. Serum level of vitamin D and trace elements in children with recurrent wheezing: A cross-sectional study. BMC Pediatr. 2014, 14, 270. [Google Scholar] [CrossRef] [Green Version]
- Soutar, A.; Seaton, A.; Brown, K. Bronchial reactivity and dietary antioxidants. Thorax 1997, 52, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaram, L.; Chunilal, S.; Pickering, S.; Ruffin, R.E.; Zalewski, P.D. Sputum zinc concentration and clinical outcome in older asthmatics. Respirology 2011, 16, 459–466. [Google Scholar] [CrossRef]
- Tahan, F.; Karakukcu, C. Zinc status in infantile wheezing. Pediatr. Pulmonol. 2006, 41, 630–634. [Google Scholar] [CrossRef] [PubMed]
- De Cássia Ribeiro-Silva, R.; Fiaccone, R.L.; Barreto, M.L.; da Silva, L.A.; Santos, L.F.P.; Alcantara-Neves, N.M. The prevalence of wheezing and its association with serum zinc concentration in children and adolescents in Brazil. J. Trace Elem. Med. Biol. 2014, 28, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Khanbabaee, G.; Omidian, A.; Imanzadeh, F.; Adibeshgh, F.; Ashayeripanah, M.; Rezaei, N. Serum level of zinc in asthmatic patients: A case-control study. Allergol. Immunopathol. 2014, 42, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, J.; Khalilian, A.; Salehifar, E.; Khorasani, E.; Rezaii, M.S. Effect of zinc supplementation in children with asthma: A randomized, placebo-controlled trial in northern Islamic Republic of Iran East. Mediterr. Health J. 2014, 20, 391–396. [Google Scholar] [CrossRef]
- Siripornpanich, S.; Chongviriyaphan, N.; Manuyakorn, W.; Matangkasombut, P. Zinc and vitamin C deficiencies associate with poor pulmonary function in children with persistent asthma. Asian Pac. J. Allergy Immunol. 2020. Online ahead of print. [Google Scholar] [CrossRef]
- Yilmaz, E.A.; Ozmen, S.; Bostanci, I.; Misirlioglu, E.D.; Ertan, U. Erythrocyte zinc levels in children with bronchial asthma. Pediatr. Pulmonol. 2011, 46, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- AbdulWahab, A.; Zeidan, A.; Avades, T.; Chandra, P.; Soliman, A. Serum zinc level in asthmatic and non-asthmatic school children. Children 2018, 16, 42. [Google Scholar] [CrossRef] [Green Version]
- Sagdic, A.; Sener, O.; Bulucu, F.; Karadurmus, N.; Özel, H.E.; Yamanel, L.; Tasci, C.; Naharci, I.; Ocal, R.; Aydin, A. Oxidative stress status and plasma trace elements in patients with asthma or allergic rhinitis. Allergol. Immunopathol. 2011, 39, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Sprietsma, J.E. Modern diets and diseases: NO-zinc balance. Under Th1, zinc and nitrogen monoxide (NO) collectively protect against viruses, AIDS, autoimmunity, diabetes, allergies, asthma, infectious diseases, atherosclerosis and cancer. Med. Hypotheses 1999, 53, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Kahmann, L.; Uciechowski, P.; Warmuth, S.; Malavolta, M.; Mocchegiani, E.; Rink, L. Effect of improved zinc status on T helper cell activation and TH1/TH2 ratio in healthy elderly individuals. Biogerontology 2006, 7, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Yousef, A.M.; Elmorsy, E. Serum zinc level in bronchial asthma. Egypt J. Chest Dis. Tubercul. 2017, 66, 1–4. [Google Scholar] [CrossRef]
- Xu, R.; Chen, M.-Y.; Liang, W.; Chen, Y.; Guo, M.-Y. Zinc deficiency aggravation of ROS and inflammatory injury leading to renal fibrosis in mice. Biol. Trace Elem. Res. 2021, 199, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Knoell, D.L. Zinc modulates airway epithelium susceptibility to death receptor-mediated apoptosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L433–L441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong-Tran, A.Q.; Ruffin, R.E.; Foster, P.S.; Koskinen, A.M.; Coyle, P.; Philcox, J.C.; Rofe, A.M.; Zalewski, P.D. Altered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 2002, 27, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Truong-Tran, A.Q.; Grosser, D.; Ruffin, R.E.; Murgia, C.; Zalewski, P.D. Apoptosis in the normal and inflamed airway epithelium: Role of zinc in epithelial protection and procaspase-3 regulation. Biochem. Pharmacol. 2003, 66, 1459–1468. [Google Scholar] [CrossRef]
- Roscioli, E.; Hamon, R.; Lester, S.; Murgia, C.; Grant, J.; Zalewski, P.D. Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways. Biometals 2013, 26, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.L.; Ko, W.-S.; Hsiao, J.-L.; Pan, H.-H.; Chiou, Y.-L. Zinc sulfate improved the unbalanced T cell profiles in Der p-allergic asthma: An ex vivo study. Clin. Respir. J. 2018, 12, 563–571. [Google Scholar] [CrossRef]
- Morgan, C.I.; Ledford, J.R.; Zhou, P.; Page, K. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen. J. Inflamm. (Lond.) 2011, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, C.; Murgia, C.; Leong, M.; Tan, L.-W.; Perozzi, G.; Knight, D.; Ruffin, R.; Zalewski, P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 292, L577–L584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Xin, Y.; Tang, Y.; Shao, G. Zinc suppressed the airway inflammation in asthmatic rats: Effects of zinc on generation of eotaxin, MCP-1, IL-8, IL-4, and IFN-γ. Biol. Trace Elem. Res. 2012, 150, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Rerksuppaphol, S.; Rerksuppaphol, L. Zinc supplementation in children with asthma exacerbation. Pediatr. Rep. 2016, 8, 6685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J. Is the Pharmacological Mode of Action of Chromium (III) as a secondary messenger? Biol. Trace Elem. Res. 2015, 166, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ovesen, J.L.; Puga, A. Long-term exposure to hexavalent chromium inhibits expression of tumor suppressor genes in cultured cells and in mice. J. Trace Elem. Med. Biol. 2012, 26, 188–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maret, W. Chromium supplementation in human health, metabolic syndrome, and diabetes. Met. Ions Life Sci. 2019, 19, 231–251. [Google Scholar]
- Park, H.S.; Yu, H.J.; Jung, K.S. Occupational asthma caused by chromium. Clin. Exp. Allergy 1994, 24, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Gelardi, M.; Guarino, R.; Taliente, S.; Quaranta, N.; Carpentieri, A.; Passalacqua, G. Allergic and nonallergic rhinitis and skin sensitization to metals: Is there a link? Eur. Ann. Allergy Clin. Immunol. 2017, 49, 106–109. [Google Scholar] [PubMed]
- Jin, Y.; Liu, L.; Zhang, S.; Tao, B.; Tao, R.; He, X.; Qu, L.; Huang, J.; Wang, X.; Fu, Z. Chromium alters lipopolysaccharide-induced inflammatory responses both in vivo and in vitro. Chemosphere 2016, 148, 436–443. [Google Scholar] [CrossRef] [PubMed]
- De Flora, S.; Serra, D.; Camoirano, A.; Zanacchi, P. Metabolic reduction of chromium, as related to its carcinogenic properties. Biol. Trace Elem. Res. 1989, 21, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.C.; Constant, S.L.; Patierno, S.R.; Jurjus, R.A.; Ceryak, S.M. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology. Toxicol. Appl. Pharmacol. 2012, 259, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaver, L.M.; Stemmy, E.J.; Schwartz, A.M.; Damsker, J.M.; Constant, S.L.; Ceryak, S.M.; Patierno, S.R. Lung inflammation, injury, and proliferative response after repetitive particulate hexavalent chromium exposure. Environ. Health Perspect. 2009, 117, 1896–1902. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kruszewski, A.; Brautigan, D.L. Cellular chromium enhances of insulin receptor kinase. Biochemistry 2005, 44, 8167–8175. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.M.; Vincent, J.B. Chromium oligopeptide activates insulin receptor kinase activity. Biochemistry 1997, 36, 4382–4385. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Lai, M.H.; Hou, W.C.; Huang, C.L. Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. J. Agric. Food Chem. 2004, 5, 1385–1389. [Google Scholar] [CrossRef]
- Sundaram, B.; Singhal, K.; Sandhir, R. Ameliorating effect of chromium administration on hepatic glucose metabolism in streptozotocin-induced experimental diabetes. Biofactors 2012, 38, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Sushko, O.O.; Iskra, R.J.; Ponkalo, L.I. Influence of chromium citrate on oxidative stress in the tissues of muscle and kidney of rats with experimentally induced diabetes. Regul. Mech. Biosyst. 2019, 10, 209–214. [Google Scholar] [CrossRef]
- Kolahian, S.; Sadri, H.; Shahbazfar, A.A.; Amani, M.; Mazadeh, A.; Mirani, M. The effects of leucine, zinc, and chromium supplements on inflammatory events of the respiratory system in type 2 diabetic rats. PLoS ONE 2015, 10, e0133374. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.M.; Braveman, L.E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2014, 10, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekri, M.S.; Shokoohi, M.; Gozashti, M.-H.; Esmailian, S.; Jamshidian, N.; Shadkam-Farokhi, M.; Lashkarizadeh, M.-R.; Afshar, R.M. Association between anti-thyroid peroxidase antibody and asthma in women. Iran. J. Allergy Asthma. Immunol. 2012, 11, 241–245. [Google Scholar]
- Przybyłowski, J.; Piestrak, J.; Kowalski, D. Triiodothyronine (T3) and thyroxine (T4) levels in patients with bronchial asthma. Wiad. Lek. 1989, 42, 20–24. (In Polish) [Google Scholar] [PubMed]
- Bingyan, Z.; Dong, W. Impact of thyroid hormones on asthma in older adults. J. Int. Med. Res. 2019, 47, 4114–4125. [Google Scholar] [CrossRef]
- Liu, X.; Andersen, S.L.; Olsen, J.; Agerbo, E.; Schlünssen, V.; Dharmage, S.C.; Munk-Olsen, T. Maternal hypothyroidism in the perinatal period and childhood asthma in the offspring. Allergy 2018, 73, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Holt, P.G.; Upham, J.W.; Sly, P.D. Contemporaneous maturation of immunologic and respiratory functions during early childhood: Implications for development of asthma prevention strategies. J. Allergy Clin. Immunol. 2005, 116, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Van Tuyl, M.; Blommaart, P.E.; de Boer, P.A.; Wert, S.E.; Ruijter, J.M.; Islam, S.; Schnitzer, J.; Ellison, A.R.; Tibboel, D.; Moorman, A.F.; et al. Prenatal exposure to thyroid hormone is necessary for normal postnatal development of murine heart and lungs. Dev. Biol. 2004, 272, 104–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, K.V.; Nguyen, L.T. Hyperthyroidism and asthma. J. Asthma 2000, 37, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Manzolli, S.; Macedo-Soares, M.F.; Vianna, E.O.; Sannomiya, P. Allergic airway inflammation in hypothyroid rats. J. Allergy Clin. Immunol. 1999, 104, 595–600. [Google Scholar] [CrossRef]
- Dekkers, B.G.J.; Naeimi, S.; Bos, I.S.T.; Menzen, M.H.; Halayko, A.J.; Hashjin, G.S.; Meurs, H.L. Thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-1. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 308, L301–L306. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.N.; Tattersfield, A.E. Airway response to inhaled salbutamol in hyperthyroid and hypothyroid patients before and after treatment. Thorax 1984, 39, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Birring, S.S.; Patel, R.B.; Parker, D.; McKenna, S.; Hargadon, B.; Monteiro, W.R.; Falconer Smith, J.F.; Pavord, I.D. Airway function and markers of airway inflammation in patients with treated hypothyroidism. Thorax 2005, 60, 249–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, Y.; Noma, T. Modulation of mite antigen-induced immune responses by lecithin-bound iodine in peripheral blood lymphocytes from patients with bronchial asthma. Br. J. Pharmacol. 1995, 115, 1141–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, Y.; Saeki, T.; Noma, T. Effect of lecithin-bound iodine on the patients with bronchial asthma. Int. Immunopharmacol. 2005, 5, 805–810. [Google Scholar] [CrossRef]
- Ghio, A.J. Asthma as a disruption in iron homeostasis. Biometals 2016, 29, 751–779. [Google Scholar] [CrossRef] [PubMed]
- Turi, J.L.; Yang, F.; Garrick, M.D.; Piantadosi, C.A.; Ghio, A.J. The iron cycle and oxidative stress in the lung. Free Radic. Biol. Med. 2004, 36, 850–857. [Google Scholar] [CrossRef]
- Andrews, N.C.; Schmidt, P.J.A. Iron homeostasis. Annu Rev. Physiol. 2007, 69, 69–85. [Google Scholar] [CrossRef]
- Ali, M.K.; Kim, R.Y.; Karim, R.; Mayall, J.R.; Martin, K.L.; Shahandeh, A.; Abbasian, F.; Starkey, M.R.; Loustaud-Ratti, V.; Johnstone, D.; et al. Role of iron in the pathogenesis of respiratory disease. Int. J. Biochem. Cell Biol. 2017, 88, 181–195. [Google Scholar] [CrossRef]
- Ganz, T. Macrophages and systemic iron homeostasis. J. Innate Immun. 2012, 4, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Gammella, E.; Buratti, P.; Cairo, G.; Recalcati, S. Macrophages: Central regulators of iron balance. Metallomics 2014, 6, 1336–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigham, E.P.; McCormack, M.C.; Takemoto, C.M.; Matsui, E.C. Iron status is associated with asthma and lung function in US women. PLoS ONE 2015, 10, e0117545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, K.; Borade, A. Anemia as a risk factor for childhood asthma. Lung India 2010, 27, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Vlasić, Z.; Dodig, S.; Cepelak, I.; Topić, R.Z.; Zivcić, J.; Nogalo, B.; Turkalj, M. Iron and ferritin concentrations in exhaled breath condensate of children with asthma. J. Asthma 2009, 46, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Maazi, H.; Shirinbak, S.; Bloksma, N.; Nawijn, M.C.; van Oosterhout, A.J.M. Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clin. Exp. Immunol. 2011, 166, 80–86. [Google Scholar] [CrossRef]
- Ekmekci, O.B.; Donma, O.; Sardoğan, E.; Yildirim, N.; Uysal, O.; Demirel, H.; Demir, T. Iron, nitric oxide, and myeloperoxidase in asthmatic patients. Biochemistry 2004, 69, 462–467. [Google Scholar] [CrossRef]
- Ekmekci, O.B.; Donma, O.; Ekmekci, H.; Yildirim, N.; Uysal, O.; Sardogan, E.; Demirel, H.; Demir, T. Plasma paraoxonase activities, lipoprotein oxidation, and trace element interaction in asthmatic patients. Biol. Trace Elem. Res. 2006, 111, 41–52. [Google Scholar] [CrossRef]
- Ali, M.K.; Kim, R.Y.; Brown, A.C.; Donovan, C.; Vanka, K.S.; Mayall, J.R.; Liu, G.; Pillar, A.L.; Jones-Freeman, B.; Xenaki, D.; et al. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. Eur. Respir. J. 2020, 55, 1901340. [Google Scholar] [CrossRef]
- Rhew, K.; Brown, J.D.; Oh, J.M. Atopic Disease and Anemia in Korean Patients: Cross-Sectional Study with Propensity Score Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhew, K.; Oh, J.M. Association between atopic disease and anemia in pediatrics: A cross-sectional study. BMC Pediatr. 2019, 19, 455. [Google Scholar] [CrossRef] [PubMed]
- Drury, K.E.; Schaeffer, M.; Silverberg, J.I. Association between atopic disease and anemia in US children. JAMA Pediatr. 2016, 170, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Bibi, H.; Vinokur, V.; Waisman, D.; Elenberg, Y.; Landesberg, A.; Faingersh, A.; Yadid, M.; Brod, V.; Pesin, J.; Berenshtein, E.; et al. Zn/Ga-DFO iron-chelating complex attenuates the inflammatory process in a mouse model of asthma. Redox Biol. 2014, 2, 814–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Ichinose, T.; Yoshida, S.; Nishikawa, M.; Sun, G.; Shibamoto, T. Role of iron and oxidative stress in the exacerbation of allergic inflammation in murine lungs caused by urban particulate matter <2.5 μm and desert dust. J. Appl. Toxicol. 2019, 39, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Actor, J.K.; Hwang, S.A.; Kruzel, M.L. Lactoferrin as a natural immune modulator. Curr. Pharm. Des. 2009, 15, 1956–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a context of inflammation-induced pathology. Front. Immunol. 2017, 8, 1438. [Google Scholar] [CrossRef] [PubMed]
- Bournazou, I.; Mackenzie, K.J.; Duffin, R.; Rossi, A.G.; Gregory, C.D. Inhibition of eosinophil migration by lactoferrin. Immunol. Cell Biol. 2010, 88, 220–223. [Google Scholar] [CrossRef]
- Nwaru, B.I.; Hayes, H.; Gambling, L.; Craig, L.C.A.; Allan, K.; Prabhu, N.; Turner, S.W.; McNeill, G.; Erkkola, M.; Seaton, A.; et al. An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy. Br. J. Nutr. 2014, 112, 2018–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bédard, A.; Lewis, S.J.; Burgess, S.; Henderson, A.J.; Shaheen, S.O. Maternal iron status during pregnancy and respiratory and atopic outcomes in the offspring: A Mendelian randomization study. BMJ Open Resp. Res. 2018, 5, e000275. [Google Scholar] [CrossRef] [Green Version]
- Triche, E.W.; Lundsberg, L.S.; Wickner, P.G.; Belanger, K.; Leaderer, B.P.; Bracken, M.B. Association of maternal anemia with increased wheeze and asthma in children. Ann. Allergy Asthma. Immunol. 2011, 106, 131–139.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quezada-Pinedo, H.G.; Mensink-Bout, S.M.; Reiss, I.K.; Jaddoe, V.W.V.; Vermeulen, M.J.; Duijts, L. Maternal iron status during early pregnancy and school-age, lung function, asthma, and allergy: The Generation R Study. Pediatr. Pulmonol. 2021, 56, 1771–1778. [Google Scholar] [CrossRef]
- Fortes, C.; Mastroeni, S.; Mannooranparampil, T.J.; Di Lallo, D. Pre-natal folic acid and iron supplementation and atopic dermatitis in the first 6 years of life. Arch. Dermatol. Res. 2019, 311, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Flückiger, S.; Scapozza, L.; Mayer, C.; Blaser, K.; Folkers, G.; Crameri, R. Immunological and structural analysis of IgE-mediated cross-reactivity between manganese superoxide dismutases. Int. Arch. Allergy Immunol. 2002, 128, 292–303. [Google Scholar] [CrossRef]
- Huang, X.; Xie, J.; Cui, X.; Zhou, Y.; Wu, X.; Lu, W.; Shen, Y.; Yuan, J.; Chen, W. Association between concentrations of metals in urine and adult asthma: A case-control study in Wuhan, China. PLoS ONE 2016, 11, e0155818. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.; Arinola, O.G.; Adu, M.D.; Adepoju, A.; Adedokun, B.O.; Olopade, O.I.; Olopade, C.O. Relationships between plasma micronutrients, serum IgE, and skin test reactivity and asthma among school children in rural southwest Nigeria. J. Biomark. 2014, 2014, 106150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutti, A.; Corradi, M.; Goldoni, M.; Vettori, M.V.; Bernard, A.; Apostoli, P. Exhaled metallic elements and serum pneumoproteins in asymptomatic smokers and patients with COPD or asthma. Chest 2006, 129, 1288–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, B.D.; Welch, A.A.; Bingham, S.A.; Luben, R.N.; Day, N.E.; Khaw, K.-T.; Lomas, D.A.; Wareham, N.J. Dietary antioxidants and asthma in adults. Thorax 2006, 61, 388–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, P.J.; Dweik, R.A.; Gelb, A.F.; Gibson, P.G.; George, S.C.; Grasemann, H.; Pavord, I.D.; Ratjen, F.; Silkoff, P.E.; Taylor, D.R.; et al. Exhaled nitric oxide in pulmonary diseases: A comprehensive review. Chest 2010, 138, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.H.; Comhair, S.A.; Zheng, S.; Dweik, R.A.; Eissa, N.T.; Thomassen, M.J.; Calhoun, W.; Erzurum, S.C. Molecular mechanisms of increased nitric oxide (NO) in asthma: Evidence for transcriptional and post-translational regulation of NO synthesis. J. Immunol. 2000, 164, 5970–5980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terziev, L.; Dancheva, V.; Shopova, V.; Stavreva, G. Antioxidant effect of MnTE-2-PyP on lung in asthma mice model. Sci. World J. 2012, 2012, 379360. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Fujii, M.; Ishihara, K.; Akiba, S.; Yasui, H.; Nabe, T. Effect of a peroxynitrite scavenger, a manganese-porphyrin compound on airway remodeling in a murine asthma. Biol. Pharm. Bull. 2013, 36, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.Y.; Crapo, J.D. Inhibition of airway inflammation and hyperreactivity by an antioxidant mimetic. Free Radic. Biol. Med. 2002, 33, 379–386. [Google Scholar] [CrossRef]
- Chang, L.Y.; Crapo, J.D. Inhibition of airway inflammation and hyperreactivity by a catalytic antioxidant. Chest 2003, 123, 446S. [Google Scholar] [CrossRef]
- Nielsen, F.H. Is boron nutritionally relevant? Nutr. Rev. 2008, 66, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Hunt, C.D. Dietary boron enhances efficacy of cholecalciferol in broiler chicks. J. Trace Elem. Exp. Med. 1996, 9, 117–132. [Google Scholar] [CrossRef]
- Devirian, T.A.; Volpe, S.L. The physiological effects of dietary boron. Crit. Rev. Food Sci. Nutr. 2003, 43, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Miljkovic, D.; Scorei, R.I.; Cimpoiaşu, V.M.; Scorei, I.D. Calcium fructoborate: Plant-based dietary boron for human nutrition. J. Diet. Suppl. 2009, 6, 211–226. [Google Scholar] [CrossRef]
- Scorei, R.I.; Ciofrangeanu, C.; Ion, R. In vitro effects of calcium fructoborate upon production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages. Biol. Trace Elem. Res. 2010, 135, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Jiang, L.; Zhang, X. Boric acid inhibits LPS-induced TNF-α formation through a thiol-dependent mechanism in THP-1 cells. J. Trace Elem. Med. Biol. 2008, 22, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Griffiths, C.J.; Camargo, C.A., Jr.; Kerley, C.P.; Jensen, M.E.; Mauger, D.; Stelmach, I.; Urashima, M.; et al. Vitamin D supplementation to prevent asthma exacerbations: A systematic review and meta-analysis of individual participant data. Lancet Respir. Med. 2017, 5, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Hunt, C.D.; Newman, S.M. Dietary boron increases serum antibody (IgG and IgM) concentrations in rats immunized with human typhoid vaccine. Proc. North Dakota Acad. Sci. 1997, 51, 81. [Google Scholar]
- Sheng, M.H.-C.; Taper, L.J.; Veit, H. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol. Trace Elem. Res. 2001, 81, 29–45. [Google Scholar] [CrossRef]
- Nielsen, F.H.; Gallagher, S.K.; Johnson, L.K.; Nielsen, E.J. Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J. Trace Elem. Exp. Med. 1992, 5, 237–246. [Google Scholar]
- Balzano, G.; Fuschillo, S.; Melillo, G.; Bonini, S. Asthma and sex hormones. Allergy 2001, 56, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Fracp, R.L.T.; Rennie, G.C.; Newnham, R.E. Boron and arthritis: The results of a double-blind pilot study. J. Nutr. Med. 1990, 1, 127–132. [Google Scholar]
- Hunt, C.D.; Idso, J.P. Dietary boron as a physiological regulator of the normal inflammatory response: A review and current research progress. J. Trace Elem. Exp. Med. 1999, 12, 221–233. [Google Scholar] [CrossRef]
- Belver, A.; Donaire, J.P. Partial purification of soluble lipoxygenase of sunflower cotyledons: Action of boron on the enzyme and lipid constituents. Z. Pflanzenphysiol. Bd. 1983, 109, 309–317. [Google Scholar] [CrossRef]
- Sharma, S.; Litonjua, A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J. Aller. Clin. Immunol. 2014, 133, 1246–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, J.; Kubota, K.; Murakami, H.; Sawamura, M.; Matsushima, T.; Tamura, T.; Saitoh, T.; Kurabayshi, H.; Naruse, T. Immunomodulation by vitamin B12: Augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12- deficient patients by methyl-B12 treatment. Clin. Exp. Immunol. 1999, 116, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Thuesen, B.H.; Husemoen, L.L.N.; Ovesen, L.; Jørgensen, T.; Fenger, M.; Gilderson, G.; Linneberg, A. Atopy, asthma, and lung function in relation to folate and vitamin B12 in adults. Allergy 2010, 65, 1446–1454. [Google Scholar] [CrossRef]
- Skaaby, T.; Taylo, A.E.; Jacobsen, R.K.; Møllehave, L.T.; Friedrich, N.; Thuesen, B.H.; Shabanzadeh, D.M.; Paternoster, L.; Völker, U.; Nauck, M.; et al. Associations of genetic determinants of serum vitamin B12 and folate concentrations with hay fever and asthma: A Mendelian randomization meta-analysis. Eur. J. Clin. Nutr. 2018, 72, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Van der Valk, R.J.P.; Kiefte-de Jong, J.C.; Sonnenschein-van der Voort, A.M.M.; Duijts, L.; Hafkamp-de Groen, E.; Moll, H.A.; Tiemeier, H.; Steegers, E.A.P.; Hofman, A.; Jaddoe, V.W.V.; et al. Neonatal folate, homocysteine, vitamin B12 levels and methylenetetrahydrofolate reductase variants in childhood asthma and eczema. Allergy 2013, 68, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Hallstrand, T.S.; Daly, D.S.; Matzke, M.M.; Nair, P.; Bigelow, D.J.; Pounds, J.G.; Zangar, R.C. A halotyrosine antibody that detects increased protein modifications in asthma patients. J. Immunol. Methods 2014, 403, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Rouatbi, S.; Tabka, Z.; Guénard, H. Inhaled sodium fluoride decreases airway responsiveness to acetylcholine analogs in vivo. Respir. Physiol. Neurobiol. 2002, 131, 245–253. [Google Scholar] [CrossRef]
- Gani, F.; Caminati, M.; Bellavia, F.; Baroso, A.; Faccioni, P.; Pancera, P.; Batani, V.; Senna, G. Oral health in asthmatic patients: A review. Clin. Mol. Allergy 2020, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Mendel, R.R.; Bittner, F. Cell biology of molybdenum. Biochim. Biophys. Acta 2006, 1763, 621–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, G.; Belaidi, A.A. Molybdenum in human health and disease. Met. Ions Life Sci. 2013, 13, 415–450. [Google Scholar] [CrossRef] [PubMed]
- Battelli, M.G.; Bolognesi, A.; Polito, L. Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim. Biophys. Acta 2014, 1842, 1502–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setiawan, H.; Nagaoka, K.; Kubo, M.; Fujikura, Y.; Ogino, K. Involvement of xanthine oxidoreductase-related oxidative stress in a Dermatophagoides farinae-induced asthma model of NC/Nga mice. Acta Med. Okayama. 2016, 70, 175–182. [Google Scholar] [CrossRef]
- Bowler, R.P. Oxidative stress in the pathogenesis of asthma. Curr. Allergy Asthma Rep. 2004, 4, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Sackesen, C.; Ercan, H.; Dizdar, E.; Soyer, O.; Gumus, P.; Tosun, B.N.; Büyüktuncer, Z.; Karabulut, E.; Besler, T.; Kalayci, O. A comprehensive evaluation of the enzymatic and nonenzymatic antioxidant systems in childhood asthma. J. Allergy Clin. Immunol. 2008, 122, 78–85. [Google Scholar] [CrossRef] [PubMed]
Micronutrient | Biological Action | Levels in Asthma | Possible Mode of Action in Asthma |
---|---|---|---|
Copper | -Co-factor of enzymes including cytochrome c oxidase, Cu-Zn-superoxide dismutase [26]; -Takes part in iron metabolism [13] | Increased in asthma [11,12,13,14] | Overload: -Disturbances in redox balance and control of oxidative stress [15]; -Disturbances of collagen cross-linking leading to airway remodeling [24] |
Selenium | -Co-factor in glutathione peroxidase and other antioxidant enzymes [31,32,33,34,35,36,37]; -Takes part in iodine metabolism [31] | Decreased in asthma [7,9,14,38,42,43,44,46,47,54] | Deficiency: -Disturbances of redox balance and control of oxidative stress [7,44,45]; -Decreased immunological response [31,32,33,34,35,36,37] |
Zinc | -Co-factor of Cu-Zn-superoxide dismutase, metalloproteinases [76,93]; -Maintenance of Th1/Th2 balance [74,75]; -Control of propagation of inflammation [90] | Decreased in asthma [14,22,73,77,79,81,82,83,84,85,86] | Deficiency: -Disturbances of redox balance and control of oxidative stress [84,86]; -Increased inflammatory responses [96]; -Enhanced fibrosis [93] |
Chromium | -Takes part in energy metabolism [103]; -Controls indirectly glucose and insulin levels [103]; -Acts as an indirect anti-oxidant by increasing the activity of antioxidant enzymes [115,116] | Unknown, lack of studies | Deficiencies: -Increased inflammation and oxidative stress [117]; -Poor obesity-dependent asthma control and diseases progression [114] Note: Used in obesity control, one of the risk factors for asthma |
Iodine | -Control of thyroid gland and hormones [118] | Both deficiency and overload observed in asthma and thyroid-dependent metabolic disorders influencing indirectly the course of asthma [119,120,121,122,123,124,125,129] | Deficiency and overload: -Impaired inflammatory responses [126]; -Worsening of asthma outcomes [127] |
Iron | -Takes part in oxygen transport [15]; -Control of oxidative stress [133] | Both deficiency (anemia) and overload [138,139,140,142,143,145,146] | Deficiency: -Worsening of asthma outcomes [140] Overload: -Increased oxidative stress and inflammation [144] Note: The most important is the maintenance of proper levels of iron-binding and -stabilizing proteins |
Manganese | -Co-factor of Mn-superoxide dismutase [28] | Inconclusive data [159,160,161] | Deficiency: -Increased inflammation and oxidative stress [167,168]; -Worsening of asthma outcomes [79,162] |
Boron | -Takes part in bone tissue metabolism [169]; -Interacts with the immune system [172] | Not known, lack of data | Possible consequences of deficiency: -Increased inflammation [173,176]; -Increased oxidative stress [180,181,182] |
Cobalt | -Co-factor of vitamin B12 [183] | No association found [185,186,187] | Possible immunomodulator [184] |
Fluorine | -Takes part in teeth formation and maintenance [189] | Unknown, lack of data | Unknown |
Molybdenum | -Co-factor of xanthine oxidase [191,192]; -Transduction of inflammatory signal [191,192] | Scare data, rather increased [159] | Overload: -Increased oxidative stress or no effect [194] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajac, D. Mineral Micronutrients in Asthma. Nutrients 2021, 13, 4001. https://doi.org/10.3390/nu13114001
Zajac D. Mineral Micronutrients in Asthma. Nutrients. 2021; 13(11):4001. https://doi.org/10.3390/nu13114001
Chicago/Turabian StyleZajac, Dominika. 2021. "Mineral Micronutrients in Asthma" Nutrients 13, no. 11: 4001. https://doi.org/10.3390/nu13114001
APA StyleZajac, D. (2021). Mineral Micronutrients in Asthma. Nutrients, 13(11), 4001. https://doi.org/10.3390/nu13114001