A Comparative Study of Selected Gut Bacteria Abundance and Fecal pH in Bodybuilders Eating High-Protein Diet and More Sedentary Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stool Sample Collection
2.3. Statistical Analysis
3. Results
3.1. Body Composition Analysis
3.2. Nutrients Intake Analysis
3.3. Stool Samples Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iraki, J.; Fitschen, P.; Espinar, S.; Helms, E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports 2019, 7, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozenek, R.; Ward, P.; Long, S.; Garhammer, J. Effects of high-calorie supplements on body composition and muscular strength following resistance training. J. Sports Med. Phys. Fit. 2002, 42, 340–347. [Google Scholar]
- Spendlove, J.; Mitchell, L.; Gifford, J.; Hackett, D.; Slater, G.; Cobley, S.; O’Connor, H. Dietary Intake of Competitive Bodybuilders. Sports Med. 2015, 45, 1041–1063. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K. Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation. Annu. Rev. Food Sci. Technol. 2018, 9, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Neis, E.P.; Dejong, C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015, 7, 2930–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet-Microbe-Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Przewłócka, K.; Folwarski, M.; Kaźmierczak-Siedlecka, K.; Skonieczna-Żydecka, K.; Kaczor, J.J. Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients 2020, 12, 1451. [Google Scholar] [CrossRef]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.G.; Holmes, E.; Shanahan, F.; Cotter, P.D.; O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Bolte, L.A.; Vich Vila, A.; Imhann, F.; Collij, V.; Gacesa, R.; Peters, V.; Wijmenga, C.; Kurilshikov, A.; Campmans-Kuijpers, M.J.E.; Fu, J.; et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021, 70, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.I.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, C.P.; Frank, L.L.; Evans, W.J.; Lambert, D.C.P. Macronutrient Considerations for the Sport of Bodybuilding. Sports Med. 2004, 34, 317–327. [Google Scholar] [CrossRef]
- Stark, M.; Lukaszuk, J.; Prawitz, A.; Salacinski, A. Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training. J. Int. Soc. Sports Nutr. 2012, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Zhong, Y.; Xiao, H.; Zheng, C.; Song, B.; Wang, W.; Guo, Q.; Li, Y.; Han, H.; Gao, J.; et al. Gut microbiota mediates the protective effects of dietary β-hydroxy-β-methylbutyrate (HMB) against obesity induced by high-fat diets. FASEB J. 2019, 33, 10019–10033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, F.; Guo, Q.; Duan, Y.; Wang, W.; Zhong, Y.; Yang, Y.; Yin, Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020, 12, 1299. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wielen, N.V.; Hee, B.V.; Wang, J.; Hendriks, W.; Gilbert, M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020, 8, 1735. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Liu, W.; Piao, M.; Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 2017, 49, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Moya, A.; Ferrer, M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends Microbiol. 2016, 24, 402–413. [Google Scholar] [CrossRef]
- Son, J.; Jang, L.G.; Kim, B.Y.; Lee, S.; Park, H. The Effect of Athletes’ Probiotic Intake May Depend on Protein and Dietary Fiber Intake. Nutrients 2020, 12, 2947. [Google Scholar] [CrossRef]
- Ilhan, Z.E.; Marcus, A.K.; Kang, D.W.; Rittmann, B.E.; Krajmalnik-Brown, R. pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures. mSphere 2017, 2, e00047-17. [Google Scholar] [CrossRef] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trefflich, I.; Dietrich, S.; Braune, A.; Abraham, K.; Weikert, C. Short- and Branched-Chain Fatty Acids as Fecal Markers for Microbiota Activity in Vegans and Omnivores. Nutrients 2021, 13, 1808. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Lin, J.; Isnard, S.; Fombuena, B.; Peng, X.; Marette, A.; Routy, B.; Messaoudene, M.; Chen, Y.; Routy, J.P. The Bacterium Akkermansia muciniphila: A Sentinel for Gut Permeability and Its Relevance to HIV-Related Inflammation. Front. Immunol. 2020, 11, 645. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Cerrudo, V.; Audebert, M.; Dumont, F.; Mancano, G.; Khodorova, N.; Andriamihaja, M.; et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: A randomized, parallel, double-blind trial in overweight humans. Am. J. Clin. Nutr. 2017, 106, 1005–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Product Description | Sequence |
---|---|---|
Praus-F480 | Faecalibacterium prausnitzii forward starter | CAGCAGCCGCGGTAAA |
Praus-R631 | Faecalibacterium prausnitzii reverse starter | CTACCTCTGCACTACTCAAGAAA |
Akk.muc-F | Akkermansia muciniphila starter forward | CAGCACGTGAAGGTGGGGAC |
Akk.muc-R | Akkermansia muciniphila starter reverse | CCTTGCGGTTGGCTTCAGAT |
F-Bifid09c | Bifidobacterium spp. forward starter | CGGGTGAGTAATGCGTGACC |
R-Bifid06 | Bifidobacterium spp. reverse starter | TGATAGGACGCGACCCCA |
Bacter11 | Bacteroides spp. forward starter | CCTWCGATGGATAGGGGTT |
Bacter08 | Bacteroides spp. starter reverse | CACGCTACTTGGCTGGTTCAG |
Uni-F340 | Universal forward starter | ACTCCTACGGGAGGCAGCAGT |
Uni-R514 | Universal reverse starter | ATTACCGCGGCTGCTGGC |
Name | Among of DNA (Copies/mL) | Product Description |
---|---|---|
Bifidobacterium infantis DNA | 5 × 10⁸ | Standard in identification of Bifidobacterium spp., isolated from Bifidobacterium infantis |
Bacteroides fragilis DNA | 2 × 10⁹ | Standard in identification of Bacteroides spp., isolated from Bacteroides fragilis |
Faecalibacterium prausnitzii DNA | 7.8 × 10⁸ | Standard in identification of Faecalibacterium prausnitzii |
Akkermansia muciniphila DNA | 3.9 × 10⁸ | Standard in identification of Akkermansia muciniphila |
Species [Genus] | Standard (Log10 CFU/g Feces) | Method |
---|---|---|
Bifidobacterium spp. | ≥8 | Real-time PCR |
Bacteroides spp. | ≥9 | Real-time PCR |
Faecalibacterium prausnitzii | ≥9 | Real-time PCR |
Akkermansia muciniphila | ≥8 | Real-time PCR |
Bodybuilder Group (n = 11) | Control Group (n = 15) | Mann- Whitney (p-Value) | |||
---|---|---|---|---|---|
Mean ± SD | Median Q1 ÷ Q3 | Mean ± SD | Median Q1 ÷ Q3 | ||
Age (years) | 27 ± 6 | 25 23 ÷ 28 | 29 ± 8 | 24 22 ÷ 37 | NS |
Height [cm] | 182.0 ± 6.3 | 181.5 179.3 ÷ 185 | 181.7 ± 4.4 | 182 179 ÷ 185 | NS |
Body mass [kg] | 96.4 ± 8.9 | 96.8 93.8 ÷ 103 | 83.4 ± 13.2 | 76.6 72.4 ÷ 99.8 | 0.0023 * |
Body fat mass [%] | 14.0 ± 4.5 | 14.6 9.5÷18.2 | 15.3 ± 7.7 | 15.8 6.6 ÷ 20.7 | NS |
Body fat mass [kg] | 13.2 ± 4.2 | 13.7 7.9 ÷ 16.7 | 13.5 ± 8.5 | 11.6 5 ÷ 21.1 | NS |
Fat-free mass [kg] | 80.6 ± 8.9 | 81.1 74 ÷ 87.2 | 69.7 ± 6.4 | 70.6 63.2 ÷ 74.0 | 0.0035 * |
Bodybuilders (n = 11) | Control Group (n = 15) | Mann-Whitney (p-Value) | |||
---|---|---|---|---|---|
Mean ± SD | Median Q1 ÷ Q3 | Mean ± SD | Median Q1 ÷ Q3 | ||
Energy [kcal] | 3516 ± 1433 | 3032 2685 ÷ 3951 | 2882 ± 1422 | 2640 2038 ÷ 3233 | NS |
Protein [%] | 33.6 ± 6.5 | 34.3 29.2 ÷ 39.2 | 22 ± 6.3 | 21.4 18.0 ÷ 24.0 | 0.0493 * |
Protein [g/kg b.w.] | 2.1 ± 1.5 | 2.4 0.0 ÷ 3.1 | 1.7 ± 1.0 | 1.8 0.7 ÷ 2.4 | NS |
Carbohydrates [%] | 38.8 ± 14.8 | 43.2 38.3÷45.6 | 44.7 ± 14.2 | 41.7 36.9 ÷ 48.0 | NS |
Fat [%] | 27.6 ± 18.9 | 21.1 16.0 ÷ 27.4 | 40.4 ± 10.0 | 36.4 35.3 ÷ 41.6 | 0.0002 ** |
Fiber [g] | 29.4 ± 11.8 | 26.7 25.0 ÷ 33.0 | 33.8 ± 24.9 | 31.6 15.5 ÷ 41.7 | NS |
Bodybuilders (n = 11) | Control Group (n = 15) | Mann-Whitney (p-Value) | |||
---|---|---|---|---|---|
Mean ± SD | Median Q1 ÷ Q3 | Mean ± SD | Median Q1 ÷ Q3 | ||
Bifidocacterium spp. | 6.4 ±0.4 | 6.3 8.9 ÷ 9.3 | 7.0 ± 0.6 | 7.0 8.3 ÷ 9.3 | NS |
Bacteroides spp. | 9.0 ± 0.4 | 9.0 8.9 ÷ 9.3 | 8.8 ± 0.6 | 8.8 8.3 ÷ 9.3 | NS |
F. prausnitzii | 8.3 ± 0.6 | 8.5 8.0 ÷ 8.7 | 7.9 ± 0.6 | 7.9 7.3 ÷ 8.3 | NS |
A. Muciniphila | 6.0 ± 1.4 | 6.0 4.8 ÷ 7.3 | 5.6 ± 2.1 | 6.6 4.7 ÷ 7.0 | NS |
Fecal pH | 6.9 ± 0.7 | 7.0 6.0 ÷ 7.5 | 6.2 ± 0.7 | 6.5 5.5 ÷ 6.5 | 0.0322 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szurkowska, J.; Wiącek, J.; Laparidis, K.; Karolkiewicz, J. A Comparative Study of Selected Gut Bacteria Abundance and Fecal pH in Bodybuilders Eating High-Protein Diet and More Sedentary Controls. Nutrients 2021, 13, 4093. https://doi.org/10.3390/nu13114093
Szurkowska J, Wiącek J, Laparidis K, Karolkiewicz J. A Comparative Study of Selected Gut Bacteria Abundance and Fecal pH in Bodybuilders Eating High-Protein Diet and More Sedentary Controls. Nutrients. 2021; 13(11):4093. https://doi.org/10.3390/nu13114093
Chicago/Turabian StyleSzurkowska, Joanna, Jakub Wiącek, Konstantinos Laparidis, and Joanna Karolkiewicz. 2021. "A Comparative Study of Selected Gut Bacteria Abundance and Fecal pH in Bodybuilders Eating High-Protein Diet and More Sedentary Controls" Nutrients 13, no. 11: 4093. https://doi.org/10.3390/nu13114093
APA StyleSzurkowska, J., Wiącek, J., Laparidis, K., & Karolkiewicz, J. (2021). A Comparative Study of Selected Gut Bacteria Abundance and Fecal pH in Bodybuilders Eating High-Protein Diet and More Sedentary Controls. Nutrients, 13(11), 4093. https://doi.org/10.3390/nu13114093