The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns
Abstract
:1. Introduction
2. Circadian Disruption and Its Impact on Human Physiology
3. Cardio-Metabolic Effects
3.1. Overweight and Obesity
3.2. Glucose Metabolism
3.3. Cardiovascular Risk, Blood Pressure, and Lipid Profile
4. Sleeping and Eating Patterns in Shift Work
4.1. The Impact of Sleep/Wake Cycles on Energy Balance and Eating Behavior
4.2. The Impact of Shift Work on Energy and Macronutrient Intake
4.3. The Impact of Shift Work on Eating Behavior and Nutritional Quality
4.4. The Impact of Shift Work on the Timing of Eating
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- European Foundation for the Improvement of Living and Working Conditions; Parent-Thirion, A.; Biletta, I.; Cabrita, J.; Vargas, O.; Vermeylen, G.; Wilczynska, A.; Wilkens, M. Sixth European Working Conditions Survey—Overview Report (2017 Update); Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-897-1597-3.
- European Foundation for the Improvement of Living and Working Conditions; Kümmerling, A.; Lehndorff, S. Extended and Unusual Working Hours in European Companies; Office for Official Publications of the European Communities: Luxembourg, 2007; ISBN 92-897-0978-2.
- Swiss State Secretariat for Economic Affairs (SECO). Shift Work [Travail en Équipes et Travail de Nuit]; SECO: Bern, Switzerland, 2018.
- Moreno, C.R.C.; Marqueze, E.C.; Sargent, C.; Wright, K.P., Jr.; Ferguson, S.A.; Tucker, P. Working Time Society consensus statements: Evidence-based effects of shift work on physical and mental health. Ind. Health 2019, 57, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Pallesen, S.; Bjorvatn, B.; Waage, S.; Harris, A.; Sagoe, D. Prevalence of Shift Work Disorder: A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 12, 638252. [Google Scholar] [CrossRef] [PubMed]
- Vetter, C. Circadian disruption: What do we actually mean? Eur. J. Neurosci. 2020, 51, 531–550. [Google Scholar] [CrossRef] [Green Version]
- Knutsson, A. Health disorders of shift workers. Occup. Med. 2003, 53, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrington, J.M. Health effects of shift work and extended hours of work. Occup. Environ. Med. 2001, 58, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Ward, E.M.; Germolec, D.; Kogevinas, M.; McCormick, D.; Vermeulen, R.; Anisimov, V.N.; Aronson, K.J.; Bhatti, P.; Cocco, P.; Costa, G.; et al. Carcinogenicity of night shift work. Lancet Oncol. 2019, 20, 1058–1059. [Google Scholar] [CrossRef]
- McHill, A.W.; Melanson, E.L.; Higgins, J.; Connick, E.; Moehlman, T.M.; Stothard, E.R.; Wright, K.P. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc. Natl. Acad. Sci. USA 2014, 111, 17302–17307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.J.; Purvis, T.E.; Hu, K.; Scheer, F.A.J.L. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc. Natl. Acad. Sci. USA 2016, 113, E1402–E1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.J.; Yang, J.N.; Garcia, J.I.; Myers, S.; Bozzi, I.; Wang, W.; Buxton, O.M.; Shea, S.A.; Scheer, F.A.J.L. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl. Acad. Sci. USA 2015, 112, E2225–E2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.J.; Purvis, T.E.; Mistretta, J.; Hu, K.; Scheer, F.A.J.L. Circadian Misalignment Increases C-Reactive Protein and Blood Pressure in Chronic Shift Workers. J. Biol. Rhythm. 2017, 32, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.J.; Purvis, T.E.; Mistretta, J.; Scheer, F.A.J.L. Effects of the Internal Circadian System and Circadian Misalignment on Glucose Tolerance in Chronic Shift Workers. J. Clin. Endocrinol. Metab. 2016, 101, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Laurenti, M.C.; Dalla Man, C.; Varghese, R.T.; Cobelli, C.; Rizza, R.A.; Matveyenko, A.; Vella, A. Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia 2017, 60, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Bescos, R.; Boden, M.J.; Jackson, M.L.; Trewin, A.J.; Marin, E.C.; Levinger, I.; Garnham, A.; Hiam, D.S.; Falcao-Tebas, F.; Conte, F.; et al. Four days of simulated shift work reduces insulin sensitivity in humans. Acta Physiol. 2018, 223, e13039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cain, S.W.; Filtness, A.J.; Phillips, C.L.; Anderson, C. Enhanced preference for high-fat foods following a simulated night shift. Scand. J. Work Environ. Health 2015, 41, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Shaw, E.; Dorrian, J.; Coates, A.M.; Leung, G.K.W.; Davis, R.; Rosbotham, E.; Warnock, R.; Huggins, C.E.; Bonham, M.P. Temporal pattern of eating in night shift workers. Chronobiol. Int. 2019, 36, 1613–1625. [Google Scholar] [CrossRef]
- Chen, C.; ValizadehAslani, T.; Rosen, G.L.; Anderson, L.M.; Jungquist, C.R. Healthcare Shift Workers’ Temporal Habits for Eating, Sleeping, and Light Exposure: A Multi-Instrument Pilot Study. J. Circadian Rhythm. 2020, 18, 6. [Google Scholar] [CrossRef]
- Chen, Y.; Lauren, S.; Chang, B.P.; Shechter, A. Objective Food Intake in Night and Day Shift Workers: A Laboratory Study. Clocks Sleep 2018, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Lauren, S.; Chen, Y.; Friel, C.; Chang, B.P.; Shechter, A. Free-Living Sleep, Food Intake, and Physical Activity in Night and Morning Shift Workers. J. Am. Coll. Nutr. 2020, 39, 450–456. [Google Scholar] [CrossRef]
- Terada, T.; Mistura, M.; Tulloch, H.; Pipe, A.; Reed, J. Dietary Behaviour Is Associated with Cardiometabolic and Psychological Risk Indicators in Female Hospital Nurses—A Post-Hoc, Cross-Sectional Study. Nutrients 2019, 11, 2054. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Son, K.-H.; Park, H.-Y.; Choi, D.-J.; Yoon, C.-H.; Lee, H.-Y.; Cho, E.-Y.; Cho, M.-C. Association between shift work and obesity among female nurses: Korean Nurses’ Survey. BMC Public Health 2013, 13, 1204. [Google Scholar] [CrossRef] [Green Version]
- Pepłońska, B.; Kaluzny, P.; Trafalska, E. Rotating night shift work and nutrition of nurses and midwives. Chronobiol. Int. 2019, 36, 945–954. [Google Scholar] [CrossRef]
- Bucher Della Torre, S.; Wild, P.; Dorribo, V.; Danuser, B.; Amati, F. Energy, Nutrient and Food Intakes of Male Shift Workers Vary According to the Schedule Type but Not the Number of Nights Worked. Nutrients 2020, 12, 919. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, A.; Lowson, E.; Arber, S.; Griffin, B.A.; Skene, D.J. Dietary Patterns of Nurses on Rotational Shifts Are Marked by Redistribution of Energy into the Nightshift. Nutrients 2020, 12, 1053. [Google Scholar] [CrossRef]
- Vidafar, P.; Cain, S.W.; Shechter, A. Relationship between Sleep and Hedonic Appetite in Shift Workers. Nutrients 2020, 12, 2835. [Google Scholar] [CrossRef]
- De Bacquer, D.; Van Risseghem, M.; Clays, E.; Kittel, F.; De Backer, G.; Braeckman, L. Rotating shift work and the metabolic syndrome: A prospective study. Int. J. Epidemiol. 2009, 38, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Ramin, C.; Devore, E.E.; Wang, W.; Pierre-Paul, J.; Wegrzyn, L.R.; Schernhammer, E.S. Night shift work at specific age ranges and chronic disease risk factors. Occup. Environ. Med. 2015, 72, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Schernhammer, E.S.; Sun, Q.; Hu, F.B. Rotating Night Shift Work and Risk of Type 2 Diabetes: Two Prospective Cohort Studies in Women. PLoS Med. 2011, 8, e1001141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Z.; Li, Y.; Zong, G.; Guo, Y.; Li, J.; Manson, J.E.; Hu, F.B.; Willett, W.C.; Schernhammer, E.S.; Bhupathiraju, S.N. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: Results from two large US cohorts of female nurses. BMJ 2018, 363, k4641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.B.; Stayner, L.; Hansen, J.; Andersen, Z.J. Night shift work and incidence of diabetes in the Danish Nurse Cohort. Occup. Environ. Med. 2016, 73, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Feng, W.; Wang, F.; Zhang, L.; Wu, Z.; Li, Z.; Zhang, B.; He, Y.; Xie, S.; Li, M.; et al. Night shift work exposure profile and obesity: Baseline results from a Chinese night shift worker cohort. PLoS ONE 2018, 13, e0196989. [Google Scholar] [CrossRef] [PubMed]
- Buchvold, H.V.; Pallesen, S.; Waage, S.; Bjorvatn, B. Shift work schedule and night work load: Effects on body mass index—A four-year longitudinal study. Scand. J. Work Environ. Health 2018, 44, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Hulsegge, G.; Loef, B.; Benda, T.; van der Beek, A.J.; Proper, K.I. Shift work and its relation with meal and snack patterns among healthcare workers. Scand. J. Work Environ. Health 2020, 46, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Loef, B.; van Baarle, D.; van der Beek, A.J.; Beekhof, P.K.; van Kerkhof, L.W.; Proper, K.I. The association between exposure to different aspects of shift work and metabolic risk factors in health care workers, and the role of chronotype. PLoS ONE 2019, 14, e0211557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulsegge, G.; Picavet, H.S.J.; van der Beek, A.J.; Verschuren, W.M.M.; Twisk, J.W.; Proper, K.I. Shift work, chronotype and the risk of cardiometabolic risk factors. Eur. J. Public Health 2019, 29, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, L.; Zhang, Y.; Zhang, B.; He, Y.; Xie, S.; Li, M.; Miao, X.; Chan, E.Y.Y.; Tang, J.L.; et al. Meta-analysis on night shift work and risk of metabolic syndrome: Night shift work and metabolic syndrome. Obes. Rev. 2014, 15, 709–720. [Google Scholar]
- Khosravipour, M.; Khanlari, P.; Khazaie, S.; Khosravipour, H.; Khazaie, H. A systematic review and meta-analysis of the association between shift work and metabolic syndrome: The roles of sleep, gender, and type of shift work. Sleep Med. Rev. 2021, 57, 101427. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Gao, Y.; Jiang, L.; Yuan, L.; Wang, P.; Cao, Y.; Song, X.; Ge, L.; Ding, G. Association between shift work or long working hours with metabolic syndrome: A systematic review and dose-response meta-analysis of observational studies. Chronobiol. Int. 2021, 38, 318–333. [Google Scholar]
- Sun, M.; Feng, W.; Wang, F.; Li, P.; Li, Z.; Li, M.; Tse, G.; Vlaanderen, J.; Vermeulen, R.; Tse, L.A. Meta-analysis on shift work and risks of specific obesity types: Shift work and specific obesity types. Obes. Rev. 2018, 19, 28–40. [Google Scholar]
- Liu, Q.; Shi, J.; Duan, P.; Liu, B.; Li, T.; Wang, C.; Li, H.; Yang, T.; Gan, Y.; Wang, X.; et al. Is shift work associated with a higher risk of overweight or obesity? A systematic review of observational studies with meta-analysis. Int. J. Epidemiol. 2018, 47, 1956–1971. [Google Scholar] [CrossRef] [Green Version]
- Saulle, R.; Bernardi, M.; Chiarini, M.; Backhaus, I.; La Torre, G. Shift work, overweight and obesity in health professionals: A systematic review and meta-analysis. Clin. Ter. 2018, 169, e189–e197. [Google Scholar]
- Li, W.; Chen, Z.; Ruan, W.; Yi, G.; Wang, D.; Lu, Z. A meta-analysis of cohort studies including dose-response relationship between shift work and the risk of diabetes mellitus. Eur. J. Epidemiol. 2019, 34, 1013–1024. [Google Scholar] [CrossRef]
- Gao, Y.; Gan, T.; Jiang, L.; Yu, L.; Tang, D.; Wang, Y.; Li, X.; Ding, G. Association between shift work and risk of type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of observational studies. Chronobiol. Int. 2020, 37, 29–46. [Google Scholar] [CrossRef]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Kolbe-Alexander, T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose–response relationship. Scand. J. Work Environ. Health 2018, 44, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manohar, S.; Thongprayoon, C.; Cheungpasitporn, W.; Mao, M.A.; Herrmann, S.M. Associations of rotational shift work and night shift status with hypertension: A systematic review and meta-analysis. J. Hypertens. 2017, 35, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; Baker, J.S.; Mermillod, M.; De Cesare, M.; Vidal, A.; Moustafa, F.; Pereira, B.; Navel, V. Shift work, and particularly permanent night shifts, promote dyslipidaemia: A systematic review and meta-analysis. Atherosclerosis 2020, 313, 156–169. [Google Scholar] [CrossRef]
- Bonham, M.P.; Bonnell, E.K.; Huggins, C.E. Energy intake of shift workers compared to fixed day workers: A systematic review and meta-analysis. Chronobiol. Int. 2016, 33, 1086–1100. [Google Scholar] [CrossRef]
- Cayanan, E.A.; Eyre, N.A.B.; Lao, V.; Comas, M.; Hoyos, C.M.; Marshall, N.S.; Phillips, C.L.; Shiao, J.S.C.; Guo, Y.-L.L.; Gordon, C.J. Is 24-hour energy intake greater during night shift compared to non-night shift patterns? A systematic review. Chronobiol. Int. 2019, 36, 1599–1612. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.V.; Sarmento, R.A.; de Almeida, J.C.; Canuto, R. The effect of shift work on eating habits: A systematic review. Scand. J. Work Environ. Health 2019, 45, 7–21. [Google Scholar] [CrossRef]
- Gupta, C.C.; Coates, A.M.; Dorrian, J.; Banks, S. The factors influencing the eating behaviour of shiftworkers: What, when, where and why. Ind. Health 2019, 57, 419–453. [Google Scholar] [CrossRef] [Green Version]
- Sinturel, F.; Petrenko, V.; Dibner, C. Circadian Clocks Make Metabolism Run. J. Mol. Biol. 2020, 432, 3680–3699. [Google Scholar] [CrossRef]
- Dibner, C. The importance of being rhythmic: Living in harmony with your body clocks. Acta Physiol. 2020, 228, e13281. [Google Scholar] [CrossRef]
- Leger, D.; Esquirol, Y.; Gronfier, C.; Metlaine, A.; Groupe Consensus Chronobiologie et Sommeil de la SOCIÉTÉ Française de Recherche et Médecine du Sommeil (SFRMS). Shift-workers and night-workers’ health consequences: State of art and recommendations. Presse Med. 2018, 47, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Buxton, O.M.; Cain, S.W.; O’Connor, S.P.; Porter, J.H.; Duffy, J.F.; Wang, W.; Czeisler, C.A.; Shea, S.A. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012, 4, 129ra43. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Kervezee, L.; Kosmadopoulos, A.; Boivin, D.B. Metabolic and cardiovascular consequences of shift work: The role of circadian disruption and sleep disturbances. Eur. J. Neurosci. 2018, 112, 6863. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Scheer, F.A.J.L. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends Endocrinol. Metab. 2016, 27, 282–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chellappa, S.L.; Vujovic, N.; Williams, J.S.; Scheer, F.A.J.L. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol. Metab. 2019, 30, 767–779. [Google Scholar] [CrossRef]
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short Sleep Duration and Dietary Intake: Epidemiologic Evidence, Mechanisms, and Health Implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef]
- González-Ortiz, A.; López-Bautista, F.; Valencia-Flores, M.; Espinosa Cuevas, Á. Partial sleep deprivation on dietary energy intake in healthy population: A systematic review and meta-analysis. Nutr. Hosp. 2020, 37, 1052–1060. [Google Scholar]
- Shechter, A.; Grandner, M.A.; St-Onge, M.-P. The Role of Sleep in the Control of Food Intake. Am. J. Lifestyle Med. 2014, 8, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar] [CrossRef] [Green Version]
- Collet, T.-H.; van der Klaauw, A.A.; Henning, E.; Keogh, J.M.; Suddaby, D.; Dachi, S.V.; Dunbar, S.; Kelway, S.; Dickson, S.L.; Farooqi, I.S.; et al. The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance. Sleep 2016, 39, 1691–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHill, A.W.; Wright, K.P. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease: Sleep disruption and circadian misalignment. Obes. Rev. 2017, 18, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Lowden, A.; Moreno, C.; Holmbäck, U.; Lennernäs, M.; Tucker, P. Eating and shift work—Effects on habits, metabolism and performance. Scand. J. Work Environ. Health 2010, 36, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Pepłońska, B.; Nowak, P.; Trafalska, E. The association between night shift work and nutrition patterns among nurses: A literature review. Med. Pr. 2019, 70, 363–376. [Google Scholar] [CrossRef]
- Estaquio, C.; Kesse-Guyot, E.; Deschamps, V.; Bertrais, S.; Dauchet, L.; Galan, P.; Hercberg, S.; Castetbon, K. Adherence to the French Programme National Nutrition Santé Guideline Score Is Associated with Better Nutrient Intake and Nutritional Status. J. Am. Diet. Assoc. 2009, 109, 1031–1041. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- McMahon, D.M.; Burch, J.B.; Youngstedt, S.D.; Wirth, M.D.; Hardin, J.W.; Hurley, T.G.; Blair, S.N.; Hand, G.A.; Shook, R.P.; Drenowatz, C.; et al. Relationships between chronotype, social jetlag, sleep, obesity and blood pressure in healthy young adults. Chronobiol. Int. 2019, 36, 493–509. [Google Scholar] [CrossRef]
- Makarem, N.; Paul, J.; Giardina, E.-G.V.; Liao, M.; Aggarwal, B. Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol. Int. 2020, 37, 673–685. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A. On behalf of the Opera Prevention Project Chronotype and Adherence to the Mediterranean Diet in Obesity: Results from the Opera Prevention Project. Nutrients 2020, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Altieri, B.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A. Chronotype and cardio metabolic health in obesity: Does nutrition matter? Int. J. Food Sci. Nutr. 2021, 72, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Russ, D.; Bravo-Merodio, L.; Cardoso, V.R.; Pendleton, S.C.; Aziz, F.; Acharjee, A.; Gkoutos, G.V. A Causal Web between Chronotype and Metabolic Health Traits. Genes 2021, 12, 1029. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Morris, C.J.; Caputo, R.; Garaulet, M.; Scheer, F.A.J.L. Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans. Int. J. Obes. 2019, 43, 1644–1649. [Google Scholar] [CrossRef]
Ref. | Loc. | N. | Sex | Occupation | Design | Type of Shift Work | Exposure and Definition(s) of Shifts | Main Outcomes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MetS | BMI | Gluc. | CVD | BP | Lip. | Nut. | ||||||||
[10] | USA | 14 | Both | n.s. | Lab study | Simulated | Exposure: No shiftwork in the year prior to the study Simulated night shift: 16 h of wakefulness, 8 h of sleep opportunity | x | x | |||||
[11,12] | USA | 14 | Both | n.s. | Lab study, crossover | Simulated | Exposure: No shift work in the past 3 years and <6 months cumulative lifetime exposure to shift work Simulated night shift: Kept awake from 19:00 to 11:00, 8 h sleep opportunity from 11:00 to 19:00 | x | x | x | x | |||
[13,14] | USA | 9 | Both | n.s. | Lab study, crossover | Simulated | Exposure: ≥12 months of consecutive shift work with ≥5 night shifts per month prior to the study Simulated night shift: Kept awake from 19:00 to 11:00, 8 h sleep opportunity from 11:00 to 19:00 | x | x | x | ||||
[15] | USA | 12 | Both | Healthcare | Lab study, crossover | Simulated | Exposure: Rotating shifts of 3 consecutive day and nights shifts (07:00–19:00 and 19:00–07:00, resp.), with a minimum of 3 night shifts per month for ≥1 year Simulated day and night shift following the same clock times | x | ||||||
[16] | AUS | 17 | Both | n.s. | Lab study | Simulated | Exposure: No shift work in the past 2 months Simulated day shift: Kept awake from 07:00 to 22:00, 9 h sleep opportunity from 22:00 to 07:00 Simulated night shift: Kept awake from 17:00 to 08:00, 9 h sleep opportunity from 08:00 to 17:00 | x | ||||||
[17] | AUS | 16 | Both | n.s. | Lab study, crossover | Simulated | Exposure: No shift work prior to the study Simulated night shift: Kept awake from 20:00 to 08:00 | x | ||||||
[18] | AUS | 22 | Both | Private companies | Randomized crossover trial 2 | Night shift work | Exposure: ≥12 consecutive months of nights (permanent, rotating, or split night shifts) prior to the study | x | x | |||||
[19] | USA | 14 | Both | Healthcare | Cross-sectional, prospective | Day, night, and rotating shift work | Exposure groups: Day, night, and rotating shift workers | x | x | x | x | x | ||
[20,21] | USA | 24 | Fem. | Healthcare | Cross-sectional, prospective | Day and night shift work, without rotating shift work | Exposure groups: Day shift workers (from 07:00–08:00 to 15:00–20:00) vs. night shift workers (from 19:00–23:00 to 07:00); each shift lasting 8 h or 12 h | x | x | x | ||||
[22] | CAN | 73 | Fem. | Healthcare | Cross-sectional, secondary analysis 3 | Evening and night shift work, including irregular or rotating schedules | Exposure groups: Shift workers (any work outside of daytime hours) vs. non-shift workers | x | x | x | ||||
[23] | KOR | 9989 | Fem. | Healthcare | Cross-sectional, prospective 4 | n.s. | Exposure groups: Current shift workers vs. day workers | x | x | |||||
[24] | POL | 522 | Fem. | Healthcare | Cross-sectional, prospective 5 | Rotating shift work | Exposure groups: Rotating night shift workers (2–7 night shifts per month, usually between 19:00 and 07:00) vs. day workers | x | x | x | ||||
[25] | CHE | 65 | Male | Private and public institutions | Cross-sectional, prospective 6 | Rotating shift work | Exposure: Mixed shift schedules during at least 6 months with work between 20:00 and 06:00 | x | x | x | ||||
[26] | GBR | 20 | Fem. | Healthcare | Cross-sectional, secondary analysis | Rotating shift work | Exposure: Day shifts and ≥2 consecutive night shifts of ≥8 h duration between 20:00 and 08:00 | x | ||||||
[27] | AUS | 63 | Both | Mixed | Cross-sectional, prospective | Night and rotating shift work | n.s. | x | ||||||
[28] | BEL | 1529 | Male | Private and public institutions | Cohort, prospective | Rotating shift work | Exposure groups: Two or three rotating shifts vs. day workers | x | x | x | x | x | ||
[29] | USA | 54,724 | Fem. | Healthcare | Cohort, prospective 7 | Day/evenings only, nights only, early mornings only, rotating with nights, or rotating with no nights | Exposure groups: Day/evenings only, nights only, early mornings only, rotating shifts with nights, rotating shifts with no nights, others/no work
| x | x | x | x | x | x | |
[30,31] | USA | 177,184; 143,410 | Fem. | Healthcare | Cohort, prospective 7,8 | Rotating shift work | Exposure: At least 3 night shifts per month in addition to day and evening shifts in that month | x | x | x | x | x | ||
[32] | DNK | 19,873 | Fem. | Healthcare | Cohort, prospective 9 | Night, evening, or rotating shift work | n.s. | x | x | x | x | x | ||
[33] | CHN | 3871 | Both | Private companies | Cohort, prospective 10 | Night shift work: permanent, rotating, or irregular work | Exposure groups: Permanent, rotating, or irregular night shift workers, day shift workers Night shift workers: At least one night between 24:00 and 06:00 per month over 1 year, with subgroups:
| x | x | |||||
[34] | NOR | 2965 | Both | Healthcare | Cohort, prospective 11 | Day, evening, night, and rotating shift work | Exposure groups: Day shifts only, evening shifts only, two-shift schedule (day + evening), or three-shift schedule (day + evening + night)
| x | ||||||
[35,36] | NLD | 485; 596 | Both | Healthcare | Cohort, prospective 12,13 | Day, evening, night, and rotating shift work | Exposure groups: Day, evening, night, and rotating shift workers Day workers: Only between 08:00 and 17:00, including those who stopped rotating and night shifts ≥ 6 months prior to study in Loef et al. [36] Rotating shift workers: Rotating between day shifts (mostly 07:30–16:00), evening shifts (mostly 15:00–23:00), and night shifts (mostly 23:00–07:30) | x | x | x | ||||
[37] | NLD | 1061 | Both | Healthcare | Cohort, prospective 14 | Day, evening, night, and rotating shift work | Exposure groups: Day, evening, night or rotating shifts ≥1 year before each wave of the cohort
| x | x | x | ||||
[38] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Night shift work | Night shift: Work between 24:00 and 05:00 | x | x | x | x | x | ||
[39] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis15 | Rotating shift work and other types of shift work (mixed) | Any work outside of daytime hours | x | ||||||
[40] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | n.s. | n.s. | x | ||||||
[41] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Night shift work | Night shift: Work between 24:00 and 05:00 | x | ||||||
[42] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | n.s. | Any work outside of daytime hours (from 09:00 to 17:00) | x | ||||||
[43] | Intl | n.a. | Both | Healthcare | Systematic review and meta-analysis 15 | n.s. | Any work outside of daytime hours | x | ||||||
[44] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | n.s. | n.s. | x | ||||||
[45] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Night, rotating and uncategorized shift work | Night shift: Mixed schedule of day and night work Rotating shift: Non-fixed shift work | x | ||||||
[46] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Rotating shift work and other types of shift work (mixed) | Permanent night shift or rotating shift, or work arrangements differing from daytime hours (from 07:00–08:00 to 17:00–18:00) | x | ||||||
[47] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Night and rotating shift work | n.s. | x | ||||||
[48] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Permanent night shift work or rotating shift work | Rotating shift: 2 shifts of 12 h each, or 3 shifts of 8 h each | x | ||||||
[49] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Night shift work | Night shift: Work including the hour of midnight and ending before 08:00 | x | ||||||
[50] | Intl | n.a. | Both | Mixed | Systematic review and meta-analysis 15 | Day, evening, night, and rotating shift work | Night shift: Work after 18:00, not lasting >12 h | x | ||||||
[51] | Intl | n.a. | Both | Mixed | Systematic review | Night and rotating shift work | n.s. | x | ||||||
[52] | Intl | n.a. | Both | Mixed | Systematic review | Rotating shift work and other types of shift work (mixed) | Any work outside of daytime hours | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemmer, A.; Mareschal, J.; Dibner, C.; Pralong, J.A.; Dorribo, V.; Perrig, S.; Genton, L.; Pichard, C.; Collet, T.-H. The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients 2021, 13, 4178. https://doi.org/10.3390/nu13114178
Hemmer A, Mareschal J, Dibner C, Pralong JA, Dorribo V, Perrig S, Genton L, Pichard C, Collet T-H. The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients. 2021; 13(11):4178. https://doi.org/10.3390/nu13114178
Chicago/Turabian StyleHemmer, Alexandra, Julie Mareschal, Charna Dibner, Jacques A. Pralong, Victor Dorribo, Stephen Perrig, Laurence Genton, Claude Pichard, and Tinh-Hai Collet. 2021. "The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns" Nutrients 13, no. 11: 4178. https://doi.org/10.3390/nu13114178
APA StyleHemmer, A., Mareschal, J., Dibner, C., Pralong, J. A., Dorribo, V., Perrig, S., Genton, L., Pichard, C., & Collet, T. -H. (2021). The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients, 13(11), 4178. https://doi.org/10.3390/nu13114178