Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture
Abstract
1. Introduction
2. Physiology of Puberty
3. Materials and Methods
4. Pesticides and Disrupted Puberty Onset or Sexual Maturation
4.1. Early Puberty Onset or Accelerated Puberty/Sexual Maturation
4.1.1. Animal Studies
4.1.2. Human Studies
4.2. Late Puberty Onset or Delay in Puberty Progression/Sexual Maturation
4.2.1. Animal Studies
4.2.2. Human Studies
5. Discussion
Mechanisms of Endocrine-Disrupting Action of Pesticides in Puberty Physiology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/RP/visualize (accessed on 23 July 2021).
- Wyckhuys, K.A.G.; Aebi, A.; Bijleveld van Lexmond, M.F.I.J.; Bojaca, C.R.; Bonmatin, J.-M.; Furlan, L.; Guerrero, J.A.; Mai, T.V.; Pham, H.V.; Sanchez-Bayo, F.; et al. Resolving the Twin Human and Environmental Health Hazards of a Plant-Based Diet. Environ. Int. 2020, 144, 106081. [Google Scholar] [CrossRef]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Occurrence of Organochlorine Pesticide Residues in Biological and Environmental Matrices in Africa: A Two-Decade Review. Heliyon 2020, 6, e03518. [Google Scholar] [CrossRef]
- Pesticide Evaluations: Regulations and Guidance | EFSA. Available online: https://www.efsa.europa.eu/en/applications/pesticides/regulationsandguidance (accessed on 16 November 2021).
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public. Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef]
- State of the Science of Endocrine Disrupting Chemicals. Available online: https://www.who.int/publications-detail-redirect/state-of-the-science-of-endocrine-disrupting-chemicals-summary (accessed on 26 July 2021).
- Louis, G.M.B.; Gray, L.E.; Marcus, M.; Ojeda, S.R.; Pescovitz, O.H.; Witchel, S.F.; Sippell, W.; Abbott, D.H.; Soto, A.; Tyl, R.W.; et al. Environmental Factors and Puberty Timing: Expert Panel Research Needs. Pediatrics 2008, 121, S192–S207. [Google Scholar] [CrossRef]
- Bell, M.R. Comparing Postnatal Development of Gonadal Hormones and Associated Social Behaviors in Rats, Mice, and Humans. Endocrinology 2018, 159, 2596–2613. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in Pattern of Pubertal Changes in Girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef]
- Muir, A. Precocious Puberty. Pediatr. Rev. 2006, 27, 373–381. [Google Scholar] [CrossRef]
- Bodicoat, D.H.; Schoemaker, M.J.; Jones, M.E.; McFadden, E.; Griffin, J.; Ashworth, A.; Swerdlow, A.J. Timing of Pubertal Stages and Breast Cancer Risk: The Breakthrough Generations Study. Breast Cancer Res. BCR 2014, 16, R18. [Google Scholar] [CrossRef]
- Oltmann, S.C.; Garcia, N.; Barber, R.; Huang, R.; Hicks, B.; Fischer, A. Can We Preoperatively Risk Stratify Ovarian Masses for Malignancy? J. Pediatr. Surg. 2010, 45, 130–134. [Google Scholar] [CrossRef]
- Bonilla, C.; Lewis, S.J.; Martin, R.M.; Donovan, J.L.; Hamdy, F.C.; Neal, D.E.; Eeles, R.; Easton, D.; Kote-Jarai, Z.; Al Olama, A.A.; et al. Pubertal Development and Prostate Cancer Risk: Mendelian Randomization Study in a Population-Based Cohort. BMC Med. 2016, 14, 66. [Google Scholar] [CrossRef]
- Galvao, T.F.; Silva, M.T.; Zimmermann, I.R.; Souza, K.M.; Martins, S.S.; Pereira, M.G. Pubertal Timing in Girls and Depression: A Systematic Review. J. Affect. Disord. 2014, 155, 13–19. [Google Scholar] [CrossRef]
- Kaltiala-Heino, R.; Koivisto, A.-M.; Marttunen, M.; Fröjd, S. Pubertal Timing and Substance Use in Middle Adolescence: A 2-Year Follow-up Study. J. Youth Adolesc. 2011, 40, 1288. [Google Scholar] [CrossRef]
- Noll, J.G.; Trickett, P.K.; Long, J.D.; Negriff, S.; Susman, E.J.; Shalev, I.; Li, J.C.; Putnam, F.W. Childhood Sexual Abuse and Early Timing of Puberty. J. Adolesc. Health 2017, 60, 65–71. [Google Scholar] [CrossRef]
- Day, F.R.; Elks, C.E.; Murray, A.; Ong, K.K.; Perry, J.R.B. Puberty Timing Associated with Diabetes, Cardiovascular Disease and Also Diverse Health Outcomes in Men and Women: The UK Biobank Study. Sci. Rep. 2015, 5, 11208. [Google Scholar] [CrossRef]
- Charalampopoulos, D.; McLoughlin, A.; Elks, C.E.; Ong, K.K. Age at Menarche and Risks of All-Cause and Cardiovascular Death: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2014, 180, 29–40. [Google Scholar] [CrossRef]
- Palmert, M.R.; Dunkel, L. Delayed Puberty. Available online: https://www.nejm.org/doi/10.1056/NEJMcp1109290 (accessed on 16 October 2020).
- Chan, Y.-M.; Feld, A.; Jonsdottir-Lewis, E. Effects of the Timing of Sex-Steroid Exposure in Adolescence on Adult Health Outcomes. J. Clin. Endocrinol. Metab. 2019, 104, 4578–4586. [Google Scholar] [CrossRef]
- Cutler, G.B., Jr.; Glenn, M.; Bush, M.; Hodgen, G.D.; Graham, C.E.; Loriaux, D.L. Adrenarche: A Survey of Rodents, Domestic Animals, and Primates. Endocrinology 1978, 103, 2112–2118. [Google Scholar] [CrossRef]
- Antoniou-Tsigkos, A.; Macut, D.; Mastorakos, G. Physiopathology, Diagnosis, and Treatment of Secondary Female Hypogonadism. In Hypothalamic-Pituitary Diseases; Casanueva, F.F., Ghigo, E., Eds.; Endocrinology; Springer International Publishing: Cham, Switzerland, 2018; pp. 247–287. ISBN 978-3-319-44444-4. [Google Scholar]
- Alotaibi, M.F. Physiology of Puberty in Boys and Girls and Pathological Disorders Affecting Its Onset. J. Adolesc. 2019, 71, 63–71. [Google Scholar] [CrossRef]
- Ye, X.; Li, F.; Zhang, J.; Ma, H.; Ji, D.; Huang, X.; Curry, T.E.; Liu, W.; Liu, J. Pyrethroid Insecticide Cypermethrin Accelerates Pubertal Onset in Male Mice via Disrupting Hypothalamic–Pituitary–Gonadal Axis. Environ. Sci. Technol. 2017, 51, 10212–10221. [Google Scholar] [CrossRef]
- Martínez-Ibarra, A.; Morimoto, S.; Cerbón, M.; Prado-Flores, G. Effects on the Reproductive Parameters of Two Generations of Rattus Norvegicus Offspring from Dams Exposed to Heptachlor during Gestation and Lactation. Environ. Toxicol. 2016, 32, 856–868. [Google Scholar] [CrossRef]
- Roepke, T.A.; Yang, J.A.; Yasrebi, A.; Mamounis, K.J.; Oruc, E.; Zama, A.M.; Uzumcu, M. Regulation of Arcuate Genes by Developmental Exposures to Endocrine-Disrupting Compounds in Female Rats. Reprod. Toxicol. 2016, 62, 18–26. [Google Scholar] [CrossRef]
- Masutomi, N.; Shibutani, M.; Takagi, H.; Uneyama, C.; Takahashi, N.; Hirose, M. Impact of Dietary Exposure to Methoxychlor, Genistein, or Diisononyl Phthalate during the Perinatal Period on the Development of the Rat Endocrine/Reproductive Systems in Later Life. Toxicology 2003, 192, 149–170. [Google Scholar] [CrossRef]
- Gray, L.E.; Ostby, J.; Ferrell, J.; Rehnberg, G.; Linder, R.; Cooper, R.; Goldman, J.; Slott, V.; Laskey, J. A Dose-Response Analysis of Methoxychlor-Induced Alterations of Reproductive Development and Function in the Rat. Fundam. Appl. Toxicol. 1989, 12, 92–108. [Google Scholar] [CrossRef]
- Martini, M.; Froment, P.; Franceschini, I.; Pillon, D.; Guibert, E.; Cahier, C.; Mhaouty-Kodja, S.; Keller, M. Perinatal Exposure to Methoxychlor Affects Reproductive Function and Sexual Behavior in Mice. Front. Endocrinol. 2020, 11, 639. [Google Scholar] [CrossRef]
- Rasier, G.; Parent, A.-S.; Gérard, A.; Lebrethon, M.-C.; Bourguignon, J.-P. Early Maturation of Gonadotropin-Releasing Hormone Secretion and Sexual Precocity after Exposure of Infant Female Rats to Estradiol or Dichlorodiphenyltrichloroethane. Biol. Reprod. 2007, 77, 734–742. [Google Scholar] [CrossRef]
- Heinrichs, W.L.; Gellert, R.J.; Bakke, J.L.; Lawrence, N.L. DDT Administered to Neonatal Rats Induces Persistent Estrus Syndrome. Science 1971, 173, 902. [Google Scholar] [CrossRef]
- Gellert, R.J.; Heinrichs, W.L.; Swerdloff, R. Effects of Neonatally Administered DDT Homologs on Reproductive Function in Male and Female Rats. Neuroendocrinology 1974, 16, 84–94. [Google Scholar] [CrossRef]
- Maranghi, F.; Rescia, M.; Macrì, C.; Di Consiglio, E.; De Angelis, G.; Testai, E.; Farini, D.; De Felici, M.; Lorenzetti, S.; Mantovani, A. Lindane May Modulate the Female Reproductive Development through the Interaction with ER-β: An in Vivo-in Vitro Approach. Chem. Biol. Interact. 2007, 169, 1–14. [Google Scholar] [CrossRef]
- Rollerova, E.; Wsolova, L.; Urbancikova, M. Neonatal Exposure to Herbicide Acetochlor Alters Pubertal Development in Female Wistar Rats. Toxicol. Mech. Methods 2011, 21, 406–417. [Google Scholar] [CrossRef]
- Mathias, F.T.; Romano, R.M.; Sleiman, H.K.; de Oliveira, C.A.; Romano, M.A. Herbicide Metolachlor Causes Changes in Reproductive Endocrinology of Male Wistar Rats. ISRN Toxicol. 2012, 2012, 130846. [Google Scholar] [CrossRef] [PubMed]
- McBirney, M.; King, S.E.; Pappalardo, M.; Houser, E.; Unkefer, M.; Nilsson, E.; Sadler-Riggleman, I.; Beck, D.; Winchester, P.; Skinner, M.K. Atrazine Induced Epigenetic Transgenerational Inheritance of Disease, Lean Phenotype and Sperm Epimutation Pathology Biomarkers. PLoS ONE 2017, 12, e0184306. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.A.; Romano, R.M.; Santos, L.D.; Wisniewski, P.; Campos, D.A.; de Souza, P.B.; Viau, P.; Bernardi, M.M.; Nunes, M.T.; de Oliveira, C.A. Glyphosate Impairs Male Offspring Reproductive Development by Disrupting Gonadotropin Expression. Arch. Toxicol. 2012, 86, 663–673. [Google Scholar] [CrossRef]
- Ye, X.; Pan, W.; Zhao, S.; Zhao, Y.; Zhu, Y.; Liu, J.; Liu, W. Relationships of Pyrethroid Exposure with Gonadotropin Levels and Pubertal Development in Chinese Boys. Environ. Sci. Technol. 2017, 51, 6379–6386. [Google Scholar] [CrossRef]
- Croes, K.; Hond, E.D.; Bruckers, L.; Govarts, E.; Schoeters, G.; Covaci, A.; Loots, I.; Morrens, B.; Nelen, V.; Sioen, I.; et al. Endocrine Actions of Pesticides Measured in the Flemish Environment and Health Studies (FLEHS I and II). Environ. Sci. Pollut. Res. 2015, 22, 14589–14599. [Google Scholar] [CrossRef]
- Vasiliu, O.; Muttineni, J.; Karmaus, W. In Utero Exposure to Organochlorines and Age at Menarche. Hum. Reprod. 2004, 19, 1506–1512. [Google Scholar] [CrossRef]
- Ouyang, F.; Perry, M.J.; Venners, S.A.; Chen, C.; Wang, B.; Yang, F.; Fang, Z.; Zang, T.; Wang, L.; Xu, X.; et al. Serum DDT, Age at Menarche, and Abnormal Menstrual Cycle Length. Occup. Environ. Med. 2005, 62, 878–884. [Google Scholar] [CrossRef]
- Den Hond, E.; Dhooge, W.; Bruckers, L.; Schoeters, G.; Nelen, V.; Van De Mieroop, E.; Koppen, G.; Bilau, M.; Schroijen, C.; Keune, H. Internal Exposure to Pollutants and Sexual Maturation in Flemish Adolescents. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 224. [Google Scholar] [CrossRef]
- Deng, F.; Tao, F.; Liu, D.; Xu, Y.; Hao, J.; Sun, Y.; Su, P. Effects of Growth Environments and Two Environmental Endocrine Disruptors on Children with Idiopathic Precocious Puberty. Eur. J. Endocrinol. 2012, 166, 803–809. [Google Scholar] [CrossRef]
- Krstevska-Konstantinova, M.; Charlier, C.; Craen, M.; Du Caju, M.; Heinrichs, C.; De Beaufort, C.; Plomteux, G.; Bourguignon, J.P. Sexual Precocity after Immigration from Developing Countries to Belgium: Evidence of Previous Exposure to Organochlorine Pesticides. Hum. Reprod. 2001, 16, 1020–1026. [Google Scholar] [CrossRef]
- Wohlfahrt-Veje, C.; Andersen, H.R.; Schmidt, I.M.; Aksglaede, L.; Sørensen, K.; Juul, A.; Jensen, T.K.; Grandjean, P.; Skakkebæk, N.E.; Main, K.M. Early Breast Development in Girls after Prenatal Exposure to Non-Persistent Pesticides. Int. J. Androl. 2012, 35, 273–282. [Google Scholar] [CrossRef]
- Namulanda, G.; Taylor, E.; Maisonet, M.; Boyd Barr, D.; Flanders, W.D.; Olson, D.; Qualters, J.R.; Vena, J.; Northstone, K.; Naeher, L. In Utero Exposure to Atrazine Analytes and Early Menarche in the Avon Longitudinal Study of Parents and Children Cohort. Environ. Res. 2017, 156, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Pine, M.D.; Hiney, J.K.; Lee, B.; Dees, W.L. The Pyrethroid Pesticide Esfenvalerate Suppresses the Afternoon Rise of Luteinizing Hormone and Delays Puberty in Female Rats. Environ. Health Perspect. 2008, 116, 1243–1247. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Bhagat, S.; Raijiwala, P.; Dighe, V.; Vanage, G. Perinatal Exposure of Pregnant Rats to Cypermethrin Delays Testicular Descent, Impairs Fertility in F1 Male Progeny Leading to Developmental Defects in F2 Generation. Chemosphere 2017, 185, 376–385. [Google Scholar] [CrossRef]
- Singh, D.; Irani, D.; Bhagat, S.; Vanage, G. Cypermethrin Exposure during Perinatal Period Affects Fetal Development and Impairs Reproductive Functions of F1 Female Rats. Sci. Total Environ. 2020, 707, 135945. [Google Scholar] [CrossRef]
- Loeffler, I.K.; Peterson, R.E. Interactive Effects of TCDD Andp, P′-DDE on Male Reproductive Tract Development Inin Uteroand Lactationally Exposed Rats. Toxicol. Appl. Pharmacol. 1999, 154, 28–39. [Google Scholar] [CrossRef]
- Ashby, J.; Lefevre, P.A. The Peripubertal Male Rat Assay as an Alternative to the Hershberger Castrated Male Rat Assay for the Detection of Anti-Androgens, Oestrogens and Metabolic Modulators. J. Appl. Toxicol. JAT 2000, 20, 35–47. [Google Scholar] [CrossRef]
- Kelce, W.R.; Stone, C.R.; Laws, S.C.; Gray, L.E.; Kemppainen, J.A.; Wilson, E.M. Persistent DDT Metabolite p,p′–DDE Is a Potent Androgen Receptor Antagonist. Nature 1995, 375, 581–585. [Google Scholar] [CrossRef]
- Smialowicz, R.J.; Williams, W.C.; Copeland, C.B.; Harris, M.W.; Overstreet, D.; Davis, B.J.; Chapin, R.E. The Effects of Perinatal/Juvenile Heptachlor Exposure on Adult Immune and Reproductive System Function in Rats. Toxicol. Sci. 2001, 61, 164–175. [Google Scholar] [CrossRef][Green Version]
- Aoyama, H.; Hojo, H.; Takahashi, K.L.; Shimizu-Endo, N.; Araki, M.; Takeuchi-Kashimoto, Y.; Saka, M.; Teramoto, S. Two-Generation Reproduction Toxicity Study in Rats with Methoxychlor. Congenit. Anom. 2012, 52, 28–41. [Google Scholar] [CrossRef]
- Davis, L.K.; Murr, A.S.; Best, D.S.; Fraites, M.J.P.; Zorrilla, L.M.; Narotsky, M.G.; Stoker, T.E.; Goldman, J.M.; Cooper, R.L. The Effects of Prenatal Exposure to Atrazine on Pubertal and Postnatal Reproductive Indices in the Female Rat. Reprod. Toxicol. 2011, 32, 43–51. [Google Scholar] [CrossRef]
- Rayner, J.L.; Enoch, R.R.; Fenton, S.E. Adverse Effects of Prenatal Exposure to Atrazine During a Critical Period of Mammary Gland Growth. Toxicol. Sci. 2005, 87, 255–266. [Google Scholar] [CrossRef]
- Rayner, J.L.; Enoch, R.R.; Wolf, D.C.; Fenton, S.E. Atrazine-Induced Reproductive Tract Alterations after Transplacental and/or Lactational Exposure in Male Long-Evans Rats. Toxicol. Appl. Pharmacol. 2007, 218, 238–248. [Google Scholar] [CrossRef]
- Stanko, J.P.; Enoch, R.R.; Rayner, J.L.; Davis, C.C.; Wolf, D.C.; Malarkey, D.E.; Fenton, S.E. Effects of Prenatal Exposure to a Low Dose Atrazine Metabolite Mixture on Pubertal Timing and Prostate Development of Male Long-Evans Rats. Reprod. Toxicol. 2010, 30, 540–549. [Google Scholar] [CrossRef]
- Rosenberg, B.G.; Chen, H.; Folmer, J.; Liu, J.; Papadopoulos, V.; Zirkin, B.R. Gestational Exposure to Atrazine: Effects on the Postnatal Development of Male Offspring. J. Androl. 2008, 29, 304–311. [Google Scholar] [CrossRef]
- Stoker, T.E.; Laws, S.C.; Guidici, D.L.; Cooper, R.L. The Effect of Atrazine on Puberty in Male Wistar Rats: An Evaluation in the Protocol for the Assessment of Pubertal Development and Thyroid Function. Toxicol. Sci. Off. J. Soc. Toxicol. 2000, 58, 50–59. [Google Scholar] [CrossRef]
- Stoker, T.E.; Guidici, D.L.; Laws, S.C.; Cooper, R.L. The Effects of Atrazine Metabolites on Puberty and Thyroid Function in the Male Wistar Rat. Toxicol. Sci. Off. J. Soc. Toxicol. 2002, 67, 198–206. [Google Scholar] [CrossRef]
- Ashby, J.; Tinwell, H.; Stevens, J.; Pastoor, T.; Breckenridge, C.B. The Effects of Atrazine on the Sexual Maturation of Female Rats. Regul. Toxicol. Pharmacol. 2002, 35, 468–473. [Google Scholar] [CrossRef]
- Laws, S.C.; Ferrell, J.M.; Stoker, T.E.; Schmid, J.; Cooper, R.L. The Effects of Atrazine on Female Wistar Rats: An Evaluation of the Protocol for Assessing Pubertal Development and Thyroid Function. Toxicol. Sci. Off. J. Soc. Toxicol. 2000, 58, 366–376. [Google Scholar] [CrossRef]
- Laws, S.C.; Ferrell, J.M.; Stoker, T.E.; Cooper, R.L. Pubertal Development in Female Wistar Rats Following Exposure to Propazine and Atrazine Biotransformation By-Products, Diamino-S-Chlorotriazine and Hydroxyatrazine. Toxicol. Sci. Off. J. Soc. Toxicol. 2003, 76, 190–200. [Google Scholar] [CrossRef]
- Zorrilla, L.M.; Gibson, E.K.; Stoker, T.E. The Effects of Simazine, a Chlorotriazine Herbicide, on Pubertal Development in the Female Wistar Rat. Reprod. Toxicol. 2010, 29, 393–400. [Google Scholar] [CrossRef]
- Romano, R.M.; Romano, M.A.; Bernardi, M.M.; Furtado, P.V.; Oliveira, C.A. Prepubertal Exposure to Commercial Formulation of the Herbicide Glyphosate Alters Testosterone Levels and Testicular Morphology. Arch. Toxicol. 2010, 84, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Breckenridge, C.B.; Sawhney Coder, P.; Tisdel, M.O.; Simpkins, J.W.; Yi, K.D.; Foradori, C.D.; Handa, R.J. Effect of Age, Duration of Exposure, and Dose of Atrazine on Sexual Maturation and the Luteinizing Hormone Surge in the Female Sprague-Dawley Rat. Birth Defects Res. B. Dev. Reprod. Toxicol. 2015, 104, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Manservisi, F.; Lesseur, C.; Panzacchi, S.; Mandrioli, D.; Falcioni, L.; Bua, L.; Manservigi, M.; Spinaci, M.; Galeati, G.; Mantovani, A.; et al. The Ramazzini Institute 13-Week Pilot Study Glyphosate-Based Herbicides Administered at Human-Equivalent Dose to Sprague Dawley Rats: Effects on Development and Endocrine System. Environ. Health 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Blystone, C.R.; Furr, J.; Lambright, C.S.; Howdeshell, K.L.; Ryan Bryce, C.; Wilson, V.S.; LeBlanc, G.A.; Gray, L.E., Jr. Prochloraz Inhibits Testosterone Production at Dosages below Those That Affect Androgen-Dependent Organ Weights or the Onset of Puberty in the Male Sprague Dawley Rat. Toxicol. Sci. 2007, 97, 65–74. [Google Scholar] [CrossRef]
- Schneider, S.; Fussell, K.C.; Melching-Kollmuss, S.; Buesen, R.; Gröters, S.; Strauss, V.; Jiang, X.; van Ravenzwaay, B. Investigations on the Dose–Response Relationship of Combined Exposure to Low Doses of Three Anti-Androgens in Wistar Rats. Arch. Toxicol. 2017, 91, 3961–3989. [Google Scholar] [CrossRef] [PubMed]
- Melching-Kollmuss, S.; Fussell, K.C.; Schneider, S.; Buesen, R.; Groeters, S.; Strauss, V.; van Ravenzwaay, B. Comparing Effect Levels of Regulatory Studies with Endpoints Derived in Targeted Anti-Androgenic Studies: Example Prochloraz. Arch. Toxicol. 2017, 91, 143–162. [Google Scholar] [CrossRef]
- Ye, X.; Pan, W.; Zhao, Y.; Zhao, S.; Zhu, Y.; Liu, W.; Liu, J. Association of Pyrethroids Exposure with Onset of Puberty in Chinese Girls. Environ. Pollut. 2017, 227, 606–612. [Google Scholar] [CrossRef]
- Sergeyev, O.; Burns, J.S.; Williams, P.L.; Korrick, S.A.; Lee, M.M.; Revich, B.; Hauser, R. The Association of Peripubertal Serum Concentrations of Organochlorine Chemicals and Blood Lead with Growth and Pubertal Development in a Longitudinal Cohort of Boys: A Review of Published Results from the Russian Children’s Study. Rev. Environ. Health 2017, 32, 83–92. [Google Scholar] [CrossRef]
- Bapayeva, G.; Issayeva, R.; Zhumadilova, A.; Nurkasimova, R.; Kulbayeva, S.; Tleuzhan, R. Organochlorine Pesticides and Female Puberty in South Kazakhstan. Reprod. Toxicol. 2016, 65, 67–75. [Google Scholar] [CrossRef]
- Grandjean, P.; Grønlund, C.; Kjær, I.M.; Jensen, T.K.; Sørensen, N.; Andersson, A.-M.; Juul, A.; Skakkebæk, N.E.; Budtz-Jørgensen, E.; Weihe, P. Reproductive Hormone Profile and Pubertal Development in 14-Year-Old Boys Prenatally Exposed to Polychlorinated Biphenyls. Reprod. Toxicol. Elmsford N 2012, 34, 498–503. [Google Scholar] [CrossRef]
- Saiyed, H.; Dewan, A.; Bhatnagar, V.; Shenoy, U.; Shenoy, R.; Rajmohan, H.; Patel, K.; Kashyap, R.; Kulkarni, P.; Rajan, B.; et al. Effect of Endosulfan on Male Reproductive Development. Environ. Health Perspect. 2003, 111, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Attfield, K.R.; Pinney, S.M.; Sjödin, A.; Voss, R.W.; Greenspan, L.C.; Biro, F.M.; Hiatt, R.A.; Kushi, L.H.; Windham, G.C. Longitudinal Study of Age of Menarche in Association with Childhood Concentrations of Persistent Organic Pollutants. Environ. Res. 2019, 176, 108551. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt-Veje, C.; Andersen, H.R.; Jensen, T.K.; Grandjean, P.; Skakkebæk, N.E.; Main, K.M. Smaller Genitals at School Age in Boys Whose Mothers Were Exposed to Non-Persistent Pesticides in Early Pregnancy. Int. J. Androl. 2012, 35, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, X.; Huo, X. Anogenital Distance and Its Application in Environmental Health Research. Environ. Sci. Pollut. Res. 2014, 21, 5457–5464. [Google Scholar] [CrossRef]
- Bliatka, D.; Nigdelis, M.P.; Chatzimeletiou, K.; Mastorakos, G.; Lymperi, S.; Goulis, D.G. The Effects of Postnatal Exposure of Endocrine Disruptors on Testicular Function: A Systematic Review and a Meta-Analysis. Hormones 2020, 19, 157–169. [Google Scholar] [CrossRef]
- Rolfo, A.; Nuzzo, A.M.; De Amicis, R.; Moretti, L.; Bertoli, S.; Leone, A. Fetal–Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020, 12, 1744. [Google Scholar] [CrossRef]
- Crain, D.A.; Janssen, S.J.; Edwards, T.M.; Heindel, J.; Ho, S.; Hunt, P.; Iguchi, T.; Juul, A.; McLachlan, J.A.; Schwartz, J.; et al. Female Reproductive Disorders: The Roles of Endocrine-Disrupting Compounds and Developmental Timing. Fertil. Steril. 2008, 90, 911–940. [Google Scholar] [CrossRef]
- Mastorakos, G.; Karoutsou, E.I.; Mizamtsidi, M.; Creatsas, G. The Menace of Endocrine Disruptors on Thyroid Hormone Physiology and Their Impact on Intrauterine Development. Endocrine 2007, 31, 219–237. [Google Scholar] [CrossRef]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human Exposure to Endocrine Disrupting Chemicals: Effects on the Male and Female Reproductive Systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef]
- Chen, J.-F.; Chen, H.-Y.; Liu, R.; He, J.; Song, L.; Bian, Q.; Xu, L.-C.; Zhou, J.-W.; Xiao, H.; Dai, G.-D.; et al. Effects of Fenvalerate on Steroidogenesis in Cultured Rat Granulosa Cells. Biomed. Environ. Sci. BES 2005, 18, 108–116. [Google Scholar] [PubMed]
- Golub, M.S.; Hogrefe, C.E.; Germann, S.L.; Lasley, B.L.; Natarajan, K.; Tarantal, A.F. Effects of Exogenous Estrogenic Agents on Pubertal Growth and Reproductive System Maturation in Female Rhesus Monkeys. Toxicol. Sci. 2003, 74, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.L.; Stoker, T.E.; Tyrey, L.; Goldman, J.M.; McElroy, W.K. Atrazine Disrupts the Hypothalamic Control of Pituitary-Ovarian Function. Toxicol. Sci. 2000, 53, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Benachour, N.; Séralini, G.-E. Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chem. Res. Toxicol. 2009, 22, 97–105. [Google Scholar] [CrossRef]
- Richard Sophie; Moslemi Safa; Sipahutar Herbert; Benachour Nora; Seralini Gilles-Eric Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase. Environ. Health Perspect. 2005, 113, 716–720. [CrossRef]
- Laville, N.; Balaguer, P.; Brion, F.; Hinfray, N.; Casellas, C.; Porcher, J.-M.; Aït-Aïssa, S. Modulation of Aromatase Activity and MRNA by Various Selected Pesticides in the Human Choriocarcinoma JEG-3 Cell Line. Toxicology 2006, 228, 98–108. [Google Scholar] [CrossRef]
- Li, J.; Pang, G.; Ren, F.; Fang, B. Chlorpyrifos-Induced Reproductive Toxicity in Rats Could Be Partly Relieved under High-Fat Diet. Chemosphere 2019, 229, 94–102. [Google Scholar] [CrossRef]
- Bliatka, D.; Lymperi, S.; Mastorakos, G.; Goulis, D.G. Effect of Endocrine Disruptors on Male Reproduction in Humans: Why the Evidence Is Still Lacking? Andrology 2017, 5, 404–407. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2019, 12, 7. [Google Scholar] [CrossRef]
| Pesticide Category | Agrochemical Substance | Metabolites |
|---|---|---|
| Insecticides | ||
| Pyrethroids | esfenvalerate, cypermethrin | 3-PBA |
| Organochlorines (POPs) | heptachlor, DDT (banned in EU, USA), methoxychlor (banned in USA), endosulfan (banned in EU, USA), lindane, dieldrin, endrin | DDE |
| Organophosphates (potential POPs) | chlorpyrifos (banned in EU, USA) | DMP, DMTP, DMDTP, DEP, DETP, DEDTP |
| Herbicides | atrazine (banned in EU), propazine, simazine (banned in EU), acetochlor (banned in EU), metolachlor, glyphosate | HA, DACT, DIA, DEA |
| Fungicides | prochloraz, vinclozolin (reprotoxic, banned in EU), HCB (banned in EU, USA) |
| Publications | Agrochemical Substance | Animal | Period of Exposure | Dosage | Impact on Puberty Landmarks | NOAEL for Reproductive Toxicity |
|---|---|---|---|---|---|---|
| Insecticides | ||||||
| Pyrethroids | ||||||
| Postnatal | ||||||
| Pine et al., 2008 [48] | Esfenvalerate | Female SD rats | PND 22–VO | 0.5, 1 or 5 mg/kg/day per os | VO delay at 1 and 5 mg/kg/day | 2 mg/kg/day |
| Ye et al., 2017 [25] | Cypermethrin | Male CD-1 mice | PND 7–PND 21 | 0.5, 5 or 50μg/kg/day sc | Acceleration of PPS at all dosages | 5 mg/kg/day |
| Gestational and Postnatal | ||||||
| Singh et al., 2017 [49] | Cypermethrin | Holtzman rats | GD 6–LCD 21 | 1, 10 or 25 mg/kg/day per os | Delay of PPS at 1 and 25 mg/kg/day | 5 mg/kg/day |
| Singh et al., 2020 [50] | Cypermethrin | Holtzman rats | GD 6-LCD 21 | 1, 10 or 25 mg/kg/day per os | Delay of VO at 25 mg/kg/day | 5 mg/kg/day |
| Organochlorines | ||||||
| Gestational | ||||||
| Loeffler and Peterson 1999 [51] | DDT | Holtzman rats | GD 14–GD 18 | 1, 10, 50, 100, or 200 mg/kg/day per os | PPS delay at 200 mg/kg/day | n/a |
| Maranghi et al., 2007 [34] | Lindane | CD1 mice | GD 6–GD 16 | 15 mg/kg/day per os | VO acceleration | n/a |
| Postnatal | ||||||
| Rasier et al., 2007 [31] | ο,p′-DDT | Female Wistar rats | PND 6–PND 10 | 10 or 100 mg/kg/day sc | VO acceleration at all dosages, acceleration of first estrus appearance at 10 mg/kg | n/a |
| Heinrichs et al., 1971 [32] | ο,p′-DDT | Female SD rats | PND 2–PND 4 | 1 mg/day sc | Acceleration of VO and of first estrus appearance | n/a |
| Gellert et al., 1974 [33] | ο,p′-DDT | Female SD rats | PND 2–PND 4 | 0.001, 0.01, 0.1, 0.5, or 1 mg/day sc | Dose-dependent VO acceleration at ≥0.1 mg/day | n/a |
| Ashby and Lefevre 2000 [52] | DDE | Male Alderley Park rats | PND 22–55 or PND 36–55 | 100 mg/kg/day per os | PPS delay in the PND 22–55 subgroup | n/a |
| Kelce et al., 1995 [53] | Methoxychlor | Male Long–Evans rats | PND 21–PND 57 | 100 mg/kg/day per os | PPS delay | n/a |
| Gestational and Postnatal | ||||||
| Martinez-Ibarra et al., 2016 [26] | Heptachlor | Wistar rats | F0 generation: GD 12–LCD 21 | 4.5 mg/kg/day per os | F1 generation: VO delay F2 generation: VO acceleration | n/a |
| Smialowicz et al., 2001 [54] | Heptachlor | SD rats | GD 12–LCD 7 PND 8–PND 42 | 0, 30, 300, or 3000 μg/kg/day per os | VO delay at 30 μg/kg/day | n/a |
| Masutomi et al., 2003 [28] | Methoxychlor | SD rats | GD 15–LCD 10 | 24, 240, or 1200 ppm/day per os | VO acceleration and PPS delay at 1200 ppm | n/a |
| Roepke et al., 2016 [27] | Methoxychlor | Fischer CDF rats | Mothers: GD 11–PND 0 Female offspring: PND 0–PND 7 | 75 mg/kg/day intraperitoneally to the pregnant dams, sc to the neonates | VO acceleration | n/a |
| Martini et al., 2020 [30] | Methoxychlor | CD1 mice | GD 11–LCD 8 | 20 μg/kg/day per os | Acceleration of VO in female offspring, delay of PPS in male offspring | 5 mg/kg/day |
| Postnatal and Adult | ||||||
| Gray et al., 1989 [29] | Methoxychlor | Male and female Long–Evans rats | PND 21–PND 80 (males) PND 21–LCD 15 (females) | 25, 50, 100, or 200 mg/kg/day per os | F0 generation: Acceleration of VO and of first estrus appearance at all dosages; PPS delay at 100 or 200 mg/kg/day F1 generation: VO acceleration at all dosages. | n/a |
| Aoyama et al., 2012 [55] | Methoxychlor | Female and male SD rats | From postnatal week 5 and for 18 weeks | 10, 500, or 1500 ppm per os | PPS delay at 500 and 1500 ppm. | 10 ppm |
| Herbicides | ||||||
| Gestational | ||||||
| Davis et al., 2011 [56] | Atrazine | SD rats | GD 14–GD 21 | 1, 5, 20 or 100 mg/kg/day per os | VO delay at 100 mg/kg/day | n/a |
| Rayner et al., 2005 [57] | Atrazine | Long–Evans rats | GD 13–15; GD 15–17; GD 17–19; GD 13–19 | 100 mg/kg/day per os | VO delay in the GD13–19-exposed group | n/a |
| Rayner et al., 2007 [58] | Atrazine | Long–Evans rats | GD 15–GD 19 | 100 mg/kg per os | PPS delay among offspring exposed in utero and throughout lactation | n/a |
| Stanko et al., 2010 [59] | Mixture of atrazine and its metabolites (HA, DACT, DIA, DEA) | Long–Evans rats | GD 15–GD 19 | 0.09, 0.87, or 8.73 mg/kg/day of the mixture or 100 mg/kg/day atrazine per os | PPS delay among offspring exposed to 0.87 or 8.73 mg/kg/day of the mixture or 100 mg/kg/day atrazine | 6.25 mg/kg/day for DACT |
| Rosenberg et al., 2008 [60] | Atrazine | SD rats | GD 14–PND 0 | 1, 10, 50, 75, or 100 mg/kg/day per os | PPS delay at 50, 75, or 100 mg/kg | n/a |
| Postnatal | ||||||
| Stoker et al., 2000 [61] | Atrazine | Male Wistar rats | PND 23–PND 53 | 12.5, 25, 50, 100, 150, or 200 mg/kg/day per os | PPS delay at 12.5, 50, 100, 150, or 200 mg/kg/day | 6.25 mg/kg/day |
| Stoker et al., 2002 [62] | Atrazine metabolites (DEA, DIA, DACT) | Male Wistar rats | PND 23–PND 53 | 6.25, 12.5, 25, 50, 100, or 200 mg/kg/day per os in molar equivalent of atrazine | PPS delay in subgroups which received DEA or DIA (at 25, 100, and 200 mg/kg) or DACT (at ≥12.5 mg/kg) | 6.25 mg/kg/day for atrazine and DACT, 12.5 mg/kg/day for DEA and DIA |
| Ashby et al., 2002 [63] | Atrazine | Female Wistar and SD rats | PND 21–PND 45 | 10, 30, or 100 mg/kg/day per os | Wistar rats: VO delay at 100 mg/kg/day SD rats: VO delay at 30 or 100 mg/kg/day | 25 mg/kg/day |
| Laws et al., 2000 [64] | Atrazine | Female Wistar rats | PND 22–PND 41 | 12.5, 25, 50, 100, or 200 mg/kg per os | VO delay at 50, 100 or 200 mg/kg | 25 mg/kg/day |
| Laws et al., 2003 [65] | HA or DACT (Atrazine metabolites) or Propazine | Female Wistar rats | PND 22-PND 41 | 22.8, 45.7, 91.5, or 183 mg/kg / day HA per os16.7, 33.8, 67.5, or 135 mg/kg/day DACT per os 13, 26.7, 53, 106.7, or 213 mg/kg/day propazine per os | VO delay in animals treated with ≥33.8 mg/kg DACT (dose-dependent), or with ≥106.7 mg/kg propazine | 25 mg/kg/day for atrazine, 16.7 mg/kg/day for DACT |
| Zorilla et al., 2010 [66] | Simazine | Female Wistar rats | PND 22–42 or PND 22–62 | 12.5, 25, 50, 100, or 200 (not administered to the animals treated only for 21 days) mg/kg/day per os. | VO delay for the subgroups exposed at 25 and 100 mg/kg for 21 days, and the subgroups exposed to ≥25 mg/kg for 41 days. Delay of first estrus appearance for the subgroup exposed at 100 mg/kg for 21 days, or at 100 and 200 mg/kg for 41 days. | n/a |
| Rollerova et al., 2011 [35] | Acetochlor | Female Wistar rats | PND 4–PND 7 | 7.68 or 15.36 mg/kg/day sc | VO acceleration at all dosages | n/a |
| Mathias et al., 2012 [36] | Metolachlor | Male Wistar rats | PND 23–PND 53 | 5 or 50 mg/kg/day per os | Dose-dependent PPS acceleration | 23.5–26 mg/kg/day |
| Romano et al., 2010 [67] | Glyphosate | Male Wistar rats | PND 23–PND 53 | 5 or 50 or 250 mg/kg per os | Dose-dependent PPS delay at 50 or 250 mg/kg | 50 mg/kg/day |
| Gestational and Postnatal | ||||||
| Breckenridge et al., 2015 [68] | Atrazine | SD rats | F0 generation: GD 0–LCD 21 F1 generation: PND 21–5 post VO days | 6.25, 25, or 50 mg/kg/day per os | VO delay at 25 or 50 mg/kg/day atrazine starting in utero, and at 50 mg/kg/day atrazine starting after weaning | 6.25 mg/kg/day |
| Manservisi et al., 2019 [69] | Glyphosate-based herbicide | Female SD rats | F0 generation: GD 6–end of lactation F1 generation: from weaning and for 13 weeks | 175 mg/kg/day per os | Delay of first estrus appearance in F1 generation | 50 mg/kg/day |
| Romano et al., 2012 [38] | Glyphosate | Wistar rats | GD 18–LCD 5 | 50 mg/kg/day per os | PPS acceleration | 50 mg/kg/day |
| Transgenerational | ||||||
| McBirney et al., 2017 [37] | Atrazine | Harlan SD rats | F0 generation: GD 8–GD 14 | 25 mg/kg intraperitoneally | Accelerated puberty onset in F2 generation male and F3 generation female animals | n/a |
| Fungicides | ||||||
| Postnatal | ||||||
| Blystone et al., 2007 [70] | Prochloraz | Male SD rats | PND 23–PND 42; PND 23 –PND 51 | 31.3, 62.5, or 125 mg/kg/day per os | PPS delay at 125 mg/kg/day | 5 mg/kg/day |
| Gestational and Postnatal | ||||||
| Schneider et al., 2017 [71] | Mixture of vinclozolin/flutamide/prochloraz | Wistar rats | GD 6–LCD 21 and PND 21–puberty onset; PND 21–83 | 0.005/0.00025/0.01, 4/0.025/5 or 20/0.25/30 mg/kg/day per os | PPS delay at 20/0.25/30 mg/kg/day | 4/0.025/5 mg/kg/day |
| Melching-Kolmuss et al., 2017 [72] | Prochloraz | Wistar rats | GD 6–LCD 21 | 0.01, 5, or 30 mg/kg/day per os | PPS delay at 30 mg/kg/day | 5 mg/kg/day |
| Publications | Agrochemical Substance | Sex, Number (n), Country | Age (Years) | Biological Matrice /Method | Impact on Puberty Landmarks |
|---|---|---|---|---|---|
| Insecticides | |||||
| Pyrethroids | |||||
| Ye et al., 2017 [73] | 3-PBA (nonspecific metabolite) | Girls (n = 305) China | 9–15 | Urine/LC-MS | Positive association between increased concentration and delay in puberty progression tempo and age at menarche |
| Ye et al., 2017 [39] | 3-PBA (nonspecific metabolite) | Boys (n = 463) China | 9–16 | Urine/LC-MS | Positive association between increased concentration and acceleration in puberty progression tempo |
| Organochlorines | |||||
| Sergeyev et al., 2017 [74] | HCB, βHCH, p,p′-DDE | Boys (n = 482) Russia | 8–9 | Serum/GC-MS | Delayed sexual maturation with HCB |
| Krstevska-Konstantinova et al., 2001 [45] | p,p′-DDE | Girls and boys (n = 41) Multiethnic immigrants (Asians, Africans, South Americans, Western Europeans) and native Belgians | 7.8–8.3 (mean age at diagnosis) | Serum/GC-MS/MS | Increased risk for idiopathic precocious puberty among immigrants from developing countries to Belgium |
| Croes et al., 2015 [40] | HCB, p,p′-DDE | Boys and girls (n = 600) Belgium | 14–15 | Serum/GC-MS | Delayed sexual maturation in girls and accelerated in boys with HCB and delayed sexual maturation in girls with p,p′-DDE |
| Bapayeva et al., 2016 [75] | Lindane, dieldrin, endrin, DDT | Girls (n = 517) Kazakstan | 10–17 | Serum/GC-ECD | Delayed sexual maturation |
| Vasiliu et al., 2004 [41] | DDE | Women (n = 151) USA | 20–50 | Maternal serum/GC-ECD | Acceleration of menarche |
| Ouyang et al., 2005 [42] | DDT | Women (n = 466) China | 20–36 | Serum/GC-ECD | Acceleration of menarche |
| DenHond et al., 2011 [43] | HCB, p,p′-DDE | Boys (n = 767) and girls (n = 636) Belgium | 14–15 | Serum/GC-ECD | Accelerated pubertal development in boys |
| Grandjean et al., 2012 [76] | p,p′-DDE | Boys (n = 438) Faroe Islands | 14 | Cord blood/GC-ECD | Negative association with pubertal development |
| Sayied et al., 2003 [77] | Endosulfan | Boys (n = 117) India | 10–19 | Serum/GC-ECD | Delayed pubertal development |
| Attfield et al., 2019 [78] | DDE HCB Transnonaclor | Girls (n = 556) USA (multiracial cohort) | 6–8 (age at enrollment) | Serum/GC-MS | Positive association between organochlorine pesticides concentration in the highest quartile and delayed menarche |
| Deng et al., 2012 [44] | p,p′-DDE | Boys (n = 3) and girls (n = 175) China | ~3–9 | Serum/GC-ECD | Positive association between exposure and idiopathic precocious puberty |
| Organophosphates | |||||
| Croes et al., 2015 [40] | DMP, DMTP, DMDTP, DEDTP | Boys and girls (n = 600) Belgium | 14–15 | Urine/GC-MS | Delayed sexual maturation in boys with methyl metabolites and delayed sexual maturation in girls with ethyl metabolites |
| Herbicides | |||||
| Namulanda et al., 2017 [47] | Atrazine metabolites | Girls (n = 469) United Kingdom | 8–13 | Maternal urine during pregnancy (collected at 8th-17th week) /LC-MS/MS) | Positive association between maternal urine DACT concentrations and the risk for earlier menarche among prenatally exposed daughters |
| Pesticide mixture | |||||
| Wohlfahrt-Veje et al., 2012 [46,79] | Various pesticide categories | Boys (n = 94) and girls (n = 83) and Denmark | 6–11 | Indirect assessment (questionnaire) of occupational exposure of female greenhouse workers during their first trimester of pregnancy | Earlier thelarche in prenatally exposed daughters and smaller testicular volumes and penile lengths at 3 months of age and prepubertally in prenatally exposed sons |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakali, A.K.; Bargiota, A.; Fatouros, I.G.; Jamurtas, A.; Macut, D.; Mastorakos, G.; Papagianni, M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients 2021, 13, 4184. https://doi.org/10.3390/nu13114184
Sakali AK, Bargiota A, Fatouros IG, Jamurtas A, Macut D, Mastorakos G, Papagianni M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients. 2021; 13(11):4184. https://doi.org/10.3390/nu13114184
Chicago/Turabian StyleSakali, Anastasia Konstantina, Alexandra Bargiota, Ioannis G. Fatouros, Athanasios Jamurtas, Djuro Macut, George Mastorakos, and Maria Papagianni. 2021. "Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture" Nutrients 13, no. 11: 4184. https://doi.org/10.3390/nu13114184
APA StyleSakali, A. K., Bargiota, A., Fatouros, I. G., Jamurtas, A., Macut, D., Mastorakos, G., & Papagianni, M. (2021). Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients, 13(11), 4184. https://doi.org/10.3390/nu13114184

