The Omega-3 Fatty Acid Eicosapentaenoic Acid (EPA) Correlates Inversely with Ischemic Brain Infarcts in Patients with Atrial Fibrillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sampling and Whole Blood Fatty Acid Composition
2.3. Brain Magnetic Resonance Imaging
2.4. End Points
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Large Cortical and Noncortical Infarcts
3.3. Small Vessel Disease: Small Non-Cortical Infarcts, Number of Microbleeds and White Matter Lesion Volumes
3.4. Sensitivity Analysis in Patients with Silent Brain Infarcts
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | atrial fibrillation |
ALA | alpha-linolenic acid |
DHA | docosahexaenoic acid |
DPA | docosapentaenoic acid |
EPA | eicosapentaenoic acid |
ExpB | exponentiation of the beta coefficient |
LNCCIs | large noncortical or cortical infarcts |
n-3 FA | omega-3 fatty acids |
SNCIs | small noncortical infarcts |
Swiss-AF | swiss atrial fibrillation |
WMLs | white matter lesions |
References
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.H.; McAnulty, J.H., Jr.; Zheng, Z.J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke A J. Cereb. Circ. 1991, 22, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conen, D.; Rodondi, N.; Muller, A.; Beer, J.H.; Ammann, P.; Moschovitis, G.; Auricchio, A.; Hayoz, D.; Kobza, R.; Shah, D.; et al. Relationships of Overt and Silent Brain Lesions with Cognitive Function in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2019, 73, 989–999. [Google Scholar] [CrossRef]
- Kishore, A.; Vail, A.; Majid, A.; Dawson, J.; Lees, K.R.; Tyrrell, P.J.; Smith, C.J. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: A systematic review and meta-analysis. Stroke A J. Cereb. Circ. 2014, 45, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthelemy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2020. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation 2019, 140, e125–e151. [Google Scholar] [CrossRef] [PubMed]
- Ntaios, G.; Papavasileiou, V.; Diener, H.C.; Makaritsis, K.; Michel, P. Nonvitamin-K-antagonist oral anticoagulants in patients with atrial fibrillation and previous stroke or transient ischemic attack: A systematic review and meta-analysis of randomized controlled trials. Stroke A J. Cereb. Circ. 2012, 43, 3298–3304. [Google Scholar] [CrossRef] [PubMed]
- Vas Dias, F.W.; Gibney, M.J.; Taylor, T.G. The effect of polyunsaturated fatty acids on the n-3 and n-6 series on platelet aggregation and platelet and aortic fatty acid composition in rabbits. Atherosclerosis 1982, 43, 245–257. [Google Scholar] [CrossRef]
- Conquer, J.A.; Cheryk, L.A.; Chan, E.; Gentry, P.A.; Holub, B.J. Effect of supplementation with dietary seal oil on selected cardiovascular risk factors and hemostatic variables in healthy male subjects. Thromb. Res. 1999, 96, 239–250. [Google Scholar] [CrossRef]
- Phang, M.; Scorgie, F.E.; Seldon, M.; Garg, M.L.; Lincz, L.F. Reduction of prothrombin and Factor V levels following supplementation with omega-3 fatty acids is sex dependent: A randomised controlled study. J. Nutr. Biochem. 2014, 25, 997–1002. [Google Scholar] [CrossRef]
- Takashima, A.; Fukuda, D.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Nishimoto, S.; Yagi, S.; Yamada, H.; Soeki, T.; Wakatsuki, T.; et al. Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation. Atherosclerosis 2016, 254, 142–150. [Google Scholar] [CrossRef]
- Winnik, S.; Lohmann, C.; Richter, E.K.; Schafer, N.; Song, W.L.; Leiber, F.; Mocharla, P.; Hofmann, J.; Klingenberg, R.; Boren, J.; et al. Dietary alpha-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation. Eur. Heart J. 2011, 32, 2573–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budoff, M.J.; Bhatt, D.L.; Kinninger, A.; Lakshmanan, S.; Muhlestein, J.B.; Le, V.T.; May, H.T.; Shaikh, K.; Shekar, C.; Roy, S.K.; et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: Final results of the EVAPORATE trial. Eur. Heart J. 2020. [Google Scholar] [CrossRef]
- Toyama, K.; Nishioka, T.; Isshiki, A.; Ando, T.; Inoue, Y.; Kirimura, M.; Kamiyama, T.; Sasaki, O.; Ito, H.; Maruyama, Y.; et al. Eicosapentaenoic Acid combined with optimal statin therapy improves endothelial dysfunction in patients with coronary artery disease. Cardiovasc. Drugs Ther. 2014, 28, 53–59. [Google Scholar] [CrossRef]
- Veno, S.K.; Bork, C.S.; Jakobsen, M.U.; Lundbye-Christensen, S.; McLennan, P.L.; Bach, F.W.; Overvad, K.; Schmidt, E.B. Marine n-3 Polyunsaturated Fatty Acids and the Risk of Ischemic Stroke. Stroke A J. Cereb. Circ. 2019, 50, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Bork, C.S.; Veno, S.K.; Lundbye-Christensen, S.; Jakobsen, M.U.; Tjonneland, A.; Schmidt, E.B.; Overvad, K. Dietary Intake of alpha-Linolenic Acid Is Not Appreciably Associated with Risk of Ischemic Stroke among Middle-Aged Danish Men and Women. J. Nutr. 2018, 148, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Saber, H.; Yakoob, M.Y.; Shi, P.; Longstreth, W.T., Jr.; Lemaitre, R.N.; Siscovick, D.; Rexrode, K.M.; Willett, W.C.; Mozaffarian, D. Omega-3 Fatty Acids and Incident Ischemic Stroke and Its Atherothrombotic and Cardioembolic Subtypes in 3 US Cohorts. Stroke A J. Cereb. Circ. 2017, 48, 2678–2685. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, F.B.; Manson, J.E. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J. Am. Heart Assoc. 2019, 8, e013543. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Willoughby, S.R.; Schultz, C.; Gan, C.; Alasady, M.; Lau, D.H.; Leong, D.P.; Brooks, A.G.; Young, G.D.; Kistler, P.M.; et al. Effect of atrial fibrillation on atrial thrombogenesis in humans: Impact of rate and rhythm. J. Am. Coll. Cardiol. 2013, 61, 852–860. [Google Scholar] [CrossRef]
- Conen, D.; Rodondi, N.; Mueller, A.; Beer, J.; Auricchio, A.; Ammann, P.; Hayoz, D.; Kobza, R.; Moschovitis, G.; Shah, D.; et al. Design of the Swiss Atrial Fibrillation Cohort Study (Swiss-AF): Structural brain damage and cognitive decline among patients with atrial fibrillation. Swiss Med. Wkly. 2017, 147, w14467. [Google Scholar] [CrossRef]
- Reiner, M.F.; Stivala, S.; Limacher, A.; Bonetti, N.R.; Mean, M.; Egloff, M.; Rodondi, N.; Aujesky, D.; von Schacky, C.; Luscher, T.F.; et al. Omega-3 fatty acids predict recurrent venous thromboembolism or total mortality in elderly patients with acute venous thromboembolism. J. Thromb. Haemost. JTH 2017, 15, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohler, A.; Bittner, D.; Low, A.; von Schacky, C. Effects of a convenience drink fortified with n-3 fatty acids on the n-3 index. Br. J. Nutr. 2010, 104, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef] [Green Version]
- Fazekas, F.; Chawluk, J.B.; Alavi, A.; Hurtig, H.I.; Zimmerman, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR. Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Nagakawa, Y.; Orimo, H.; Harasawa, M.; Morita, I.; Yashiro, K.; Murota, S. Effect of eicosapentaenoic acid on the platelet aggregation and composition of fatty acid in man. A double blind study. Atherosclerosis 1983, 47, 71–75. [Google Scholar] [CrossRef]
- Adili, R.; Voigt, E.M.; Bormann, J.L.; Foss, K.N.; Hurley, L.J.; Meyer, E.S.; Veldman, A.J.; Mast, K.A.; West, J.L.; Whiteheart, S.W.; et al. In vivo modeling of docosahexaenoic acid and eicosapentaenoic acid-mediated inhibition of both platelet function and accumulation in arterial thrombi. Platelets 2019, 30, 271–279. [Google Scholar] [CrossRef]
- Nomura, S.; Inami, N.; Shouzu, A.; Omoto, S.; Kimura, Y.; Takahashi, N.; Tanaka, A.; Urase, F.; Maeda, Y.; Ohtani, H.; et al. The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients. Platelets 2009, 20, 16–22. [Google Scholar] [CrossRef]
- Nieuwenhuys, C.M.; Hornstra, G. The effects of purified eicosapentaenoic and docosahexaenoic acids on arterial thrombosis tendency and platelet function in rats. Biochim. Biophys. Acta 1998, 1390, 313–322. [Google Scholar] [CrossRef]
- West, S.G.; Krick, A.L.; Klein, L.C.; Zhao, G.; Wojtowicz, T.F.; McGuiness, M.; Bagshaw, D.M.; Wagner, P.; Ceballos, R.M.; Holub, B.J.; et al. Effects of diets high in walnuts and flax oil on hemodynamic responses to stress and vascular endothelial function. J. Am. Coll. Nutr. 2010, 29, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Stivala, S.; Sorrentino, S.; Gobbato, S.; Bonetti, N.R.; Camici, G.G.; Luscher, T.F.; Medalia, O.; Beer, J.H. Glycoprotein Ib clustering in platelets can be inhibited by alpha-linolenic acid as revealed by cryo-electron tomography. Haematologica 2020, 105, 1660–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stivala, S.; Reiner, M.F.; Lohmann, C.; Luscher, T.F.; Matter, C.M.; Beer, J.H. Dietary alpha-linolenic acid increases the platelet count in ApoE-/- mice by reducing clearance. Blood 2013, 122, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Chen, M.; Chowdhury, R.; Wu, J.H.; Sun, Q.; Campos, H.; Mozaffarian, D.; Hu, F.B. alpha-Linolenic acid and risk of cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1262–1273. [Google Scholar] [CrossRef]
- Harris, W.S.; Pottala, J.V.; Vasan, R.S.; Larson, M.G.; Robins, S.J. Changes in erythrocyte membrane trans and marine fatty acids between 1999 and 2006 in older Americans. J. Nutr. 2012, 142, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipovic, M.G.; Aeschbacher, S.; Reiner, M.F.; Stivala, S.; Gobbato, S.; Bonetti, N.; Risch, M.; Risch, L.; Camici, G.G.; Luescher, T.F.; et al. Whole blood omega-3 fatty acid concentrations are inversely associated with blood pressure in young, healthy adults. J. Hypertens. 2018, 36, 1548–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Overall Population | N = 1657 |
---|---|
Mean age (SD) | 72.5 (8.4) |
Female (%) | 453 (27.3) |
Median BMI (IQR) | 26.9 (24.3, 30.3) |
Smoking (%) | |
Never | 734 (44.3) |
Past | 800 (48.3) |
Active | 123 (7.4) |
Median alcohol units per day (IQR) | 0.6 (0.1, 1.3) |
Physical activity (%) | 802 (48.4) |
Coronary artery disease (%) | 425 (25.6) |
Hypertension (%) | 1136 (68.6) |
Diabetes mellitus (%) | 251 (15.1) |
Kidney failure (%) | 294 (17.7) |
Previous stroke (%) | 221 (13.3) |
Previous TIA (%) | 145 (8.8) |
Family history coronary artery disease (%) | |
Yes | 610 (36.8) |
Unknown | 183 (11.0) |
Aspirin (%) | 234 (14.1) |
Anticoagulants (%) | 1499 (90.5) |
AF type (%) | |
Paroxysmal | 761 (45.9) |
Persistent | 495 (29.9) |
Permanent | 401 (24.2) |
Mean CHA2DS2-VASc score (SD) | 3.3 (1.7) |
Overall Population | Mean Fatty Acid Fraction |
---|---|
N = 1657 | % (SD) |
Eicosapentaenoic acid (EPA) | 0.8 (0.3) |
Docosahexaenoic acid (DHA) | 3.3 (0.8) |
Docosapentaenoic acid (DPA) | 1.7 (0.3) |
Alpha-linolenic acid (ALA) | 0.2 (0.1) |
Total Omega-3 fatty acids | 6.0 (1.2) |
Prevalence of Large Noncortical and Cortical Infarcts (LNCCIs) | Model 1 | Model 2 |
---|---|---|
Eicosapentaenoic acid (EPA) | 0.50 (0.30–0.83) | 0.51 (0.29–0.90) |
Docosahexaenoic acid (DHA) | 1.15 (0.97–1.35) | 1.10 (0.92–1.32) |
Docosapentaenoic acid (DPA) | 2.68 (1.70–4.21) | 2.48 (1.49–4.13) |
Alpha-linolenic acid (ALA) | 0.73 (0.23–2.31) | 0.88 (0.25–3.10) |
Total Omega-3 fatty acids | 1.06 (0.96–1.17) | 1.03 (0.92–1.15) |
Prevalence of small | ||
noncortical infarcts (SNCIs) | ||
Eicosapentaenoic acid (EPA) | 0.92 (0.57–1.47) | 0.91 (0.56–1.49) |
Docosahexaenoic acid (DHA) | 1.05 (0.89–1.24) | 1.04 (0.87–1.23) |
Docosapentaenoic acid (DPA) | 1.24 (0.78–1.98) | 1.19 (0.73–1.94) |
Alpha-linolenic acid (ALA) | 1.41 (0.47–4.22) | 1.77 (0.58–5.38) |
Total Omega-3 fatty acids | 1.05 (0.94–1.16) | 1.03 (0.92–1.15) |
Number of microbleeds | ||
Eicosapentaenoic acid (EPA) | 1.38 (0.46–4.15) | 1.42 (0.42–4.77) |
Docosahexaenoic acid (DHA) | 0.86 (0.66–1.14) | 0.94 (0.68–1.30) |
Docosapentaenoic acid (DPA) | 0.72 (0.29–1.78) | 1.24 (0.44–3.47) |
Alpha-linolenic acid (ALA) | 5.43 (0.65–45.36) | 1.48 (0.17–12.79) |
Total Omega-3 fatty acids | 0.92 (0.74–1.15) | 1.04 (0.81–1.33) |
Volumes of white matter | ||
lesions (WMLs) | ||
Eicosapentaenoic acid (EPA) | 1.02 (0.77–1.33) | 0.99 (0.75–1.30) |
Docosahexaenoic acid (DHA) | 1.02 (0.93–1.12) | 1.04 (0.94–1.14) |
Docosapentaenoic acid (DPA) | 0.98 (0.76–1.27) | 1.05 (0.80–1.37) |
Alpha-linolenic acid (ALA) | 0.89 (0.47–1.67) | 0.98 (0.52–1.85) |
Total Omega-3 fatty acids | 1.01 (0.96–1.07) | 1.03 (0.97–1.09) |
Sensitivity Analysis—Prevalence of Large Noncortical and Cortical Infarcts (LNCCIs) | Model 1 | Model 2 |
---|---|---|
Eicosapentaenoic acid (EPA) | 0.40 (0.19–0.83) | 0.48 (0.23–1.01) |
Docosahexaenoic acid (DHA) | 1.05 (0.84–1.31) | 1.01 (0.81–1.27) |
Docosapentaenoic acid (DPA) | 1.69 (0.93–3.05) | 1.65 (0.90–3.06) |
Alpha-linolenic acid (ALA) | 1.67 (0.39–7.17) | 1.24 (0.27–5.61) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiner, M.F.; Baumgartner, P.; Wiencierz, A.; Coslovsky, M.; Bonetti, N.R.; Filipovic, M.G.; Montrasio, G.; Aeschbacher, S.; Rodondi, N.; Baretella, O.; et al. The Omega-3 Fatty Acid Eicosapentaenoic Acid (EPA) Correlates Inversely with Ischemic Brain Infarcts in Patients with Atrial Fibrillation. Nutrients 2021, 13, 651. https://doi.org/10.3390/nu13020651
Reiner MF, Baumgartner P, Wiencierz A, Coslovsky M, Bonetti NR, Filipovic MG, Montrasio G, Aeschbacher S, Rodondi N, Baretella O, et al. The Omega-3 Fatty Acid Eicosapentaenoic Acid (EPA) Correlates Inversely with Ischemic Brain Infarcts in Patients with Atrial Fibrillation. Nutrients. 2021; 13(2):651. https://doi.org/10.3390/nu13020651
Chicago/Turabian StyleReiner, Martin F., Philipp Baumgartner, Andrea Wiencierz, Michael Coslovsky, Nicole R. Bonetti, Mark G. Filipovic, Giulia Montrasio, Stefanie Aeschbacher, Nicolas Rodondi, Oliver Baretella, and et al. 2021. "The Omega-3 Fatty Acid Eicosapentaenoic Acid (EPA) Correlates Inversely with Ischemic Brain Infarcts in Patients with Atrial Fibrillation" Nutrients 13, no. 2: 651. https://doi.org/10.3390/nu13020651
APA StyleReiner, M. F., Baumgartner, P., Wiencierz, A., Coslovsky, M., Bonetti, N. R., Filipovic, M. G., Montrasio, G., Aeschbacher, S., Rodondi, N., Baretella, O., Kühne, M., Moschovitis, G., Meyre, P., Bonati, L. H., Lüscher, T. F., Camici, G. G., Osswald, S., Conen, D., & Beer, J. H. (2021). The Omega-3 Fatty Acid Eicosapentaenoic Acid (EPA) Correlates Inversely with Ischemic Brain Infarcts in Patients with Atrial Fibrillation. Nutrients, 13(2), 651. https://doi.org/10.3390/nu13020651