The Effect of Curcumin Supplementation on Anthropometric Measures among Overweight or Obese Adults
Abstract
:1. Introduction
2. Mechanism of Action
3. The Effect of Curcumin on Anthropometric Measures Results
3.1. Studies with 1000 mg or Less of Curcumin per Day
3.2. Studies with 1500 mg of Curcumin per Day
3.3. Studies with Phytosomal form of Curcumin
3.4. Studies with Other Forms of Curcumin
4. Health Benefits
5. Side Effects
6. Limitations and Recommendations
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD. Global Burden of Disease Study 2015 Obesity and Overweight Prevelance; Institite for Health Metrics and Evaluation (IHME): Seattle, WA, USA, 2017; pp. 1980–2015. [Google Scholar]
- Bell, J.; Sabia, S.; Singh-Manoux, A.; Hamer, M.; Kivimäki, M. Healthy obesity and risk of accelerated functional decline and disability. Int. J. Obes. 2017, 41, 866–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, D.; Minh Nguyet, N.; Nga, V.; Thai Lien, N.; Vo, D.; Lien, N.; Ngoc, V.T.; Le, D.H.; Nga, V.B.; Van Tu, P.; et al. An update on obesity: Mental consequences and psychological interventions. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri-Tehrani, S.; Rezayat, S.; Mansouri, S.; Qorbani, M.; Alavian, S.; Daneshi-Maskooni, M.; Hosseinzadeh-Attar, M. Nano-curcumin improves glucose indices, lipids, inflammation, and nesfatin in overweight and obese patients with non-alcoholic fatty liver disease (NAFLD): A double-blind randomized placebo-controlled clinical trial. Nutr. Metab. 2019, 16, 1–13. [Google Scholar] [CrossRef]
- Webb, V.; Wadden, T. Intensive lifestyle intervention for obesity: Principles, practices, and results. Gastroenterology 2017, 152, 1752–1764. [Google Scholar] [CrossRef] [PubMed]
- Butryn, M.; Webb, V.; Wadden, T. Behavioral treatment of obesity. Psychiatr. Clin. N. Am. 2011, 34, 841–859. [Google Scholar] [CrossRef] [PubMed]
- Middleton, K.; Anton, S.; Perri, M. Long-term adherence to health behavior change. Am. J. Lifestyle Med. 2013, 7, 395–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koliaki, C.; Spinos, T.; Spinou, Μ.; Brinia, Μ.; Mitsopoulou, D.; Katsilambros, N. Defining the optimal dietary approach for safe, effective, and sustainable weight loss in overweight and obese adults. Healthcare 2018, 6, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagoto, S.; Appelhans, B. A Call for an End to the Diet Debates. JAMA 2013, 310, 687. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri-Tehrani, S.A.; Rezayat, S.M.; Mansouri, S.; Qorbani, M.; Alavian, S.M.; Daneshi-Maskooni, M.; Hosseinzadeh-Attar, M.-J. The nanocurcumin reduces appetite in obese patients with non-alcoholic fatty liver disease (NAFLD): A double-blind randomized placebo-controlled clinical trial. Nanomed. J. 2018, 5, 67–76. [Google Scholar] [CrossRef]
- Jiang, T. Health Benefits of culinary herbs and spices. J. AOAC Int. 2019, 102, 395–411. [Google Scholar] [CrossRef]
- Vázquez-Fresno, R.; Rosana, A.; Sajed, T.; Onookome-Okome, T.; Wishart, N.; Wishart, D. Herbs and spices-biomarkers of intake based on human intervention studies—A systematic review. Genes Nutr. 2019, 14, 1–27. [Google Scholar] [CrossRef]
- Chashmniam, S.; Mirhafez, S.; Dehabeh, M.; Hariri, M.; Azimi Nezhad, M.; Nobakht, M.; Gh, B. A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr. 2019, 73, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Sahebkar, A.; Iranshahi, M.; Amini, M.; Khojasteh, R.; Ghayour-Mobarhan, M.; Ferns, G. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: A randomized crossover trial. Phytother. Res. 2012, 27, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Dahlin, J.; Bisson, J.; Graham, J.; Pauli, G.; Walters, M. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A randomized controlled trial. Drug Res. 2017, 67, 244–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicero, A.; Sahebkar, A.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur. J. Nutr. 2019, 59, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbari, M.; Lankarani, K.; Tabrizi, R.; Ghayour-Mobarhan, M.; Peymani, P.; Ferns, G.; Ghaderi, A.; Asemi, Z. The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2019, 10, 649. [Google Scholar] [CrossRef] [Green Version]
- Baziar, N.; Parohan, M. The effects of curcumin supplementation on body mass index, body weight, and waist circumference in patients with nonalcoholic fatty liver disease: A systematic review and dose–response meta-analysis of randomized controlled trials. Phytother. Res. 2019, 34, 464–474. [Google Scholar] [CrossRef]
- Hariri, M.; Haghighatdoost, F. Effect of curcumin on anthropometric measures: A systematic review on randomized clinical trials. J. Am. Coll. Nutr. 2018, 37, 215–222. [Google Scholar] [CrossRef]
- Jafarirad, S.; Mansoori, A.; Adineh, A.; Panahi, Y.; Hadi, A.; Goodarzi, R. Does turmeric/curcumin supplementation change anthropometric indices in patients with non-alcoholic fatty liver disease? A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. Res. 2019, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.; Milajerdi, A.; Varkaneh, H.; Gorjipour, M.; Esmaillzadeh, A. The effects of curcumin supplementation on body weight, body mass index and waist circumference: A systematic review and dose-response meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2018, 60, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Alappat, L.; Awad, A. Curcumin and obesity: Evidence and mechanisms. Nutr. Rev. 2010, 68, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Le, T.; Chen, C.; Cheng, J.; Kim, K. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J. Nutr. Biochem. 2011, 22, 910–920. [Google Scholar] [CrossRef]
- Rahmani, S.; Asgary, S.; Askari, G.; Keshvari, M.; Hatamipour, M.; Feizi, A.; Sahebkar, A. Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytother. Res. 2016, 30, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Hirosumi, J.; Tuncman, G.; Chang, L.; Görgün, C.; Uysal, K.; Maeda, K.; Karin, M.; Hotamisligil, G.S. A central role for JNK in obesity and insulin resistance. Nature 2002, 420, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; LI, Y.; Wen, Y.; Chen, Y.; Na, L.; LI, S.; Sun, C. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK Pathway. Biomed. Environ. Sci. 2009, 22, 32–39. [Google Scholar] [CrossRef]
- Kumari, M.; Chandola, T.; Brunner, E.; Kivimaki, M. A nonlinear relationship of generalized and central obesity with diurnal cortisol secretion in the Whitehall II study. J. Clin. Endocrinol. Metab. 2010, 95, 4415–4423. [Google Scholar] [CrossRef]
- Hu, G.; Lin, H.; Lian, Q.; Zhou, S.; Guo, J.; Zhou, H.; Chu, Y.; Ge, R.S. Curcumin as a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase 1: Improving lipid profiles in high-fat-diet-treated rats. PLoS ONE 2013, 8, e49976. [Google Scholar] [CrossRef] [Green Version]
- Bradford, P. Curcumin and obesity. Biofactors 2013, 39, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, A.; Wu, D.; Kwan, P.; Meydani, M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 2009, 139, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Zhang, H.; Wang, P.; Zhao, Y.; Li, Q.; Wei, X.; Cui, Y.; Sun, J.; Shang, Q.; Liu, D.; et al. Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell. Physiol. Biochem. 2013, 32, 1167–1177. [Google Scholar] [CrossRef]
- Cianfruglia, L.; Minnelli, C.; Laudadio, E.; Scirè, A.; Armeni, T. Side Effects of Curcumin: Epigenetic and Antiproliferative Implications for Normal Dermal Fibroblast and Breast Cancer Cells. Antioxidants 2019, 8, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pierro, F.; Bressan, A.; Ranaldi, D.; Rapacioli, G.; Giacomelli, L.; Bertuccioli, A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: Preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4195–4202. [Google Scholar]
- Esmaily, H.; Sahebkar, A.; Iranshahi, M.; Ganjali, S.; Mohammadi, A.; Ferns, G.; Ghayour-Mobarhan, M. An investigation of the effects of curcumin on anxiety and depression in obese individuals: A randomized controlled trial. Chin. J. Integr. Med. 2015, 21, 332–338. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sadeghnia, H.; Saberi-Karimian, M.; Safarian, H.; Ferns, G.; Ghayour-Mobarhan, M.; Sahebkar, A. Effects of Curcumin on serum vitamin E concentrations in individuals with metabolic syndrome. Phytother. Res. 2017, 31, 657–662. [Google Scholar] [CrossRef]
- Liu, W.; Zhai, Y.; Heng, X.; Che, F.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target. 2016, 24, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S.; Kalman, D. Curcumin: A review of its’ effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental, and clinical studies. Biomed. Pharmacother. 2017, 85, 102–112. [Google Scholar] [CrossRef]
- Saadati, S.; Hatami, B.; Yari, Z.; Shahrbaf, M.; Eghtesad, S.; Mansour, A.; Poustchi, H.; Hedayati, M.; Aghajanpoor-Pasha, M.; Sadeghi, A.; et al. The effects of curcumin supplementation on liver enzymes, lipid profile, glucose homeostasis, and hepatic steatosis and fibrosis in patients with non-alcoholic fatty liver disease. Eur. J. Clin. Nutr. 2019, 73, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahebkar, A.; Mohammadi, A.; Atabati, A.; Rahiman, S.; Tavallaie, S.; Iranshahi, M.; Akhlaghi, S.; Ferns, G.A. Curcuminoids modulate pro-oxidant-antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother. Res. 2013, 27, 1883–1888. [Google Scholar] [CrossRef]
- Nieman, D.; Cialdella-Kam, L.; Knab, A.; Shanely, R. Influence of red pepper spice and turmeric on inflammation and oxidative stress biomarkers in overweight females: A metabolomics approach. Plant Foods Hum. Nutr. 2012, 67, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Hodaei, H.; Adibian, M.; Nikpayam, O.; Hedayati, M.; Sohrab, G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol. Metab. Syndr. 2019, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuengsamarn, S.; Rattanamongkolgul, S.; Phonrat, B.; Tungtrongchitr, R.; Jirawatnotai, S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial. J. Nutr. Biochem. 2014, 25, 144–150. [Google Scholar] [CrossRef]
- Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012, 35, 2121–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, M.; Berrones, A.; Krishnakumar, I.; Charnigo, R.; Westgate, P.; Fleenor, B. Responsiveness to curcumin intervention is associated with reduced aortic stiffness in young, obese men with higher initial stiffness. J. Funct. Foods 2017, 29, 154–160. [Google Scholar] [CrossRef]
- Jazayeri-Tehrani, S.; Rezayat, S.; Mansouri, S.; Qorbani, M.; Alavian, S.; Daneshi-Maskooni, M.; Hosseinzadeh-Attar, M. Efficacy of nanocurcumin supplementation on insulin resistance, lipids, inflammatory factors and nesfatin among obese patients with non-alcoholic fatty liver disease (NAFLD): A trial protocol. BMJ Open 2017, 7, e016914. [Google Scholar] [CrossRef] [PubMed]
- Pridgen, E.; Alexis, F.; Farokhzad, O. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin. Drug Deliv. 2015, 12, 1459–1473. [Google Scholar] [CrossRef] [Green Version]
- Ipar, V.; Dsouza, A.; Devarajan, P. Enhancing curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 459–480. [Google Scholar] [CrossRef] [PubMed]
- Masuo, K. Nesfatin-1 could be a strong candidate obesity or diabetes medication, if blood pressure elevation can be controlled. Hypertens. Res. 2013, 37, 98–99. [Google Scholar] [CrossRef]
- Shimizu, H.; Ohi, S.; Okada, S.; Mori, M. Nesfatin-1: An Overview and Future Clinical Application. Endocr. J. 2009, 56, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Krishnakumar, I.M.; Ravi, A.; Kumar, D.; Kuttan, R.; Maliakel, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods 2012, 4, 348–357. [Google Scholar] [CrossRef]
- Murdande, S.; Pikal, M.; Shanker, R.; Bogner, R. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol. 2010, 16, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Bercik, P.; Verdu, E.; Foster, J.; Macri, J.; Potter, M.; Huang, X.; Malinowski, P.; Jackson, W.; Blennerhassett, P.; Neufeld, K.A.; et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 2010, 139, 2102–2112. [Google Scholar] [CrossRef] [Green Version]
- Yallapu, M.; Nagesh, P.; Jaggi, M.; Chauhan, S. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015, 17, 1341–1356. [Google Scholar] [CrossRef] [Green Version]
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2015, 57, 2889–2895. [Google Scholar] [CrossRef]
Author | Country | Sample Size (N) Dropouts (Males/Females) | Mean Age (years) | Mean BMI (kg/m2) | RCT (Design) | Intervention Duration (weeks) | Intervention Group/s (dose) | Control Group (dose) | Results (between the Groups) |
---|---|---|---|---|---|---|---|---|---|
Mohammadi et al., [15]; Sahebkar et al., [42] | Iran | N = 30 Dropouts = 0 5 M/25F | 38.45 | 32.6 | Double-blind, Cross-over | 4 | Curcumin (1000 mg/day) with Piperine (10 mg/day) | Piperine (10 mg/day) | Body weight (+0.2 vs. −1.4 kg, p = 0.23) (−0.7 vs. −0.3 kg, p = 0.23) BMI (0 vs. −0.6 kg/m2; p = 0.21) (−0.3 vs. −0.2 kg/m2; p = 0.21) Body fat percentage (−0.3 vs. −0.4%; p = 0.88) (−0.4 vs. −0.3%; p = 0.88) Waist circumference (−3 vs. −3.4 cm; p = 0.82) (−1.4 vs. −0.9 cm; p = 0.82) Arm circumference (−1.2 vs. −0.9 cm; p = 0.97) (−0.5 vs. −0.5 cm; p = 0.97) Hip circumference (−2.1 vs. −1.9 cm; p = 0.78) (−0.8 vs. −1.3 cm; p = 0.78) |
Esmaily et al., [36] | Iran | N = 30 Dropouts = 0 6M/24F | 38.32 | 33.3 | Double-blind, Cross-over | 4 | Curcumin (1000 mg/day) with Piperine (10 mg/day) | Piperine (10 mg/day) | Body weight (p > 0.05) BMI (p > 0.05) |
Nieman et al., [43] | USA | N = 64 Dropouts = 3 61F | 56.7 | 34.6 | Double-blind, Cross-over | 4 | Curcumin (112 mg/day) | White rice flour (N/A) | Body weight (+0.1 vs. +0.6 kg; p > 0.05) (+0.3 vs. +0.4 kg; p > 0.05) Body fat percentage (−0.5 vs. −0.4%; p > 0.05) (−0.7 vs. −0.8%; p > 0.05) |
Saadati et al., [41] | Iran | N = 52 Dropouts = 2 27M/23F | 45.66 | 32.34 | Double-blind, Parallel | 12 | Curcumin (1500 mg/day) | Maltodextrin (N/A) | Body weight (−2.39 vs. −3.9 kg; p = 0.188) BMI (−0.85 vs. −1.33 kg/m2; p = 0.259) Waist circumference (−5.259 vs. −3.77 cm; p = 0.332) Hip circumference (−3.37 vs. −3.39 cm; p = 0.992) Waist to hip ratio (−0.02 vs. −0.008; p = 0.396) |
Hodaei et al., [44] | Iran | N = 53 Dropouts = 9 22M/22F | 59 | 28.7 | Double-blind, Parallel | 10 | Curcumin (1500 mg/day) | Cooked rice flour (1332 mg/day) | Body weight (−0.64 vs. +0.19 kg; p = 0.04) BMI (+0.3 vs. +0.1 kg/m2; p = 0.08) Waist circumference (−1.2 vs. −0.43 cm; p = 0.26) Hip circumference (−1 vs. 0 cm; p = 0.01) |
Chuengsamarn et al., [45] | Thailand | N = 213 Dropouts = 0 97M/116F | 59.37 | 26.96 | Double-blind, Parallel | 24 | Curcumin (1500 mg/day) | Starch (1500 mg/day) | Waist circumference (−2.5 vs. +0.2 cm; p > 0.05) Body fat percentage (−5.17 vs. +0.19%; p < 0.001) Visceral fat percentage (−3.01 vs. +0.11%; p < 0.05) |
Chuengsamarn et al., [46] | Thailand | N = 240 Dropouts = 5 83M/152F | 57.44 | 26.64 | Double-blind, Parallel | 36 | Curcumin (1500 mg/day) | N/A | Body weight (−3.9 vs. +2.3 kg; p < 0.05) Waist circumference (−3.6 vs. +2.7 cm; p < 0.05) |
Di Pierro et al., [35] | Italy | N = 44 Dropouts = 0 17M/27F | 40.47 | 28.9 | Parallel | 4 | Phytosomal curcumin (1600 mg/day) with Piperine (16 mg/day) | Phosphatidylserine (800 mg/day) | Body weight (p < 0.05) BMI (p < 0.01) Body fat percentage (p < 0.01) Waist circumference (p < 0.05) Hip circumference (p = 0.06) |
Cicero et al., [18] | Italy | N = 80 Dropouts = 0 37M/43F | 53.5 | 27 | Double-blind, Parallel | 8 | Phytosomal curcumin (1600 mg/day) with Piperine (16 mg/day) | N/A | BMI (−0.8 vs. −0.5 kg/m2; p > 0.05) Waist circumference (−5 vs. −3 cm; p > 0.05) |
Panahi et al., [17] | Iran | N = 102 Dropouts = 15 51M/36F | 46.09 | 29.02 | Parallel | 8 | Phytosomal curcumin (1000 mg/day) | N/A | BMI (−0.99 vs. −0.15 kg/m2; p = 0.003) Waist circumference (−1.74 vs. −0.23 cm; p = 0.024) |
Chashmniam et al., [14] | Iran | N = 58 Dropouts = 13 27M/18F | 42.15 | 29.05 | Double-blind, Parallel | 8 | Phytosomal curcumin (250 mg/day) | N/A | Body weight (−1.2 vs. −1.56 kg; p > 0.05) BMI (−0.43 vs. −0.36 kg/m2; p > 0.05) Fat free mass (+0.11 vs. −1.08 kg; p > 0.05) |
Mohammadi et al., [37] | Iran | N = 120 Dropouts = 11 86M/34F | 38.72 | 30.85 | Parallel | 6 | 1. Phytosomal curcumin (1000 mg/day) 2. Normal curcumin (1000 mg/day) | Starch and lactose (N/A) | Body weight (−0.21, −1.31, −0.58 kg; p > 0.05) BMI (−0.19, −0.30, −0.10 kg/m2; p > 0.05) Waist circumference (−3.53. −3.31, −3.58 cm; p > 0.05) |
Jazayeri-Tehrani et al., [5,11] | Iran | N = 84 Dropouts = 5 46M/38F | 42.15 | 30.71 | Double-blind, Parallel | 12 | Nano-curcumin (80 mg/day) | N/A | Body weight (−2.8 vs. −2.4 kg; p > 0.05) BMI (−0.9 vs. −0.8 kg/m2; p > 0.05) Body fat percentage (−1.3 vs. −1.2%; p > 0.05) Waist circumference (−5.8 vs. −1.3 cm; p < 0.05) |
Campbell et al., [47] | USA | N = 22 Dropouts = 0 22M | 26.27 | 33.23 | Double-blind, Parallel | 12 | Formulated curcumin (1000 mg/day) with Fenugreek fiber (600 mg/day) | Fenugreek fiber (500 mg/day) | BMI (+0.7 vs. +0.16 kg/m2; p > 0.05) Body fat percentage (+1.3 vs. +0.51%; p > 0.05) Waist circumference (+0.39 vs. +0.14 cm; p > 0.05) Hip circumference (+0.89 vs. −0.05 cm; p > 0.05) |
Rahmani et al., [26] | Iran | N = 80 Dropouts = 3 38M/42F | 47.66 | 31.09 | Double-blind, Parallel | 8 | Amorphous curcumin (500 mg/day) | N/A | Body weight (−1.81 vs. +0.49 kg; p < 0.001) BMI (−0.74 vs. +0.02 kg/m2; p = 0.002) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharif, F.J.; Almuhtadi, Y.A. The Effect of Curcumin Supplementation on Anthropometric Measures among Overweight or Obese Adults. Nutrients 2021, 13, 680. https://doi.org/10.3390/nu13020680
Alsharif FJ, Almuhtadi YA. The Effect of Curcumin Supplementation on Anthropometric Measures among Overweight or Obese Adults. Nutrients. 2021; 13(2):680. https://doi.org/10.3390/nu13020680
Chicago/Turabian StyleAlsharif, Farah J., and Yara A. Almuhtadi. 2021. "The Effect of Curcumin Supplementation on Anthropometric Measures among Overweight or Obese Adults" Nutrients 13, no. 2: 680. https://doi.org/10.3390/nu13020680