Dietary Patterns Are Differentially Associated with Atypical and Melancholic Subtypes of Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Evaluation
2.3. Psychiatric Evaluation
2.4. Ethical Approval
2.5. Statistical Analysis
3. Results
3.1. Factor Analysis of FFQ
3.2. Association between Dietary Patterns and MDD Subtypes
3.3. Potentially Mediating Effect of Dietary Patterns in the Associations between CVRFs and MDD Subtypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease 2017 Disease and Injury Incidence and Prevalence Collaborators. Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analy-sis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Huffman, J.C.; Celano, C.M.; Beach, S.R.; Motiwala, S.R.; Januzzi, J.L. Depression and Cardiac Disease: Epidemiology, Mechanisms, and Diagnosis. Cardiovasc. Psychiatry Neurol. 2013, 2013, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Van Der Kooy, K.; Van Hout, H.; Marwijk, H.; Marten, H.; Stehouwer, C.; Beekman, A. Depression and the risk for cardiovascular diseases: Systematic review and meta analysis. Int. J. Geriatr. Psychiatry 2007, 22, 613–626. [Google Scholar] [CrossRef]
- Cuijpers, P.; Schoevers, R.A. Increased mortality in depressive disorders: A review. Curr. Psychiatry Rep. 2004, 6, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Lasserre, A.M.; Marti-Soler, H.; Strippoli, M.-P.F.; Vaucher, J.; Glaus, J.; Vandeleur, C.L.; Castelao, E.; Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; et al. Clinical and course characteristics of depression and all-cause mortality: A prospective population-based study. J. Affect. Disord. 2016, 189, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmaker, R.H.; Agam, G. Major Depressive Disorder. N. Engl. J. Med. 2008, 358, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Antonijevic, I.A. Depressive disorders—Is it time to endorse different pathophysiologies? Psychoneuroendocrinology 2006, 31, 1–15. [Google Scholar] [CrossRef]
- Ghaemi, S.N.; Vöhringer, P.A. The heterogeneity of depression: An old debate renewed. Acta Psychiatr. Scand. 2011, 124, 497. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the somatic consequences of depression: Biological mechanisms and the role of depression symptom profile. BMC Med. 2013, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Baune, B.T.; Stuart, M.J.; Gilmour, A.; Wersching, H.; Heindel, W.C.; Arolt, V.; Berger, K.I. The relationship between subtypes of depression and cardiovascular disease: A systematic review of biological models. Transl. Psychiatry 2012, 2, e92. [Google Scholar] [CrossRef] [Green Version]
- Harald, B.; Gordon, P. Meta-review of depressive subtyping models. J. Affect. Disord. 2012, 139, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, F.; Hettich, M.; Peters, M.; Sibrowski, W.; Hetzel, G.; Ponath, G.; Arolt, V.; Cassens, U.; Rothermundt, M. Different activation patterns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. J. Affect. Disord. 2005, 87, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Lasserre, A.M.; Strippoli, M.-P.F.; Glaus, J.; Gholam-Rezaee, M.; Vandeleur, C.L.; Castelao, E.; Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; Preisig, M. Prospective associations of depression subtypes with cardio-metabolic risk factors in the general population. Mol. Psychiatry 2017, 22, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Glaus, J.; Von Känel, R.; Lasserre, A.M.; Strippoli, M.-P.F.; Vandeleur, C.L.; Castelao, E.; Gholam-Rezaee, M.; Marangoni, C.; Wagner, E.-Y.N.; Marques-Vidal, P.; et al. Mood disorders and circulating levels of inflammatory markers in a longitudinal population-based study. Psychol. Med. 2017, 48, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Lamers, F.; Vogelzangs, N.; Merikangas, K.R.; De Jonge, P.; Beekman, A.T.F.; Penninx, B.W.J.H. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol. Psychiatry 2012, 18, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [Green Version]
- Molendijk, M.; Molero, P.; Sánchez-Pedreño, F.O.; Van Der Does, W.; Martínez-González, M.A. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Nicolaou, M.; Colpo, M.; Vermeulen, E.; Elstgeest, L.E.M.; Cabout, M.; Gibson-Smith, D.; Knuppel, A.; Sini, G.; Schoenaker, D.A.J.M.; Mishra, G.D.; et al. Association of a priori dietary patterns with depressive symptoms: A harmonised meta-analysis of observational studies. Psychol. Med. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lv, M.-R.; Wei, Y.-J.; Sun, L.; Zhang, J.-X.; Zhang, H.-G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Covas, M.I.; Arós, F.; Romaguera, D.; Gómez-Gracia, E.; Lapetra, J.; et al. Mediterranean dietary pattern and depression: The PREDIMED randomized trial. BMC Med. 2013, 11, 208. [Google Scholar] [CrossRef] [Green Version]
- E Quirk, S.; Williams, L.J.; O’Neil, A.; A Pasco, J.; Jacka, F.N.; Housden, S.; Berk, M.; Brennan, S.L. The association between diet quality, dietary patterns and depression in adults: A systematic review. BMC Psychiatry 2013, 13, 175. [Google Scholar] [CrossRef] [Green Version]
- Rahe, C.; Unrath, M.; Berger, K. Dietary patterns and the risk of depression in adults: A systematic review of observational studies. Eur. J. Nutr. 2014, 53, 997–1013. [Google Scholar] [CrossRef]
- American Psychiatric Association. Task Force on DSM-IV. DSM-IV-TR: Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; text revision ed.; American Psychiatric Association: Washington, DC, USA, 2000; p. XXXVII. 943p. [Google Scholar]
- Ocké, M.C. Evaluation of methodologies for assessing the overall diet: Dietary quality scores and dietary pattern analysis. Proc. Nutr. Soc. 2013, 72, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Newby, P.K.; Tucker, K.L. Empirically Derived Eating Patterns Using Factor or Cluster Analysis: A Review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef]
- Devlin, U.M.; McNulty, B.A.; Nugent, A.P.; Gibney, M.J. The use of cluster analysis to derive dietary patterns: Methodological considerations, reproducibility, validity and the effect of energy mis-reporting. Proc. Nutr. Soc. 2012, 71, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef] [Green Version]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Mejia, S.B.; Rahelić, D.; Kahleova, H.; Salas-Salvadó, J.; Kendall, C.W.C.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Firmann, M.; Mayor, V.; Vidal, P.M.; Bochud, M.; Pécoud, A.; Hayoz, D.; Paccaud, F.; Preisig, M.; Song, K.S.; Yuan, X.; et al. The CoLaus study: A population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc. Disord. 2008, 8, 6. [Google Scholar] [CrossRef]
- Preisig, M.; Waeber, G.; Vollenweider, P.; Bovet, P.; Rothen, S.; Vandeleur, C.; Guex, P.; Middleton, L.; Waterworth, D.; Mooser, V.; et al. The PsyCoLaus study: Methodology and characteristics of the sample of a population-based survey on psychiatric disorders and their association with genetic and cardiovascular risk factors. BMC Psychiatry 2009, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Hollingshead, A.B. Four Factor Index of Social Status; Yale University Press: New Haven, CT, USA, 1975. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.J.T.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood PressureThe JNC 7 Report. JAMA 2003, 289, 2560–2571. [Google Scholar] [CrossRef]
- Expert Committee on the Diagnosis and Classification of Diabetes. Mellitus Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2003, 26, S5–S20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, L.; Huot, I.; Morabia, A. Amélioration des performances d’un questionnaire alimentaire semi-quantitatif comparé à un rappel des 24 heures. Santé Publique 1995, 7, 403–413. [Google Scholar]
- Beer-Borst, S.; Costanza, M.C.; Pechère-Bertschi, A.; Morabia, A. Twelve-year trends and correlates of dietary salt intakes for the general adult population of Geneva, Switzerland. Eur. J. Clin. Nutr. 2007, 63, 155–164. [Google Scholar] [CrossRef]
- Nurnberger, J.I.; Blehar, M.C.; Kaufmann, C.A.; York-Cooler, C.; Simpson, S.G.; Harkavyfriedman, J.M.; Severe, J.B.; Malaspina, D.; Reich, T. Diagnostic Interview for Genetic Studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch. Gen. Psychiatry 1994, 51, 849–859. [Google Scholar] [CrossRef]
- Preisig, M.; Fenton, B.T.; Matthey, M.-L.; Berney, A.; Ferrero, F. Diagnostic interview for genetic studies (DIGS): Inter-rater and test-retest reliability of the French version. Eur. Arch. Psychiatry Clin. Neurosci. 1999, 249, 174–179. [Google Scholar] [CrossRef]
- Endicott, J.; Spitzer, R.L. A diagnostic interview: The schedule for affective disorders and schizophrenia. Arch. Gen. Psychiatry 1978, 35, 837–844. [Google Scholar] [CrossRef]
- Varraso, R.; Garcia-Aymerich, J.; Monier, F.; Le Moual, N.; De Batlle, J.; Miranda, G.; Pison, C.; Romieu, I.; Kauffmann, F.; Maccario, J. Assessment of dietary patterns in nutritional epidemiology: Principal component analysis compared with confirmatory factor analysis. Am. J. Clin. Nutr. 2012, 96, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Bédard, A.; García-Aymerich, J.; Sanchez, M.; Le Moual, N.; Clavel-Chapelon, F.; Boutron-Ruault, M.-C.; Maccario, J.; Varraso, R. Confirmatory Factor Analysis Compared with Principal Component Analysis to Derive Dietary Patterns: A Longitudinal Study in Adult Women. J. Nutr. 2015, 145, 1559–1568. [Google Scholar] [CrossRef] [Green Version]
- Dekker, L.H.; Rijnks, R.H.; Strijker, D.; Navis, G.J. A spatial analysis of dietary patterns in a large representative population in the north of The Netherlands—the Lifelines cohort study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahe, C.; Baune, B.T.; Unrath, M.; Arolt, V.; Wellmann, J.; Wersching, H.; Berger, K. Associations between depression subtypes, depression severity and diet quality: Cross-sectional findings from the BiDirect Study. BMC Psychiatry 2015, 15, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cizza, G.; Ronsaville, D.S.; Kleitz, H.; Eskandari, F.; Mistry, S.; Torvik, S.; Sonbolian, N.; Reynolds, J.C.; Blackman, M.R.; Gold, P.W.; et al. Clinical Subtypes of Depression Are Associated with Specific Metabolic Parameters and Circadian Endocrine Profiles in Women: The Power Study. PLoS ONE 2012, 7, e28912. [Google Scholar] [CrossRef] [Green Version]
- Glaus, J.; Vandeleur, C.; Gholam-Rezaee, M.; Castelao, E.; Perrin, M.; Rothen, S.; Bovet, P.; Marques-Vidal, P.; Von Känel, R.; Merikangas, K.; et al. Atypical depression and alcohol misuse are related to the cardiovascular risk in the general population. Acta Psychiatr. Scand. 2012, 128, 282–293. [Google Scholar] [CrossRef]
- Lamers, F.; Beekman, A.T.F.; Van Hemert, A.M.; A Schoevers, R.; Penninx, B.W.J.H. Six-year longitudinal course and outcomes of subtypes of depression. Br. J. Psychiatry 2016, 208, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Lasserre, A.M.; Glaus, J.; Vandeleur, C.L.; Marques-Vidal, P.; Vaucher, J.; Bastardot, F.; Waeber, G.; Vollenweider, P.; Preisig, M. Depression With Atypical Features and Increase in Obesity, Body Mass Index, Waist Circumference, and Fat Mass: A prospective, population-based study. JAMA Psychiatry 2014, 71, 880–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milaneschi, Y.; CHARGE Inflammation Working Group; Lamers, F.; Peyrot, W.J.; Abdellaoui, A.; Willemsen, G.; Hottenga, J.-J.; Jansen, R.; Mbarek, H.; Dehghan, A.; et al. Polygenic dissection of major depression clinical heterogeneity. Mol. Psychiatry 2016, 21, 516–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Western | Mediterranean | Sweet-Dairy | |
---|---|---|---|
Fries | 0.559 | −0.065 | −0.070 |
Sausage | 0.458 | −0.012 | 0.092 |
Dried sausage, salami | 0.453 | −0.083 | 0.142 |
Burger | 0.421 | 0.079 | 0.004 |
Pizza | 0.405 | 0.052 | 0.060 |
White bread | 0.402 | −0.156 | 0.062 |
Beer | 0.381 | −0.113 | −0.096 |
Steaks | 0.368 | 0.110 | −0.066 |
Pâté, terrine | 0.367 | −0.017 | 0.097 |
Croissant, pastry | 0.366 | −0.064 | 0.077 |
Ham, stew | 0.365 | 0.076 | 0.076 |
Roast chicken | 0.361 | 0.033 | −0.038 |
Fried fish | 0.356 | 0.076 | −0.019 |
Sweetened beverages | 0.339 | −0.093 | 0.079 |
Ravioli | 0.331 | 0.101 | 0.120 |
Mayonnaise (as condiment) | 0.325 | −0.063 | 0.197 |
Cervelas (sausage) | 0.324 | −0.081 | −0.025 |
Pasta | 0.316 | 0.117 | 0.122 |
Carrots | −0.014 | 0.485 | 0.059 |
Green beans, spinach | 0.128 | 0.468 | −0.145 |
Lean fish | −0.039 | 0.457 | −0.032 |
Cauliflower, broccoli | 0.023 | 0.448 | −0.009 |
Tomatoes | 0.151 | 0.433 | −0.216 |
Green salad | 0.043 | 0.404 | −0.017 |
Salmon (smoked or fresh) | 0.020 | 0.392 | −0.003 |
Kiwi | −0.177 | 0.389 | 0.058 |
Berries | 0.078 | 0.363 | −0.083 |
Olive oil | −0.013 | 0.347 | 0.046 |
Shrimps, sea food | 0.187 | 0.346 | −0.153 |
Peach, nectarine, apricot, melon | 0.113 | 0.345 | −0.175 |
Chicken breast | 0.011 | 0.344 | −0.061 |
Banana, apple, pear, plum, grapes | −0.168 | 0.338 | 0.196 |
Wheat semolina, couscous | 0.023 | 0.331 | 0.113 |
Peas, corn | 0.282 | 0.324 | −0.050 |
Avocado | 0.030 | 0.322 | 0.052 |
Dressing (as condiment) | 0.037 | 0.314 | 0.044 |
Butter (as condiment) | 0.123 | −0.077 | 0.509 |
Jam, honey | −0.069 | 0.075 | 0.482 |
Chocolate | −0.003 | 0.028 | 0.435 |
Cookies | 0.079 | 0.050 | 0.388 |
Heavy cream (as condiment) | 0.207 | −0.005 | 0.372 |
Fruit galette | 0.162 | 0.116 | 0.341 |
Cheese | 0.122 | −0.043 | 0.336 |
Tea, infusion | −0.242 | 0.221 | 0.321 |
Biscuit, cake | 0.174 | 0.044 | 0.317 |
Butter (for cooking) | 0.247 | −0.075 | 0.316 |
Major Depressive Disorder Subtypes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
All | Current Atypical | Current Melancholic | Current Unspecified | Remitte Atypical | Remitted Melancholic | Remitted Unspecified | Never Depressed | χ2/F | p-Value | |
(n = 3554) | (n = 53) | (n = 56) | (n = 125) | (n = 196) | (n = 380) | (n = 746) | (n = 1998) | |||
Male, % | 45.6 | 24.5 | 30.4 | 32.0 | 26.5 | 34.7 | 37.3 | 54.4 | χ26 = 154.2 | <0.001 |
Age (y), mean (SD) | 57.5 (10.4) | 55.9 (9.0) | 54.2 (9.8) | 54.7 (9.3) | 54.1 (9.5) | 55.9 (9.6) | 56.1 (9.7) | 59.0 (10.8) | F6 = 17.1 | <0.001 |
Non-Caucasians, % | 6.6 | 9.4 | 12.5 | 4.8 | 6.6 | 7.4 | 8.0 | 5.7 | χ26 = 10.0 | n.s. |
SES, mean (SD) a | 3.5 (1.2) | 3.3 (1.1) | 3.2 (1.4) | 3.4 (1.3) | 3.6 (1.1) | 3.6 (1.2) | 3.6 (1.1) | 3.5 (1.2) | F6 = 1.9 | n.s. |
Living alone, % | 27.5 | 28.3 | 44.6 | 40.8 | 29.1 | 30.3 | 30.7 | 24.3 | χ26 = 35.3 | <0.001 |
Physical inactivity, % b | 68.2 | 66.0 | 67.9 | 70.4 | 70.4 | 67.4 | 66.2 | 68.7 | χ26 = 2.5 | n.s. |
Smoking status, % | ||||||||||
Current | 20.6 | 30.2 | 32.1 | 24.0 | 16.8 | 22.9 | 23.9 | 18.6 | χ26 = 21.2 | 0.002 |
Former | 38.2 | 34.0 | 37.5 | 37.6 | 41.8 | 36.3 | 38.3 | 38.4 | χ26 = 2.1 | n.s. |
Number of alcohol drinks per week, mean (SD) | 6.4 (8.1) | 3.5 (4.7) | 5.2 (7.1) | 5.4 (6.8) | 4.9 (5.2) | 5.9 (7.7) | 5.5 (6.5) | 7.1 (9.0) | F6 = 7.0 | <0.001 |
Major Depressive Disorder Subtypes | |||||||
---|---|---|---|---|---|---|---|
Current Atypical OR (95CI) | Current Melancholic OR (95CI) | Current Unspecified OR (95CI) | Remitted Atypical OR (95CI) | Remitted Melancholic OR (95CI) | Remitted Unspecified OR (95CI) | Never Depressed | |
Model 1 | |||||||
Western | 1.35 (0.99, 1.83) | 0.65 * (0.47, 0.91) | 1.06 (0.85, 1.31) | 1.01 (0.85, 1.21) | 0.87 * (0.76, 1.00) | 0.96 (0.87, 1.06) | 1 (ref.) |
Mediterranean | 1.09 (0.82, 1.45) | 0.81 (0.61, 1.07) | 0.93 (0.76, 1.12) | 1.01 (0.86, 1.19) | 1.00 (0.89, 1.12) | 1.00 (0.91, 1.09) | 1 (ref.) |
Sweet-Dairy | 0.96 (0.71, 1.29) | 1.33 (0.99, 1.79) | 0.97 (0.79, 1.18) | 0.95 (0.81, 1.13) | 1.02 (0.90, 1.15) | 0.99 (0.90, 1.08) | 1 (ref.) |
Model 2 | |||||||
Western | 1.44 * (1.05, 1.96) | 0.64 ** (0.45, 0.90) | 1.07 (0.86, 1.34) | 1.05 (0.87, 1.26) | 0.87 * (0.76, 1.00) | 0.98 (0.88, 1.09) | 1 (ref.) |
Mediterranean | 1.09 (0.82, 1.45) | 0.83 (0.62, 1.10) | 0.93 (0.76, 1.13) | 1.00 (0.85, 1.18) | 1.01 (0.89, 1.13) | 1.00 (0.91, 1.10) | 1 (ref.) |
Sweet-Dairy | 0.97 (0.72, 1.32) | 1.39 * (1.03, 1.88) | 0.97 (0.79, 1.19) | 0.94 (0.80, 1.11) | 1.03 (0.91, 1.17) | 0.99 (0.90, 1.09) | 1 (ref.) |
Major Depressive Disorder Subtypes | |||||||
---|---|---|---|---|---|---|---|
Current Atypical | Current Melancholic | Current Unspecified | Remitted Atypical | Remitted Melancholic | Remitted Unspecified | Never Depressed | |
OR (95CI) | OR (95CI) | OR (95CI) | OR (95CI) | OR (95CI) | OR (95CI) | ||
Model 1 | |||||||
Obesity | 1.55 (0.76, 3.12) | 0.87 (0.40, 1.91) | 1.17 (0.70, 1.96) | 1.77 ** (1.20, 2.61) | 1.11 (0.80, 1.53) | 0.98 (0.76, 1.27) | 1 (ref.) |
Diabetes | 2.11 (0.89, 5.01) | 2.28 (0.96, 5.39) | 0.27 * (0.08, 0.90) | 1.12 (0.62, 2.04) | 0.81 (0.51, 1.29) | 1.18 (0.86, 1.62) | 1 (ref.) |
Hypertension | 0.93 (0.48, 1.83) | 1.50 (0.80, 2.81) | 1.18 (0.77, 1.81) | 0.95 (0.66, 1.37) | 0.91 (0.70, 1.19) | 0.86 (0.70, 1.06) | 1 (ref.) |
Dyslipidemia | 1.37 (0.75, 2.49) | 0.85 (0.47, 1.54) | 1.24 (0.84, 1.83) | 1.06 (0.76, 1.47) | 1.01 (0.79, 1.28) | 1.09 (0.91, 1.32) | 1 (ref.) |
Model 2 | |||||||
Obesity | 1.47 (0.72, 3.02) | 0.92 (0.41, 2.06) | 1.14 (0.68, 1.92) | 1.76 ** (1.19, 2.60) | 1.13 (0.81, 1.57) | 0.98 (0.76, 1.27) | 1 (ref.) |
Diabetes | 2.06 (0.86, 4.93) | 2.61 * (1.09, 6.29) | 0.28 * (0.08, 0.90) | 1.12 (0.62, 2.03) | 0.82 (0.52, 1.31) | 1.18 (0.86, 1.62) | 1 (ref.) |
Hypertension | 0.92 (0.46, 1.81) | 1.64 (0.87, 3.09) | 1.17 (0.76, 1.80) | 0.95 (0.66, 1.37) | 0.92 (0.71, 1.20) | 0.86 (0.70, 1.06) | 1 (ref.) |
Dyslipidemia | 1.35 (0.74, 2.47) | 0.90 (0.49, 1.64) | 1.23 (0.83, 1.83) | 1.06 (0.76, 1.47) | 1.02 (0.80, 1.30) | 1.10 (0.91, 1.32) | 1 (ref.) |
“Western” | 1.36 (0.99, 1.87) | 0.62 ** (0.44, 0.87) | 1.07 (0.85, 1.34) | 1.01 (0.84, 1.22) | 0.87 * (0.75, 1.00) | 0.98 (0.88, 1.09) | 1 (ref.) |
“Mediterranean” | 1.08 (0.81, 1.43) | 0.81 (0.61, 1.08) | 0.94 (0.77, 1.14) | 1.01 (0.86, 1.19) | 1.01 (0.89, 1.14) | 0.99 (0.91, 1.09) | 1 (ref.) |
“Sweet-Dairy” | 1.03 (0.75, 1.42) | 1.48 * (1.09, 2.02) | 0.97 (0.79, 1.20) | 0.98 (0.83, 1.16) | 1.03 (0.91, 1.17) | 0.99 (0.90, 1.10) | 1 (ref.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasserre, A.M.; Strippoli, M.-P.F.; Marques-Vidal, P.; Williams, L.J.; Jacka, F.N.; Vandeleur, C.L.; Vollenweider, P.; Preisig, M. Dietary Patterns Are Differentially Associated with Atypical and Melancholic Subtypes of Depression. Nutrients 2021, 13, 768. https://doi.org/10.3390/nu13030768
Lasserre AM, Strippoli M-PF, Marques-Vidal P, Williams LJ, Jacka FN, Vandeleur CL, Vollenweider P, Preisig M. Dietary Patterns Are Differentially Associated with Atypical and Melancholic Subtypes of Depression. Nutrients. 2021; 13(3):768. https://doi.org/10.3390/nu13030768
Chicago/Turabian StyleLasserre, Aurélie M., Marie-Pierre F. Strippoli, Pedro Marques-Vidal, Lana J. Williams, Felice N. Jacka, Caroline L. Vandeleur, Peter Vollenweider, and Martin Preisig. 2021. "Dietary Patterns Are Differentially Associated with Atypical and Melancholic Subtypes of Depression" Nutrients 13, no. 3: 768. https://doi.org/10.3390/nu13030768
APA StyleLasserre, A. M., Strippoli, M. -P. F., Marques-Vidal, P., Williams, L. J., Jacka, F. N., Vandeleur, C. L., Vollenweider, P., & Preisig, M. (2021). Dietary Patterns Are Differentially Associated with Atypical and Melancholic Subtypes of Depression. Nutrients, 13(3), 768. https://doi.org/10.3390/nu13030768