Plasma B Vitamers: Population Epidemiology and Parent-Child Concordance in Children and Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ethical Approval, Consent and Sample Collection
2.3. Procedures
2.4. Sample Preparation and Quality Control
2.5. Sample Preparation and Robotic Automation
2.6. UHPLC/MS-MS Assay
2.7. Statistical Analysis
3. Result
3.1. Sample Characteristics
3.2. Plasma B Vitamers Are Weakly Concordant between Parents and Children
3.3. Plasma B Vitamer Concentrations Are Age-Dependent
3.4. Plasma B Vitamer Concentrations Are Sex-Dependent
3.5. B2 Vitamers Are Positively Correlated
4. Discussion
Limitations
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-PA | 4-pyridoxic acid |
FMN | flavin mononucleotide |
FAD | flavin adenine dinucleotide |
LQ | lower quartile |
NAD | nicotinamide adenine dinucleotide |
NADP | nicotinamide adenine dinucleotide phosphate |
PLP | pyridoxal 5′-phosphate |
PL | pyridoxal |
PPO | pyridoxine phosphate oxidase |
UHPLC/MS-MS | ultra-high-performance liquid chromatography/tandem mass spectrometry |
UQ | upper quartile |
References
- Chawla, J.; Kvarnberg, D. Hydrosoluble vitamins. Handb. Clin. Neurol. 2014, 120, 891–914. [Google Scholar] [CrossRef]
- Yeh, E.-L.; Huang, Y.-C.; Tsai, S.-F.; Yu, T.-M.; Wu, M.-J.; Chen, C.-H. Relationship between plasma levels of homocysteine and the related B vitamins in patients with hemodialysis adequacy or inadequacy. Nutrition 2018, 53, 103–108. [Google Scholar] [CrossRef]
- Mahan, L.K.; Escott-Stump, S.; Raymond, J.L.; Krause, M.V. Krause’s Food and the Nutrition Care Process; Elsevier/Saunders: Amsterdam, The Netherlands, 2012; ISBN 9781437722338. [Google Scholar]
- Zou, K.; Hinkley, J.M.; Park, S.; Zheng, D.; Jones, T.E.; Pories, W.J.; Hornby, P.J.; Lenhard, J.; Dohm, G.L.; Houmard, J.A. Altered tricarboxylic acid cycle flux in primary myotubes from severely obese humans. Int. J. Obes. 2019, 43, 895–905. [Google Scholar] [CrossRef]
- Shibata, K.; Fukuwatari, T.; Ohta, M.; Okamoto, H.; Watanabe, T.; Fukui, T.; Nishimuta, M.; Totani, M.; Kimura, M.; Ohishi, N.; et al. Values of Water-Soluble Vitamins in Blood and Urine of Japanese Young Men and Women Consuming a Semi-Purified Diet Based on the Japanese Dietary Reference Intakes. J. Nutr. Sci. Vitaminol. (Tokyo) 2005, 51, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Iwakawa, H.; Nakamura, Y.; Fukui, T.; Fukuwatari, T.; Ugi, S.; Maegawa, H.; Doi, Y.; Shibata, K. Concentrations of Water-Soluble Vitamins in Blood and Urinary Excretion in Patients with Diabetes Mellitus. Nutr. Metab. Insights 2016, 9, NMI.S40595. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Ishikawa, A.; Yoshitake, Y.; Kodama, N.; Nishimuta, M.; Fukuwatari, T.; Shibata, K. Diurnal variations in human urinary excretion of nicotinamide catabolites: Effects of stress on the metabolism of nicotinamide. Am. J. Clin. Nutr. 2003, 77, 406–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, A.; Shimoyama, Y.; Ishikawa, T.; Murayama, N. Dietary Thiamin and Riboflavin Intake and Blood Thiamin and Riboflavin Concentrations in College Swimmers Undergoing Intensive Training. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Barlow, G.B.; Sutton, J.L.; Wilkinson, A.W. Metabolism of nicotinic acid in children with burns and scalds. Clin. Chim. Acta 1977, 75, 337–342. [Google Scholar] [CrossRef]
- Patrini, C.; Griziotti, A.; Ricciardi, L. Obese individuals as thiamin storers. Int. J. Obes. 2004, 28, 920–924. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.F.; Duisters, K.; Weger, B.; Chakrabarti, A.; Harms, A.C.; Brennan, L.; Hankemeier, T.; Goulet, L.; Konz, T.; Martin, F.P.; et al. Menstrual cycle rhythmicity: Metabolic patterns in healthy women. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Fukuwatari, T.; Shibata, K. Urinary Water-Soluble Vitamins and Their Metabolite Contents as Nutritional Markers for Evaluating Vitamin Intakes in Young Japanese Women. J. Nutr. Sci. Vitaminol. (Tokyo) 2008, 54, 223–229. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; Food and Agriculture Organization of the United Nations. Chapter 3. Thiamin, Riboflavin, Niacin, Vitamin B6, Pantothenic Acid and Biotin; World Health Organization: Rome, Italy; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Tallaksen, C.M.E.; Bøhmer, T.; Karlsen, J.; Bell, H. Determination of thiamin and its phosphate esters in human blood, plasma, and urine. Methods Enzymol. 1997, 279, 67–74. [Google Scholar] [CrossRef] [PubMed]
- McCann, A.; Midttun, Ø.; Whitfield, K.; Kroeun, H.; Borath, M.; Sophonneary, P.; Ueland, P.; Green, T. Comparable Performance Characteristics of Plasma Thiamine and Erythrocyte Thiamine Diphosphate in Response to Thiamine Fortification in Rural Cambodian Women. Nutrients 2017, 9, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaksari, M.; Mazzoleni, L.R.; Ruan, C.; Kennedy, R.T.; Minerick, A.R. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum. Data Br. 2017, 11, 316–330. [Google Scholar] [CrossRef]
- Guiraud, S.P.; Montoliu, I.; Da Silva, L.; Dayon, L.; Galindo, A.N.; Corthésy, J.; Kussmann, M.; Martin, F.-P. High-throughput and simultaneous quantitative analysis of homocysteine-methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC-MS/MS. Anal. Bioanal. Chem. 2017, 409, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, C.; Martin, P. Molecular Mechanisms of Thiamine Utilization. Curr. Mol. Med. 2001, 1, 197–207. [Google Scholar] [CrossRef]
- Wozenski, J.R.; Leklem, J.E.; Miller, C.T. The Metabolism of Small Doses of Vitamin B-6 in Men. J. Nutr. 1980, 110, 275–285. [Google Scholar] [CrossRef]
- Bor, M.V.; Refsum, H.; Bisp, M.R.; Bleie, Ø.; Schneede, J.; Nordrehaug, J.E.; Ueland, P.M.; Nygard, O.K.; Nexø, E. Plasma vitamin B6 vitamers before and after oral vitamin B6 treatment: A randomized placebo-controlled study. Clin. Chem. 2003, 49, 155–161. [Google Scholar] [CrossRef]
- Cheng, S.; Shah, S.H.; Corwin, E.J.; Fiehn, O.; Fitzgerald, R.L.; Gerszten, R.E.; Illig, T.; Rhee, E.P.; Srinivas, P.R.; Wang, T.J.; et al. Potential Impact and Study Considerations of Metabolomics in Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Genet. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B. Growing up in Australia: The longitudinal study of Australian children. Fam. Matters 2013, 91, 7–17. [Google Scholar]
- Sanson, A.; Johnstone, R. The LSAC Research Consortium & FaCS LSAC Project Team. Growing Up in Australia takes its first steps. Fam. Matters 2004, 67, 46–53. [Google Scholar]
- Wake, M.; Clifford, S.; York, E.; Mensah, F.; Gold, L.; Burgner, D.; Davies, S.; Azzopardi, P.; Baur, L.; Carlin, J.; et al. Introducing growing up in Australia’s child health checkpoint: A physical health and biomarkers module for the longitudinal study of Australian children. Fam. Matters 2014, 15–23. [Google Scholar]
- R Core Team. R: The R Project for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations; Joint FAO/WHO Expert Consultation. Vitamin and Mineral Requirements in Human Nutrition: Report of a joint FAO/WHO Expert Consultation, Bangkok, Thailand, 21–30 September 1998; World Health Organization: Geneva, Switzerland, 2004; ISBN 9241546123. [Google Scholar]
- Massé, P.G.; Mahuren, J.D.; Tranchant, C.; Dosy, J. B-6 vitamers and 4-pyridoxic acid in the plasma, erythrocytes, and urine of postmenopausal women. Am. J. Clin. Nutr. 2004, 80, 946–951. [Google Scholar] [CrossRef] [Green Version]
- Hustad, S.; McKinley, M.C.; McNulty, H.; Schneede, J.; Strain, J.J.; Scott, J.M.; Ueland, P.M. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Clin. Chem. 2002, 48, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Kathman, J.V.; Kies, C. Pantothenic acid status of free living adolescent and young adults. Nutr. Res. 1984, 4, 245–250. [Google Scholar] [CrossRef]
- FUKUWATARI, T.; SHIBATA, K. Consideration of Diurnal Variations in Human Blood NAD and NADP Concentrations. J. Nutr. Sci. Vitaminol. (Tokyo) 2009, 55, 279–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, N.S.; Hansen, T.P. Riboflavin deficiency is associated with selective preservation of critical flavoenzyme-dependent metabolic pathways. Biofactors 1992, 3, 185–190. [Google Scholar]
- Zempleni, J.; Galloway, J.R.; McCormick, D.B. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am. J. Clin. Nutr. 1996, 63, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Leklem, J.E. Differences in vitamin B6 status indicator responses between young and middle-aged women fed constant diets with two levels of vitamin B6. Am. J. Clin. Nutr. 1985, 42, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evliyaoglu, O.; van Helden, J.; Imöhl, M.; Weiskirchen, R. Mining the Age-Dependent Reference Intervals of B Vitamins from Routine Laboratory Test Results. Lab. Med. 2019, 50, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K.; Moser-Veillon, P.B.; Reynolds, R.D. Effect of age on changes in plasma, erythrocyte, and urinary B-6 vitamers after an oral vitamin B-6 load. Am. J. Clin. Nutr. 1988, 48, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, J.H.; Löwik, M.R.; van den Berg, H.; Brants, H.A.; Bemelmans, W. Dietary and other determinants of vitamin B6 parameters. Eur. J. Clin. Nutr. 1997, 51 (Suppl. 3), S39–S45. [Google Scholar] [PubMed]
- Madigan, S.M.; Tracey, F.; McNulty, H.; Eaton-Evans, J.; Coulter, J.; McCartney, H.; Strain, J.J. Riboflavin and vitamin B-6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people. Am. J. Clin. Nutr. 1998, 68, 389–395. [Google Scholar] [CrossRef] [Green Version]
- ISHIGURO, K. Aging Effect of Blood Pantothenic Acid Content in Female. Tohoku J. Exp. Med. 1972, 107, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, K.; Kobayashi, S.; Kaneta, S. Pantothenic Acid Content of Human Blood. Tohoku J. Exp. Med. 1961, 74, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, K. Pantothenic Acid and Age. Tohoku J. Exp. Med. 1961, 75, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Brennan, L. Moving toward Objective Biomarkers of Dietary Intake. J. Nutr. 2018, 148, 821–822. [Google Scholar] [CrossRef]
- Brennan, L.; Hu, F.B. Metabolomics-Based Dietary Biomarkers in Nutritional Epidemiology-Current Status and Future Opportunities. Mol. Nutr. Food Res. 2018, 63, 1701064. [Google Scholar] [CrossRef]
- Andraos, S.; Wake, M.; Saffery, R.; Burgner, D.; Kussmann, M.; O’Sullivan, J. Perspective: Advancing Understanding of Population Nutrient–Health Relations via Metabolomics and Precision Phenotypes. Adv. Nutr. 2019. [Google Scholar] [CrossRef]
- Kim, A.M.; Tingen, C.M.; Woodruff, T.K. Sex bias in trials and treatment must end. Nature 2010, 465, 688–689. [Google Scholar] [CrossRef]
- Yu, Z.; Zhai, G.; Singmann, P.; He, Y.; Xu, T.; Prehn, C.; Römisch-Margl, W.; Lattka, E.; Gieger, C.; Soranzo, N.; et al. Human serum metabolic profiles are age dependent. Aging Cell 2012, 11, 960–967. [Google Scholar] [CrossRef]
- Arganini, C.; Saba, A.; Comitato, R.; Virgili, F.; Turrini, A. Gender Differences in Food Choice and Dietary Intake in Modern Western Societies. In Public Health-Social and Behavioral Health; InTech: London, UK, 2012. [Google Scholar]
- Merkiel-Pawłowska, S.; Chalcarz, W. Gender differences and typical nutrition concerns of the diets of preschool children-the results of the first stage of an intervention study. BMC Pediatr. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Ardawi, M.S.M.; Rouzi, A.A.; Qari, M.H.; Dahlawi, F.M.; Al-Raddadi, R.M. Influence of age, sex, folate and vitamin B12 status on plasma homocysteine in Saudis. Saudi Med. J. 2002, 23, 959–968. [Google Scholar] [PubMed]
- Rasmussen, K.; Møller, J.; Lyngbak, M.; Pedersen, A.M.; Dybkjaer, L. Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin. Chem. 1996, 42, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G. Novara Atherosclerosis Study Group (NAS) Impact of gender difference on vitamin D status and its relationship with the extent of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 464–470. [Google Scholar] [CrossRef]
- AlQuaiz, A.M.; Kazi, A.; Fouda, M.; Alyousefi, N. Age and gender differences in the prevalence and correlates of vitamin D deficiency. Arch. Osteoporos. 2018, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Fukui, T.; Hirose, J.; Fukuwatari, T.; Kimura, N.; Sasaki, S.; Shibata, K. Sex Difference of Blood Levels of Water-soluble Vitamins of Japanese College Students Taking Self-selected Food. Jpn. J. Nutr. Diet. 2009, 67, 284–290. [Google Scholar] [CrossRef]
- Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.; Peters, A.; Theis, F.J.; et al. Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers. PLoS Genet. 2011, 7, e1002215. [Google Scholar] [CrossRef] [Green Version]
- Andraos, S.; Lange, K.; Clifford, S.A.; Jones, B.; Thorstensen, E.B.; Kerr, J.A.; Wake, M.; Saffery, R.; Burgner, D.P.; O’Sullivan, J.M. Plasma Trimethylamine N-Oxide (TMAO) and its Precursors: Population Epidemiology, Parent-Child Concordance, and Associations with Reported Dietary Intake in 11-12-year-old Children and Their Parents. Curr. Dev. Nutr. 2020, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Odum, E.; Wakwe, V. Plasma concentrations of water-soluble vitamins in metabolic syndrome subjects. Niger. J. Clin. Pract. 2012, 15, 442. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics Population. Available online: https://www.abs.gov.au/population (accessed on 25 February 2021).
- Australian Bureau of Statistics Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia. 2016. Available online: https://www.abs.gov.au/ (accessed on 25 February 2021).
Children | Adults | |||||
---|---|---|---|---|---|---|
Characteristic | All | Male | Female | All | Male | Female |
N | 1166 | 565 | 601 | 1324 | 174 | 1150 |
Age in years (mean ± SD) | 11.4 ± 0.5 | 11.4 ± 0.5 | 11.5 ± 0.5 | 43.9 ± 5.1 | 46.2 ± 6.4 | 43.6 ± 4.8 |
BMI rounded in kg/m2 Median (Lower-Upper Quartiles) | 18.4 (16.8–20.6) | 18.1 (16.7–20.2) | 18.8 (17.0–21.1) | 26.54 (23.4–31.0) | 27.4 (25.2–31.1) | 26.3 (23.1–31.0) |
BMI Z-scores (mean ± SD) | 0.3 ± 0.9 | 0.31 ± 0.94 | 0.31 ± 0.95 | N/A | N/A | N/A |
Biological parent of child (N) | N/A | N/A | N/A | 1313 | 172 | 1141 |
Australian state of current residence: State (N) | New South Wales (359); Victoria (261); Queensland (221); South Australia (92); West Australia (139); Tasmania (40); Northern Territory (17); Australian Capital Territory (38) | New South Wales (391); Victoria (311); Queensland (240); South Australia (108); West Australia (164); Tasmania (46); Northern Territory (18); Australian Capital Territory (47) | ||||
Socio-Economic Indexes for Areas (SEIFA) disadvantage Quintile (N) | Most Disadvantaged (83); Second Most (171); Middle (199); Second Least (272); Least Disadvantaged (442) | Most Disadvantaged (94); Second Most (193); Middle (233); Second Least (304); Least Disadvantaged (501) |
Vitamer | Effect of Dyad (or Family) on Mixed Model * | Family Effect Variance | Vitamer Variance | Effect Size of Family on Vitamer Concentrations (%) |
---|---|---|---|---|
Thiamine (B1) | p < 0.0001
| 0.12 | 0.82 | 13 |
Riboflavin (B2) | p < 0.001
| 0.07 | 0.64 | 12 |
FMN (B2) | p < 0.0001
| 0.02 | 0.16 | 16 |
Nicotinamide (B3) | p < 0.0001
| 0.11 | 0.37 | 31 |
Pantothenic acid (B5) | p < 0.0001
| 0.03 | 0.20 | 17 |
4-Pyridoxic acid (B6) | p = 0.003
| 0.10 | 1.11 | 9 |
Vitamer (nM) | Adult Median (LQ, UQ) * | Child Median (LQ, UQ) * | Effect of Generation on Mixed Model (Children, Adults) ** |
---|---|---|---|
Thiamine (B1) | 2.14 (1.05; 4.11) | 4.14 (2.74; 6.13) | p < 0.0001
|
Riboflavin (B2) | 14.44 (9.24; 25.03) | 14.24 (9.85; 21.2) | p = 0.001
|
FMN (B2) | 13.27 (10.87; 16.86) | 13.72 (11.18; 16.81) | p = 0.129
|
Nicotinamide (B3) | 396.41 (268.50; 640.74) | 430.85 (285.61; 730.60) | p < 0.0001
|
Pantothenic acid (B5) | 179.94 (140.02; 238.19) | 173.72 (144.76; 206.79) | p < 0.0001
|
4-Pyridoxic acid (B6) | 15.58 (9.24; 25.59) | 11.72 (7.75; 17.50) | p < 0.0001
|
Vitamer (nM) | Children | Adults | ||||||
---|---|---|---|---|---|---|---|---|
Females Median (LQ; UQ) * | Males Median (LQ; UQ) | Adjusted R2 of Linear Model + | p Value | Females Median (LQ; UQ) | Males Median (LQ; UQ) | Adjusted R2 of Linear Model + | p Value | |
Thiamine (B1) | 3.92 (2.69; 5.57) | 4.43 (2.88; 6.79) | 0.01 | <0.0001 | 2.09 (1.02; 4.06) | 2.50 (1.17; 4.36) | 0.001 | 0.19 |
Riboflavin (B2) | 14.17 (9.80; 21.39) | 14.27 (9.94; 21.20) | −0.001 | 0.70 | 14.56 (9.22; 25.01) | 13.83 (9.50; 26.24) | −0.001 | 0.77 |
FMN (B2) | 13.62 (10.99; 17.13) | 13.87 (12.25; 16.61) | −0.00009 | 0.35 | 13.27 (10.83; 16.91) | 13.22 (11.15; 16.20) | −0.001 | 0.79 |
Nicotinamide (B3) | 432.21 (273.23; 730.65) | 430.44 (297.09; 729.99) | −0.001 | 0.56 | 396.41 (264.47; 644.74) | 398.41 (293.46; 613.64) | −0.0004 | 0.50 |
Pantothenic acid (B5) | 165.17 (138.68; 196.33) | 182.53 (153.72; 219.27) | 0.025 | <0.0001 | 175.96 (138.79; 233.43) | 196.89 (157.10; 250.52) | 0.003 | 0.02 |
4-Pyridoxic acid (B6) | 11.15 (7.36; 16.18) | 12.60 (8.18; 19.21) | 0.006 | 0.01 | 15.58 (9.16; 25.48) | 16.02 (10.31; 27.33) | −0.001 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andraos, S.; Jones, B.; Wall, C.; Thorstensen, E.; Kussmann, M.; Cameron-Smith, D.; Lange, K.; Clifford, S.; Saffery, R.; Burgner, D.; et al. Plasma B Vitamers: Population Epidemiology and Parent-Child Concordance in Children and Adults. Nutrients 2021, 13, 821. https://doi.org/10.3390/nu13030821
Andraos S, Jones B, Wall C, Thorstensen E, Kussmann M, Cameron-Smith D, Lange K, Clifford S, Saffery R, Burgner D, et al. Plasma B Vitamers: Population Epidemiology and Parent-Child Concordance in Children and Adults. Nutrients. 2021; 13(3):821. https://doi.org/10.3390/nu13030821
Chicago/Turabian StyleAndraos, Stephanie, Beatrix Jones, Clare Wall, Eric Thorstensen, Martin Kussmann, David Cameron-Smith, Katherine Lange, Susan Clifford, Richard Saffery, David Burgner, and et al. 2021. "Plasma B Vitamers: Population Epidemiology and Parent-Child Concordance in Children and Adults" Nutrients 13, no. 3: 821. https://doi.org/10.3390/nu13030821
APA StyleAndraos, S., Jones, B., Wall, C., Thorstensen, E., Kussmann, M., Cameron-Smith, D., Lange, K., Clifford, S., Saffery, R., Burgner, D., Wake, M., & O’Sullivan, J. (2021). Plasma B Vitamers: Population Epidemiology and Parent-Child Concordance in Children and Adults. Nutrients, 13(3), 821. https://doi.org/10.3390/nu13030821