The Influence of Reducing Diets on Changes in Thyroid Parameters in Women Suffering from Obesity and Hashimoto’s Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Subject
2.2. Study Protocol
2.3. Diet Protocol
2.4. Statistical Methods
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Swain, M.; Swain, T.; Mohanty, B.K. Autoimmune thyroid disorders—An update. Indian J. Clin. Biochem. 2005, 2, 9–17. [Google Scholar] [CrossRef]
- McLeod, D.S.; Cooper, D.S. The incidence and prevalence of thyroid autoimmunity. Endocrine 2012, 42, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Koszowska, A.; Brończyk-Puzoń, A.; Nowak, J.; Zubleicz-Skłodzińska, B. Ocenawybranychparametrówantropometrycznychibiochemicznych u pacjentek z przewlekłymautoimmunologicznymzapaleniemtarczycy, zeszczególnymuwzględnieniemnowegoskładnika VAI-doniesieniawstępne, część I. Forum Zaburzeń Metab. 2019, 10, 77–87. [Google Scholar]
- World Health Organization. Obesity and Overweight. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 18 February 2021).
- Wojtyniak, B.; Goryński, P. Sytuacja Zdrowotna Ludności Polski i Jej Uwarunkowania; Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny: Warszawa, Poland, 2020; pp. 453–475.
- Song, R.H.; Wang, B.; Yao, Q.M.; Li, Q.; Jia, X.; Zhang, J.A. The impact of obesity and thyroid autoimmunity and dysfunction: A Systematic Review and Meta-Analysis. Front. Immunol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Onmus, M.J.; Avcu, E.C.; Saklamaz, A. The effect of elimination diet on weight and metabolic parameters of overweight or obese patients who have food intolerance. J. Food Nutr. Res. 2016, 4, 1–5. Available online: http://article.foodnutritionresearch.com/pdf/jfnr-4-1-1.pdf (accessed on 4 March 2021).
- Gabur, S. Determination of effect of the elimination diet applied for overweight and obese people with food intolerance on body composition and biochemical parameters. Braz. Arch. Biol. Technol. 2017, 60, 1–16. [Google Scholar] [CrossRef]
- Lewis, J.E.; Woolger, J.M.; Melillo, A.; Alonso, Y.; Rafatjah, S.; Jones, S.A.; Konefal, J.; Sarabia, A.; Leonard, S.; Long, E.; et al. Eliminating Immunologically-Reactive Foods from the Diet and its Effect on Body Composition and Quality of Life in Overweight Persons. J. Obes. Weight. Loss Ther. 2011, 2, 1–6. [Google Scholar] [CrossRef]
- Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune mediated inflammation. N. Engl. J. Med. 1995, 332, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Gietka-Czarnel, M.; Jastrzębska, H. RozpoznawanieileczeniechoróbTarczycy, 1st ed.; BibliotekaLekarzaPraktyka: Warszawa, Poland, 2002; pp. 18–203. [Google Scholar]
- Geerling, B.J.; van MarkenLichtenbeld, W.D.; Stocbrugger, R.W. Gender specific alterations of body composition in patients with inflammatory bowel disease compared with controls. Eur. J. Clin. Nutr. 1999, 53, 479–485. [Google Scholar] [CrossRef] [Green Version]
- George, D.; Mallery, P. SPAA for Windows Step by Step: A simple Guidand References 17.0 Update, 10th ed.; Pearson: Boston, MA, USA, 2010. [Google Scholar]
- Omeljaniuk, W.; Dziemianowicz, M.; Naliwajko, S.; Bartosiuk, E.; Markiewicz-Zukowska, R.; Borawska, M. Ocenasposobużywieniapacjentek z chorobą Hashimoto. Bromatol. Chem. Toksykol. 2011, 3, 428–433. [Google Scholar]
- Valea, A.; Carsote, M.; Moldovan, C.; Georgescu, C. Chronic Autoimmune Thyroiditis and Obesity. Arch. Balcan Med. Union 2018, 53, 64–69. [Google Scholar]
- Szwajkosz, K.; Zwolak, A.; Dudzińska, M.; Joanna, Ś.; Anna, O.-C.; Agnieszka, W.; Robert, Ł.; Jadwiga, D. Nadwagaiotyłość a niedoczynnośćtarczycy. J. Educ. Health Sport 2016, 6, 419–428. [Google Scholar] [CrossRef]
- Fasano, A. Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 2012, 10, 1096–1100. [Google Scholar] [CrossRef] [Green Version]
- Hałasa, M.C. Naturalny regulator układuimmunologicznego. WydawnictwoPomorskiegoUniwersytetuSzczecińskiego.Wydawnictwo PUM. Szczecin 2020, 1, 58–61. [Google Scholar]
- Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome: A comprehensive perspective based oninteractions between obesity, diabetes, and inflammation. Circulation 2005, 111, 1448–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilders-Truschnig, M.; Mangge, H.; Lieners, C.; Gruber, H.-J.; Mayer, C.; Marz, W. IgG Antibodies Against Food Antigens are Correlated with Inflammation and Intima Media Thickness in Obese Juveniles. Exp. Clin. Endocrinol. Diabetes 2007, 116, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Carroccio, A.; D’Alcamo, A.; Cavataio, F.; Soresi, M.; Seidita, A.; Sciumè, C.; Geraci, G.; Iacono, G.; Mansueto, P. High Proportions of People With Nonceliac Wheat Sensitivity Have Autoimmune Disease or Antinuclear Antibodies. Gastroenterology 2015, 149, 596–603.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.; Vojdani, A. Correlation of Tissue Antibodies and Food Immune Reactivity in Randomly Selected Patient Specimens. J. Clin. Cell. Immunol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The Effect of Gluten-Free Diet on Thyroid Autoimmunity in Drug-Naïve Women with Hashimoto’s Thyroiditis: A Pilot Study. Exp. Clin. Endocrinol. Diabetes 2019, 127, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Shen, J.; Zhao, D.; Qiao, Y.; Xu, A.; Jin, S.; Ran, Z.; Zheng, Q. Serological Investigation of Food Specific Immunoglobulin G Antibodies in Patients with Inflammatory Bowel Diseases. PLoS ONE 2014, 9, e112154. [Google Scholar] [CrossRef]
- Jian, L.; Anqi, H.; Gang, L.; Litian, W.; Yanyan, X.; Mengdi, W.; Tong, L. Food Exclusion Based on IgG Antibodies Alleviates Symptoms in Ulcerative Colitis: A Prospective Study. Inflamm. Bowel Dis. 2018, 24, 1918–1925. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, T.; Wang, J.; Chang, Y.; Guo, H.; Zhang, W. The value of eliminating foods according to food-specific immunoglobulin G antibodies inn irritable bowel syndrome with diarrhea. J. Int. Med Res. 2012, 40, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, W.; Sheldon, T.A.; Shaath, N.; Whorwell, P.J. Food elimination based on IgG antibodies in irritable bowel syndrome: A randomised controlled trial. Gut 2004, 53, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Marras, V.; Casini, M.R.; Pilia, S.; Carta, D.; Civolani, P.; Porcu, M.; Uccheddu, A.P.; Loche, S. Thyroid Function in Obese Children and Adolescents. Horm. Res. Paediatr. 2010, 73, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Herter-Aeberli, I.; Jung, A.; Murer, S.B.; Wildhaber, J.; Wildhaber-Brooks, J.; Knöpfli, B.H.; Zimmermann, M.B. During Rapid Weight Loss in Obese Children, Reductions in TSH Predict Improvements in Insulin Sensitivity Independent of Changes in Body Weight or Fat. J. Clin. Endocrinol. Metab. 2010, 95, 5412–5418. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, C.M.M.; Mancini, M.C.; De Melo, M.E.; Figueiredo, D.A.; Villares, S.M.F.; Rascovski, A.; Zilberstein, B.; Halpern, A. Prevalence of Subclinical Hypothyroidism in a Morbidly Obese Population and Improvement after Weight Loss Induced by Roux-en-Y Gastric Bypass. Obes. Surg. 2005, 15, 1287–1291. [Google Scholar] [CrossRef]
- Rotondi, M.; Leporati, P.; Rizza, M.I.; Clerici, A.; Groppelli, G.; Pallavicini, C.; La Manna, A.; Fonte, R.; Magri, F.; Biondi, B.; et al. Raised serum TSH in morbid-obese and non-obese patients: Effect on the circulating lipid profile. Endocrine 2013, 45, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Draman, M.S.; Stechman, M.; Scott-Coombes, D.; Dayan, C.M.; Rees, D.A.; Ludgate, M.; Zhang, L. The Role of Thyrotropin Receptor Activation in Adipogenesis and Modulation of Fat Phenotype. Front. Endocrinol. 2017, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Rochon, C.I.; Tauveron, C.; Dejax, P.; Benoit, P.; Capitan, P.; Fabricio, A.; Berry, C.; Champredon, C.; Thieblot, P.; Grizard, J. Response of Glucose Disposal to Hyperinsulinaemia in Human Hypothyroidism and Hyperthyroidism. Clin. Sci. 1979, 104, 7–15. Available online: https://pubmed.ncbi.nlm.nih.gov/12519082/ (accessed on 4 March 2021). [CrossRef] [Green Version]
- Ruhla, S.; Weickert, M.O.; Arafat, A.M. A high normal TSH is associated with the metabolic syndrome. Clin. Endocrinol. 2009, 72, 696–701. [Google Scholar] [CrossRef]
- Xu, R.; Huang, F.; Zhang, S.; Lv, Y.; Liu, Q. Thyroid function, body mass index, and metabolic risk markers in euthyroid adults: A cohort study. BMC Endocr. Disord. 2019, 19, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazaheri, T.; Sharifi, F.; Kamali, K. Insulin resistance in hypothyroid patients under Levothyroxine therapy: A comparison between those with and without thyroid autoimmunity. J. Diabetes Metab. Disord. 2014, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, C.H.; Brix, T.H.; Leslie, R.G.Q.; Hegedüs, L. A role for autoantibodies in enhancement of pro-inflammatory cytokine responses to a self-antigen, thyroid peroxidase. Clin. Immunol. 2009, 133, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Okopień, B. The Effect of Levothyroxine and Selenomethionine on Lymphocyte and Monocyte Cytokine Release in Women with Hashimoto’s Thyroiditis. J. Clin. Endocrinol. Metab. 2011, 96, 2206–2215. [Google Scholar] [CrossRef] [Green Version]
- Caturegli, P.; De Remigis, A.; Rose, N. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef]
- Pandit, A.A.; Warde, M.V.; Menon, P.S. Correlation of number of intrathyroid lymphocytes with antimicrosomal antibody titer in Hashimoto’s thyroiditis. Diagn. Cytopathol. 2003, 28, 63–65. [Google Scholar] [CrossRef]
Test Group A | Control Group B | (Test Group/Control Group) | |||||||
---|---|---|---|---|---|---|---|---|---|
Anthropometric Parameters | M | SD | Min | Max | M | SD | Min | Max | |
body weight (kg) (visit 1) | 98.26 * | ±13.87 | 73 | 137 | 97.85 ** | ±16.73 | 76 | 164.6 | p < 0.001 |
body weight (kg) (visit 2) | 87.26 | ±13.60 | 64.1 | 125 | 89.32 | ±16.39 | 65.1 | 152.1 | |
body weight (kg) (visit 3) | 77.77 * | ±14.05 | 59.8 | 117.7 | 80.04 ** | ±17.14 | 58.4 | 146.9 | |
BMI kg/m2 (visit 1) | 35.63 * | ±4.06 | 30 | 48 | 35.87 ** | ±5.59 | 30.4 | 57 | p < 0.002 |
BMI kg/m2 (visit 2) | 31.62 | ±4.22 | 25.6 | 43.8 | 32.73 | ±5.53 | 26 | 52.6 | |
BMI kg/m2 (visit 3) | 28.11 * | ±4.69 | 21.4 | 41.2 | 29.16 ** | ±5.64 | 23.4 | 50.8 | |
body fat % (visit 1) | 43.46 * | ±3.77 | 37 | 52.9 | 43.63 ** | ±4.05 | 36.4 | 54.2 | p = 0.026 |
body fat % (visit 2) | 39.47 | ±5.00 | 27.8 | 52.1 | 40.56 | ±5.11 | 27 | 52.3 | |
body fat % (visit 3) | 33.75 * | ±6.84 | 22.1 | 51.2 | 36.32 ** | ±5.78 | 24.5 | 51.9 |
Test Group A (Elimination/Reducing Diet) | Control Group B (Reducing Diet) | p (Test Group/Control Group) | |||||||
---|---|---|---|---|---|---|---|---|---|
Thyroid Parameters | M | SD | Min | Max | M | SD | Min | Max | |
TSH (µU/mL) (visit 1) | 2.77 * | ±1.05 | 0.82 | 6.65 | 2.80 ** | ±1.22 | 0.23 | 6.54 | p < 0.001 |
TSH (µU/mL) (visit 2) | 2.00 | ±0.77 | 0.67 | 4.08 | 2.33 | ±0.78 | 0.71 | 4.23 | |
TSH (µU/mL) (visit 3) | 1.45 * | ±0.58 | 0.36 | 2.57 | 2.05 ** | ±0.68 | 0.65 | 3.41 | |
fT4 (pmol/L) (visit 1) | 14.12 * | ±1.58 | 11.80 | 18.92 | 14.61 ** | ±1.84 | 11.30 | 22.80 | p < 0.001 |
fT4 (pmol/L) (visit 2) | 15.00 | ±2.04 | 12.07 | 22.07 | 15.03 | ±1.44 | 12.78 | 20.76 | |
fT4 (pmol/L) (visit 3) | 16.18 * | 2.08 | 13.08 | 22.81 | 15.43 ** | ±1.42 | 13.22 | 20.02 | |
fT3 (pmol/L) (visit 1) | 3.88 * | ±0.67 | 2.41 | 5.15 | 4.22 ** | ±0.53 | 3.11 | 5.31 | p < 0.001 |
fT3 (pmol/L) (visit 2) | 4.18 | ±0.76 | 2.76 | 5.99 | 4.46 | ±0.54 | 3.12 | 5.79 | |
fT3 (pmol/L) (visit 3) | 4.79 * | ±0.73 | 2.94 | 6.74 | 4.66 ** | ±0.51 | 3.71 | 5.96 | |
aTPO(IU/mL) (visit 1) | 371.49 * | ±348.39 | 7.44 | 1567.00 | 203.80 ** | ±182.01 | 7.00 | 678.90 | p < 0.001 |
aTPO(IU/mL) (visit 2) | 230.80 | ±217.81 | 9.20 | 946.70 | 147.26 | ±132.16 | 11.00 | 458.10 | |
aTPO(IU/mL) (visit 3) | 102.16 * | ±116.02 | 5.46 | 441.30 | 108.26 ** | ±83.94 | 5.00 | 318.90 | |
aTG(IU/mL) (visit 1) | 178.33 * | ±166.21 | 8.00 | 638.90 | 134.78 ** | ±190.32 | 8.90 | p = 0.048 | |
aTG(IU/mL) (visit 2) | 117.24 | ±98.89 | 8.54 | 408.60 | 95.48 | ±133.49 | 9.23 | 597.80 | |
aTG(IU/mL) (visit 3) | 66.88 * | ±67.56 | 3.42 | 276.60 | 73.98 ** | ±60.23 | 9.44 | 299.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, L.; Gier, D.; Zyśk, B. The Influence of Reducing Diets on Changes in Thyroid Parameters in Women Suffering from Obesity and Hashimoto’s Disease. Nutrients 2021, 13, 862. https://doi.org/10.3390/nu13030862
Ostrowska L, Gier D, Zyśk B. The Influence of Reducing Diets on Changes in Thyroid Parameters in Women Suffering from Obesity and Hashimoto’s Disease. Nutrients. 2021; 13(3):862. https://doi.org/10.3390/nu13030862
Chicago/Turabian StyleOstrowska, Lucyna, Dominika Gier, and Beata Zyśk. 2021. "The Influence of Reducing Diets on Changes in Thyroid Parameters in Women Suffering from Obesity and Hashimoto’s Disease" Nutrients 13, no. 3: 862. https://doi.org/10.3390/nu13030862
APA StyleOstrowska, L., Gier, D., & Zyśk, B. (2021). The Influence of Reducing Diets on Changes in Thyroid Parameters in Women Suffering from Obesity and Hashimoto’s Disease. Nutrients, 13(3), 862. https://doi.org/10.3390/nu13030862