Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression
Abstract
:1. Introduction
2. Neurophysiological and Neurochemical Aspects of Depression
3. The Role of the Intestine Microbiome in Depression
4. The Role of Metabolites of the Intestinal Microbiome in Depression
5. The Intestinal Barrier as a Link between the Gut Microbiome and the Brain
6. The Influence of Diet on the Development of Depression
7. The Role of Psychobiotics in the Prevention and Treatment of Depression
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Zwart, P.L.; Jeronimus, B.F.; De Jonge, P. Empirical evidence for definitions of episode, remission, recovery, relapse and recurrence in depression: A systematic review. Epidemiol. Psychiatr. Sci. 2019, 28, 544–562. [Google Scholar] [CrossRef]
- American Psychiatric Association. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Tolentino, J.C.; Schmidt, S.L. DSM-5 Criteria and Depression Severity: Implications for Clinical Practice. Psychiatr. Front. 2018, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Nemeroff, C.B.; Vale, W.W. The neurobiology of depression: The path to treatment and the discovery of new drugs. J. Clin. Psychiatry 2005, 66, 5–13. [Google Scholar] [PubMed]
- Herbet, M.; Korga, A.; Gawrońska-Grzywacz, M.; Izdebska, M.; Piątkowska-Chmiel, I.; Poleszak, E.; Wróbel, A.; Matysiak, W.; Jodłowska-Jędrych, B.; Dudka, J. Chronic Variable Stress Is Responsible for Lipid and DNA Oxidative Disorders and Activation of Oxidative Stress Response Genes in the Brain of Rats. Oxid. Med. Cell. Longev. 2017, 73, 13090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K.; Shin, C. The Microbiota-Gut-Brain Axis in neuropsychiatric disorders: Pathophysiological mechanisms and novel treatments. Curr. Neuropharmacol. 2018, 16, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed]
- Zhang, J.; Huen, J.M.Y.; Lew, B.; Chistopolskaya, K.; Talib, M.A.; Siau, C.S.; Leung, A.N.M. Depression, Anxiety, and Stress as a Function of Psychological Strains: Towards an Etiological Theory of Mood Disorders and Psychopathologies. J. Affect. Disord. 2020, 271, 279–285. [Google Scholar] [CrossRef]
- Zareie, M.; Johnson-Henry, K.; Jury, J.; Yang, P.C.; Ngan, B.Y.; McKay, D.M.; Soderholm, J.D.; Perdue, M.H.; Sherman, P.M. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats foolowing chronic psychological stress. Gut 2006, 55, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- Kiss, J.P. The theory of active antidepressants: A non-synaptic approach to treating depression. Neurochem. Int. 2008, 52, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Doris, A.; Ebmeier, K.; Shajahan, P. Depressive disease. Lancet 1999, 354, 1369–1375. [Google Scholar] [CrossRef]
- Schildkraut, J.J. The catecholamine hypothesis of affective disorders: A review of the supporting evidence. Am. J. Psychiatry 1965, 122, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; Licinio, J. From monoamines to genomic purposes: A paradigm shift in drug discovery for depression. Nat. Rev. Drug Discov. 2004, 3, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B.T.; Seidman, S.N.; Sysko, R.; Gould, M. Placebo response in major depression studies: Variable, significant, and increasing. J. Am. Med. Doc. 2002, 287, 1840–1847. [Google Scholar] [CrossRef]
- Owens, M.; Nemeroff, C. Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clin. Chem. 1994, 40, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, J. Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 1999, 21, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Guilloux, J.P.; David, D.J.; Xia, L.; Nguyen, H.T.; Rainer, Q.; Guiard, B.P.; Repérant, C.; Deltheil, T.; Toth, M.; Hen, R.; et al. Characterization of 5-HT1A/1B−/− mice: An animal model sensitive to anxiolytic treatments. Neuropharmacology 2011, 61, 478–488. [Google Scholar] [CrossRef]
- Moret, C.; Briley, M. The importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat. 2011, 7, 9–13. [Google Scholar] [CrossRef]
- Hori, H.; Kunugi, H. Dopamine agonist-responsive depression. Psychogeriatrics 2013, 13, 189–195. [Google Scholar] [CrossRef]
- Dunlop, B.; Nemeroff, C. The role of dopamine in pathophysiology of depression. Arch. Gen. Psychiatry 2007, 64, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.; Panchalingam, K.; Rapoport, A.; Gershon, S.; McClure, R.; Pettegrew, J. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol. Psychiatry 2000, 47, 586–593. [Google Scholar] [CrossRef]
- Greener, M. Beyond serotonin: New approaches to the management of depression. Prog. Neurol. Psychiatry 2013, 17, 23–25. [Google Scholar] [CrossRef]
- Sanchez, C.; Pehrson, A. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: A critical review of the supporting evidence and the infuence of serotonergic antidepressants. Drug Des. Devel. 2015, 9, 603–624. [Google Scholar] [CrossRef] [Green Version]
- Janowsky, D.; El-Yousef, M.; Davis, J.; Sekerke, H. A cholinergic-adrenergic hypothesis of mania and depression. Lancet 1972, 2, 632–635. [Google Scholar] [CrossRef]
- Dilsaver, S. Cholinergic mechanisms in depression. Brain Res. 1989, 396, 285–316. [Google Scholar] [CrossRef] [Green Version]
- Landowski, J. Review article Neurobiology of stress. Neuropsychiatr. Neuropsychol. 2007, 2, 26–36. [Google Scholar]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Herbet, M.; Izdebska, M. All α-Tocopherol improves the redox balance and chronic inflammation displayed by the variable stress books. Biomed Res. Int. 2018, 14, 10497–10538. [Google Scholar]
- Ng, F.; Berk, M.; Dean, O.; Bush, A. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 2008, 11, 851–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, T.; Pülschen, D.; Thome, J. The Role of Oxidative Stress in Depressive Disorders. Curr. Pharm. Des. 2012, 18, 5890–5899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbet, M.; Izdebska, M.; Piątkowska-Chmiel, I.; Gawrońska-Grzywacz, M.; Natorska-Chomicka, D.; Pawłowski, K.; Sysa, M.; Ślaska, B.; Dudka, J. α-Tocopherol Ameliorates Redox Equilibrium and Reduces Inflammatory Response Caused by Chronic Variable Stress. Biomed Res. Int. 2018, 2018, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goshen, I.; Kreisel, T.; Ben-Menachem-Zidon, O.; Licht, T.; Weidenfeld, J.; Ben-Hur, T.; Yirmiya, R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 2008, 13, 717–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gostner, J.M.; Becker, K.; Fuchs, D.; Sucher, R. Redox regulation of the immune response. Redox Rep. 2013, 18, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Filus, J.; Rybakowski, J. Serum BDNF levels and intensity of depressive symptoms. Neuropsychiatr. Neuropsychol. Poznań 2010, 5, 155. [Google Scholar]
- Mamounas, L.A.; Blue, M.E.; Siuciak, J.A.; Altar, C.A. Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J. Neurosci. 1995, 15, 7929–7939. [Google Scholar] [CrossRef] [PubMed]
- Altar, C.A.; Boylan, C.B.; Fritsche, M. The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp. Neurol. 1994, 130, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sklair-Tavron, L.; Nestler, E.J. Opposing effects of morphine and the neurotrophins, NT-3, NT-4 and BDNF on locus coeruleus neurons in vitro. Brain Res. 1995, 702, 117–125. [Google Scholar] [CrossRef]
- Lindsay, R.M. Neuron saving schemes. Nature 1995, 373, 289–290. [Google Scholar] [CrossRef]
- Pan, W.; Banks, W.A.; Fasold, M.B. Transport of brainderived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998, 37, 553–1561. [Google Scholar] [CrossRef]
- Karege, F.; Schwald, M.; Cisse, M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci. Lett. 2002, 328, 261–264. [Google Scholar] [CrossRef]
- Shimizu, E.; Hashimoto, K.; Okamura, N. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 2003, 54, 70–75. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.; Hu, X.; Wang, T.; Jin, F. Recognizing Depression from the Microbiota–Gut–Brain Axis. Int. J. Mol. Sci. 2018, 19, 1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limbana, T.; Khan, F.; Eskander, N. Gut Microbiome and Depression: How Microbes Affect the Way We Think. Cureus 2020, 12, e9966. [Google Scholar] [CrossRef] [PubMed]
- Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv. Nutr. 2020, 11, 890–907. [Google Scholar] [CrossRef] [Green Version]
- Kurina, L.; Goldacre, M.; Yeates, D.; Gill, L. Depression and anxiety in people with inflammatory bowel disease. J. Epidemiol. Community Health 2001, 55, 716–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lydiard, R.B. Irritable bowel syndrome, anxiety, and depression: What are the links? J. Clin. Psychiatry 2001, 62, 38–47. [Google Scholar] [PubMed]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.Y.; Zhang, X.; Yu, Z.H.; Zhang, Z.; Deng, M.; Zhao, J.H.; Ruan, B. Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res. 2018, 104, 130–136. [Google Scholar] [CrossRef]
- Crumeyrolle-Arias, M.; Jaglin, M.; Bruneau, A.; Vancassel, S.; Cardona, A.; Dauge, V.; Naudon, L.; Rabot, S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014, 42, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, K.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 2011, 23, 255. [Google Scholar] [CrossRef]
- Nishino, R.; Mikami, K.; Takahashi, H.; Tomonaga, S.; Furuse, M.; Hiramoto, T.; Aiba, Y.; Koga, Y.; Sudo, N. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol. Motil. 2013, 25, 521-e371. [Google Scholar] [CrossRef]
- Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsavkelova, E.; Klimova, S.Y.; Cherdyntseva, T. Hormones and hormone-like substances of microorganisms: A review. Appl. Biochem. Microbiol. 2006, 42, 229–235. [Google Scholar] [CrossRef]
- Ross, R.P.; Mills, S.; Hill, C.; Fitzgerald, G.F.; Stanton, C. Specific metabolite production by gut microbiota as a basis for probiotic function. Int. Dairy J. 2010, 20, 269–276. [Google Scholar] [CrossRef]
- Holzer, P.; Farzi, A. Neuropeptides and the microbiota-gut-brain axis. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease; Lyte, M., Cryan, J.F., Eds.; Springer: New York, NY, USA, 2014; pp. 195–219. [Google Scholar]
- Thursby, E.E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Mackie, R.I.; Sghir, A.; Gaskin, H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999, 69, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- DiBaise, J.K.; Zhang, H.; Crowell, M.D.; Krajmalnik-Brown, R.; Decker, G.A.; Rittmann, B.E. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 2008, 83, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouwehand, A.; Isolauri, E.; Salminen, S. The role of the intestinal microflora for the development of the immune system in early childhood. Eur. J. Nutr. 2002, 41, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Stappenbeck, T.S.; Hooper, L.V.; Gordon, J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 2002, 99, 15451–15455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.M.; Smid, E.J.; Sinderen, D. Bacterial vitamin B2, B11 and B12 overproduction: An overview. Int. J. Food Microbiol. 2009, 133, 1–7. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.G.; Milani, C.; Giori, G.S.; Sesma, F.; Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotech. 2013, 24, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.; Ischebeck, T.; Commichau, F.M. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol. Adv. 2017, 35, 31–40. [Google Scholar] [CrossRef]
- Owen, R.T. Folate augmentation of antidepressant response. Drugs Today 2013, 49, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Myint, A.M.; Kim, Y.K.; Verkerk, R.; Scharpé, S.; Steinbusch, H.; Leonard, B. Kynurenine pathway in major depression: Evidence of impaired neuroprotection. J. Affect. Disord. 2007, 98, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Gut Microbiome and Depression: How Microbes Affect the Way We Think. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510518 (accessed on 23 August 2020).
- Kundu, P.; Blacher, E.; Elinav, E.; Pettersson, S. Our Gut Microbiome: The Evolving Inner. Self. Cell. 2017, 171, 1481–1493. [Google Scholar] [CrossRef] [Green Version]
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pr. 2017, 7, 987. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic Review of Gut Microbiota and Major Depression. Psychiatry Front. 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.T.; Rowan-Nash, A.D.; Sheehan, A.E.; Walsh, R.F.L.; Sanzari, C.M.; Korry, B.J.; Belenky, P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun. 2020, 88, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Shi, X.; Li, Z.Y.; Shen, Y.; Shi, X.X.; Wang, L.Y.; Li, G.F.; Yuan, Y.; Wang, J.X.; Zhang, Y.C.; et al. Possible association of Firmicutes in the intestinal microbiota of patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3329–3337. [Google Scholar] [CrossRef] [Green Version]
- Duncan, S.H.; Louis, P.; Flint, H.J. Cultivated diversity of bacteria from the human colon. Lett. Appl. Microbiol. 2007, 44, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Buttermilk neuropharmacology: Bread and butter axis of the microbiota-gut-brain? Neurochem. Int. 2016, 99, 110–132. [Google Scholar] [CrossRef]
- Diehl, G.E.; Longman, R.S.; Zhang, J.X. The microbiota restricts the transport of bacteria to the mesenteric lymph nodes by CX (3) CR1 (hi) cells. Nature 2013, 494, 116–120. [Google Scholar] [CrossRef]
- Bendtsen, K.M.B.; Krych, L.; Sørensen, D.B. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS ONE 2012, 7, e46231. [Google Scholar] [CrossRef] [Green Version]
- Sanada, K.; Nakajima, S.; Kurokawa, S.; Barceló-Soler, A.; Ikuse, D.; Hirata, A.; Yoshizawa, A.; Tomizawa, Y.; Salas-Valero, M.; Noda, Y.; et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J. Affect Disord. 2020, 266, 1–13. [Google Scholar] [CrossRef]
- Starkweather, R.; Wendy, A.; Henderson, A.; Gyamfi, S. Altered composition of the intestinal microbiota for depression: Systematic review of Zahra Amirkhanzadeh Barandouzi. Front. Psychiatry 2020, 21, 562. [Google Scholar] [CrossRef]
- Shan, L.; Dongyu, H.; Qiaoyan, W.; Ling, Y.; Xinlei, W.; Ailin, L.; Chun, Y. The Role of Bacteria and Its Derived Metabolites in Chronic Pain and Depression: Recent Findings and Research Progress. Int. J. Neuropsychopharmacol. 2020, 23, 26–41. [Google Scholar] [CrossRef]
- Deng, F.L.; Frying, J.X.; Zheng, P.; Xia, J.J.; Yin, B.M.; Liang, W.; Li, Y.F.; Wu, J.; Xu, F.; Wu, Q.Y.; et al. Metabonomics reveals dysfunction of peripheral and central short-chain fatty acids and amino acids in a naturally occurring depressive model of macaques. Neuropsychiattr. Dis. Treat 2019, 15, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Freidin, M.B.; Wells, H.R.R.; Potter, T.; Livshits, S.; Menni, D.; Williams, F.M.K. Metabolomic fatigue markers: The relationship between circulating metabolome and fatigue in women with chronic extensive pain. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, R.; Philippeit, H.; Bürmann, J.; Faßbender, K.; Schwiertz, Z.A.; Schäfer, K.H. Short-chain fatty acids and intestinal microflora differ between parkinson’s disease patients and the age-matched control group. Parkinsonism. Relat. Disord. 2018, 32, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Kalina, U.; Koyama, N.; Hosoda, T.; Nuernberger, H.; Sato, K.; Hoelzer, R.; Herweck, F.; Manigold, T.; Singer, M.V.; Rossol, S.; et al. Increased production of IL-18 in the intestinal epithelium treated with buttermedam through stimulation of the proximal region of the promoter. Eur. J. Immunol. 2020, 32, 2635–2643. [Google Scholar] [CrossRef]
- Macia, L. Receptors sensing the metabolites GPR43 and GPR109A facilitate fibre-induced intestinal homeostasis by regulating inflamasom. Nat. Commun. 2015, 6, 6734. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Thangaraju, M.; Prasad, P.D.; Lambert, N.A.; Boettger, T.; Offermanns, S.; Ganapathy, V. Blocking the development of dendritic cells by bacterial fermentation products of butylan and propionate via transporter (SLC5a8)-dependent on inhibition of histone deacetylate. J. Biol. Chem. 2010, 285, 27601–27608. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.A.N.; Chen, H.C.; Spread, H.L.; Chen, I.M.; Airy, S.M.; Chuang, L.C.; Liu, Y.W.; Lu, M.L.; Chen, C.H.; Wu, C.S.; et al. Study microbiota targets for major depressive disorders and mood-related characteristics. J. Psychiatr. Res. 2019, 111, 74–82. [Google Scholar] [CrossRef]
- Braniste, V.; Al-Asmakh, M.; Blacksmith, A.; Abbaspour, Z.A.; Tóth, M.; Korecka, Z.A.; Bakocevic, N.; Ng, L.G.; Guan, N.L.; Kundu, P.; et al. Intestinal microbiota affects the permeability of the blood-brain barrier in mice. Sci. Transl. Med. 2014, 626, 58. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, F.; Hong, G.; Pang, M.; Xu, H.; Li, H.; Tian, F.; Fang, R.; Yao, Y.; Liu, J. Antidepressant effect of sodium buttermilk and its possible mechanisms of action in mice exposed to chronic, unpredictable, mild stress. Neurosci. Latv. 2016, 618, 159–166. [Google Scholar] [CrossRef] [PubMed]
- DeCastro, M.; Nankova, B.B.; Shah, P.; Patel, P.; Mally, P.V.; Mishra, R.; La Gamma, E.F. Short-chain fatty acids regulate the expression of tyrosine hydroxylysis genes through a cAMP-dependent signaling pathway. Mol. Brain Res. 2005, 142, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, P.; Cariou, B.; Pledge, F.; Kuipers, F.; Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 2009, 89, 147–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann’s, A.F.; Hagey, L.R. Bile acids: Chemistry, pathochemistry, biology, pathobiology and therapy. Mol. Life Sci. 2008, 65, 2461–2483. [Google Scholar] [CrossRef]
- Bajor, Z.A.; Gillberg, P.G.; Abrahamsson, H. Bile acids: Short- and long-term effects in the boules. Scand. J. Gastroenterol. 2010, 45, 645–664. [Google Scholar] [CrossRef]
- Yanguas-Casás, N.; Barreda-Manso, M.; Nieto-Sampedro, M.; Romero-Ramírez, L. Tauroursodeoxycholic acid reduces the activation of glial cells in the animal model of acute neural inflammation. J. Neuroinflamm. 2014, 11, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. The discovery and characterization of decarboxylase gut microbiota, which may produce the neurotransmitor tryptamine. Cell Host. Microbe 2014, 16, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. There is a unique microbiom in the bearing. Sci. Crowd. Med. 2014, 6, 237–265. [Google Scholar]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. Microbiota of human milk: Origin and potential roles in health and diseases. Pharmacol. Res. 2013, 69, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Averina, O.V.; Zorkina, Y.A.; Yunes, R.A. Bacterial metabolites of the human intestinal microflora correlating with depression. Int. J. Mol. Sci. 2020, 21, 9234. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 2010, 34, 426–444. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomic analysis reveals a large effect of intestinal microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Xie, G.; Zhao, A.; Zhao, L.; Yao, C.; Chiu, N.H.L.; Zhou, Z.; Bao, Y.; Jia, W.; Nicholson, J.K.; et al. Traces of microbial and mammalian cometabolism in the gut. J. Proteome Res. 2011, 10, 5512–5522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Aidy, S.; Merrifield, C.A.; Derrien, M.; van Baarlen, P.; Hooiveld, G.; Levenez, F.; Doré, J.; Dekker, J.; Holmes, E.; Claus, S.P.; et al. The intestinal microbiota causes a deep metabolic reorientation in the intestinal mucosa of mice during conventional surgery. Gut 2013, 62, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Chimerel, C.; Emery, E.; Summers, D.K.; Keyser, U.; Gribble, F.M.; Reimann, F. Indol bacterial metabolite modulates the secretion of incretin from enteroendocrine intestinal cells. Cell Rep. 2014, 9, 1202–1208. [Google Scholar] [CrossRef] [Green Version]
- Buckley, M.M.; O’Brien, R.; Brosnan, E.; Ross, R.P.; Stanton, C.; Buckley, J.M.; O’Malley, D. Glukagon-Like Peptide-1 l-cell secretors coupled to sensory nerves transmit microbial signals to the host rat’s nervous system. Front. Cell. Neurosci. 2020, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. Bacterial signal indole increases the resistance of epithelial cells to close connections and weakens signs of inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Mir, H.-D.; Milman, A.; Monnoye, M.; Douard, V.; Philippe, C.; Aubert, A.; Castanon, N.; Vancassel, S.; Guérineau, N.C.; Naudon, L. Indole, a metabolite of the intestinal microflora, increases emotional reactions and adrenal core activity in male mice with chronic stress. Psychoneuroendocrinology 2020, 119, 104750. [Google Scholar] [CrossRef] [PubMed]
- Jaglin, M.; Rhimi, M.; Philippe, C.; Pons, N.; Bruneau, A.; Goustard, B.; Daugé, V.; Maguin, E.; Naudon, L.; Rabot, S. Indol, a signalling molecule produced by the gut microflora, negatively affects emotional behaviour in rats. Front. Neurosci. 2018, 12, 216. [Google Scholar] [CrossRef]
- Lamas, B.; Richard, M.L.; Leducq, V.; Pham, H.P.; Michel, M.L.; Da Costa, G.; Bridonneau, C.; Jegou, S.; Hoffmann, T.W.; Natividad, J.M.; et al. CARD9 affect colitis by altering tryptophan metabolism in the intestinal microflora to ligands of aryl hydrocarbon receptors. Nat. Med. 2016, 22, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; et al. Interferons of type I and microbial metabolites of Tryptophan modulate the activity of astrocytes and inflammation of the central nervous system through an aryl hydrocarbon receptor. Nat. Med. 2016, 22, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell. 2019, 6, 454–481. [Google Scholar] [CrossRef]
- Jianguo, L.; Xueyang, J.; Cui, W.; Changxin, W.; Xuemei, Q. Altered intestinal metabolism contributes to depression-like behaviors in rats exposed to chronic, unpredictable, mild stress. Crowd. Psychiatr. 2019, 9, 1–14. [Google Scholar]
- Ozden, A.; Angelos, H.; Feyza, A.; Elizabeth, W.; John, P. Altered levels of arginine metabolites in plasma for depression. J. Psychiatr. Res. 2020, 120, 21–28. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De los Reyes-Gavilán, C.G.; Salazar, N. Short-chain fatty acids in the gut and their relationship to diet and human health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, G.M.; Paulson, O.B.; Hertz, M.M. Kinetic analysis of the transport of lactate across the human blood-brain barrier and its effect on hypercalculation. J. Cereb. Blood Flow. Metab. 1991, 11, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.B.; Heimbürger, C.M.; Bouman, S.D.; Schousboe, A.; Waagepetersen, H.S. Strong glycogen siding activity in astrocytes: The effect of glutamatergic and adrenergic factors. Neuroscience 2009, 158, 284–292. [Google Scholar] [CrossRef]
- Barros, L.F. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013, 36, 396–404. [Google Scholar] [CrossRef]
- Mosienko, V.; Teschemacher, A.G.; Kasparov, S. Is L-lactate a new signaling molecule in the brain? J. Cereb. Blood Flow Metab. 2015, 35, 1069–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.J.; Zhou, C.J.; Zheng, P.; Cheng, K.; Wang, H.Y.; Li, J.; Zeng, L.; Xie, P. Differentiated metabolites in urine associated with the severity of major depression. Behav. Brain Res. 2017, 332, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Carrard, A.; Elsayed, M.; Margineanu, M.; Boury-Jamot, B.; Fragnière, L.; Meylan, E.M.; Petit, J.M.; Fiumelli, H.; Magistretti, P.J.; Martin, J.L. Peripheral lactate administration has an antidepressant effect. Mol. Psychiatry 2018, 23, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Ohman, L.; Tornblom, H.; Simren, M. Mucosal interrogation: The importance of the intestinal micro-environment in IBS. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 36–49. [Google Scholar] [PubMed]
- Vindigni, M.S.; Zisman, T.L.; Suskind, D.L.; Damman, C.J. Intestinal microbiome, barrier function and immune system in non-specific enteritis: Trigeminal pathophysiological circuit with implications for new therapeutic directions. Therap. Adv. Gastroenterol. 2016, 9, 606–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdu, E.F.; Galipeau, H.J.; Jabri, B. New players in celiac pathogenesis: The role of the intestinal microflora. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 497–5064. [Google Scholar] [CrossRef] [PubMed]
- Gillevet, P.M.; Puri, P. The temporary and spatial interaction of the microbiota and intestinal mucosa drives the establishment of immune homeostasis in conventional mice. Mucosal. Immunol. 2012, 5, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Natividad, J.M.; Petit, V.; Huang, X.; de Palma, G.; Jury, J.; Sanz, Y.; Philpott, D.; Rodenas, C.L.G.; McCoy, K.D.; Verdu, E.F. Commensal and probiotic bacteria affect the function of the intestinal barrier and susceptibility to colitis in Nod1 Mice Nod2. Inflamm. Bowel Dis. 2012, 18, 1434–1446. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, H.E.; Rodrguez-Piñeiro, A.M.; Schtte, A.; Ermund, A.; Boysen, P.; Bemark, M.; Sommer, F.; Bäckhed, F.; Hansson, G.C.; Johansson, M.E. The composition of the intestinal microflora shapes the mucous barrier of the colon. EMBO Rep. 2015, 16, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.L.; Dong, J.; Galipeau, H.J. The commensal microbiota induces the structure and functions of the colon barrier that contribute to homeostasis. Sci. Rep. 2018, 8, 14184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uygun, A.; Ozturk, K.; Demirci, H.; Oger, C.; Avci, I.Y.; Turker, T.; Gulsen, M. Fecal microbiota transplantation triggers remission in patients with active ulcerative colitis in a randomised controlled trial. Gastroenterol. 2015, 149, 102–109.e6. [Google Scholar] [CrossRef]
- Turner, J.R.; Buschmann, M.M.; Romero-Calvo, I.; Sailer, A.; Shen, L. Role of molecular remodeling in differential regulation of leak-proof joints. Semin. Cell Dev. Biol. 2014, 36, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.E.; Gustafsson, J.K.; Holmén-Larsson, J.; Jabbar, K.S.; Xia, L.; Xu, H.; Hansson, G. Bacteria penetrate the normally impenetrable inner layer of colitis in both mouse models of colitis and patients with ulcerative colitis. Gut 2014, 63, 281–291. [Google Scholar] [CrossRef]
- Johansson, M.E. Bacteria penetrate into the inner layer of mucus before inflammation in the model of colitis with detoxan sulfate. PLoS ONE 2010, 5, e12238. [Google Scholar] [CrossRef] [Green Version]
- Petersson, J.; Schreiber, O.; Hansson, G.C.; Gendler, S.J.; Velcich, A.; Lundberg, J.O.; Phillipson, M. The importance and regulation of the mucous barrier of the colon in the mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G327–G333. [Google Scholar] [CrossRef] [Green Version]
- Ramanan, D.; Tang, M.S.; Bowcutt, R.; Loke, P.; Cadwell, K. Bacterial sensor Nod2 prevents small intestine inflamed by limiting the commensal expansion of Bacteroides vulgatus. Immunity 2014, 41, 311–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, J.L.; Bhat, A.A.; Sharma, A.; Ahmad, R.; Krishnan, M.; Washington, M.K.; Dhawan, P. Claudin-1 regulates intestinal epithelial homeostasis by modulating Notch signaling. Gut 2014, 63, 622–634. [Google Scholar] [CrossRef]
- Natividad, J.M.; Pinto-Sanchez, M.I.; Galipeau, H.J.; Jury, J.; Jordana, M.; Reinisch, W.; Verdu, E.F. Ecobiotherapy rich in Firmicutes reduces susceptibility to colitis in a humanized model of a gnotobiotic mouse. Inflamm. Bowel Dis. 2015, 21, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Thevaranjan, N.; Puchta, A.; Schulz, C.; Naidoo, A.; Szamosi, J.C.; Verschoor, C.P.; Bowdish, D.M. Age-related microbial dysbiosis promotes intestinal permeability, systemic inflamed and macrophage dysfunction. Cell. Host Microbe 2017, 21, 455–466.e4. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.A.; Nelson, W.J.; Chavez, N. Cell biology regulates the barrier of close connections and diseases of the mucosa. Cold Spring Harb. Perspect. Biol. 2018, 10, 029181. [Google Scholar]
- Rye, A.A.; Cichoń, C.; Helms, S.; Enders, C.; Sonnenborn, U.; Schmidt, M.A. The molecular mechanisms underlying the probiotic effects of escherichia coli nissle 1917 include the redistribution of zo-2 and pkc zeta, leading to the repair of tight joints and epithelial barrier. Cell Microbiol. 2007, 9, 804–816. [Google Scholar] [CrossRef]
- Khailova, L.; Dvorak, K.; Arganbright, K.M.; Halpern, M.D.; Kinouchi, T.; Yajima, M.; Dvorak, B. Bifidobacterium bifidum improves intestinal integrity in the rat necrotic model of enterocolitis. Am. J. Physiol. Gastr. 2009, 297, G940–G949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seth, A.; Yan, F.; Polk, D.B.; Rao, R.K. Probiotics relieve hydrogen peroxide-induced damage to the epithelial barrier by a mechanism dependent on pkc kinase and maps. Am. J. Physiol. Gastr. 2008, 294(4), 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Resta-Lenert, S.C.; Barrett, K.E. Probiotics and komensals reverse dysfunctions caused by tnf-alpha and ifn-gamma in human intestinal epithelial cells. Gastroenterology 2003, 124, 16. [Google Scholar] [CrossRef]
- Ahrne, S.; Hagslatt, M.L.J. Effect of lactic acid sticks on pericellular intestinal permeability. Nutrients 2011, 3, 104–117. [Google Scholar] [CrossRef]
- Mao, P.X.; Tang, Y.L.; Jiang, F.; Shu, L.; Gu, X.; Li, M.; Qian, M.; Ma, C.; Mitchell, P.B.; Cai, Z.J. Escitalopram in major depressive disorder: A multicenter, randomized, double-blind, fixed-dose, parallel trial in a Chinese population. Depress. Anxiety 2008, 25, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Neis, A. Role of the gut microbiota in the healing of intestinal wounds and barrier function. Tissue Barriers Tom 2018, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Sturm, A.; Dignass, A.U. Epithelial restitution and wound healing in non-sousative enteritis. World J. Gastroenterol. 2008, 14, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Dignass, A.U.; Podolsky, D.K. Transformative beta growth factor plays a key role in modulating the restitution of intestinal epithelial cells via cytokines in the IVF injury model. Gastroenterology 1993, 104, 14. [Google Scholar]
- Gilbert, S.; Lin, J.; Han, X.N. The constitutionally active kinase of the long chain of light myosin in the epithelial cells of the intestine impairs the activation of stat5 and delays the healing of wounds of the intestinal mucosa. Gastroenterology 2011, 140, 1539595. [Google Scholar] [CrossRef]
- Jason, M.; Peirce, K.A. The Role of Inflammation and the Gut Microbiome in Depression and Anxiety. J. Neur. Res. 2019, 97, 1223–1241. [Google Scholar] [CrossRef] [Green Version]
- Drisko, J.; Bischoff, B.; Hall, M.; McCallum, R. Treating irritable bowel syndrome with a food elimination diet followed by food challenge and probiotics. J. Am. Coll. Nutr. 2006, 25, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Barau, E.; Dupont, C. Modifications of intestinal permeability during food provocation procedures in pediatric irritable bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 1990, 11, 72–77. [Google Scholar] [CrossRef]
- Crowe, S.E.; Perdue, M.H. Gastrointestinal food hypersensitivity: Basic mechanisms of pathophysiology. Gastroenterology 1992, 103, 1075–1095. [Google Scholar] [CrossRef]
- Spadoni, I.; Zagato, E.; Bertocchi, A. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015, 13, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Marlicz, W.; Loniewski, I.; Koulaozidis, A. Gut Vascular Barrier and Chronic Disease. Science E-Letter. 2016. Available online: http://science.sciencemag.org/content/350/6262/830/tab-e-letters (accessed on 13 November 2015).
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress. 2017, 7, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Revneurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Rienks, J.; Dobson, A.; Mishra, G. Mediterranean diet formula and incidence and incidence of depression symptoms in middle-aged women: Results of a large prospective social study. Eur. J. Clin. Nutr. 2013, 67, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. Systematic review and meta-analysis of dietary patterns and depression in adults living in the community. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Molendijk, M.; Molero, P.; Sánchez-Pedreño, F.O.; Van der Does, W. Mgr Martínez-González Diet Quality and Risk of Depression: A systematic review and meta-analysis of dose-response prospective studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Le Port, A.; Gueguen, A.; Kesse-Guyot, E.; Melchior, M.; Lemogne, C.; Nabi, H.; Goldberg, M.; Zins, M.; Chernivtsi, S. Relationship between dietary patterns and symptoms of depression over time: A 10-year gazel cohort control study. PLoS ONE 2012, 7, e51593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constante, M.; Palma, G.D.; Jury, J.L. Saccharomyces boulardi CNCM I-745 improves fear-like behavior and fight dismotivity in the humanized mouse model of Teddy Bear’s Irritable Syndrome with modern anxiety. J. Can. Assoc. Gastroenterol. 2020, 3, 62–63. [Google Scholar] [CrossRef] [Green Version]
- Drossman, D.A. Functional gastrointestinal disorders: History, pathophysiology, clinical features and Rome IV. Gastroenterology 2016, 150, 1262–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiller, R.C.; Jenkins, D.; Thornley, J.P. Neal Increased number of rectal enteroendocrine cells, T lymphocytes, and increased intestinal permeability following acute Campylobacter enteritis and irritable bowel syndrome following colitis. Gut 2000, 47, 804–811. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Reed, D.E.; Pigrau, M. A263 IBS-D microbiot causes gut-brain disorders by interference with nervous and immune pathway. J. Can. Assoc. Gastroenterol. 2018, 111, 521–522. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.; Tse, Y.; O’Brien, J.D.; Klar, D.; Sambhi, A.; Sockalingham, S.; Liu, L.W. A295 An integrated multidisciplinary group program improves irritable bowel syndrome symptom severity: A pilot study. J. Can. Assoc. Gastroenterol. 2018, 56, 424. [Google Scholar] [CrossRef] [Green Version]
- Ohland, C.L.; Kish, L.; Bell, H.; Thiesen, A.; Hotte, N.; Pankiv, E.; Madsen, K.L. Ejjects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 2013, 38, 1738–1747. [Google Scholar] [CrossRef]
- Gill, A.; Fedorak, R.; Park, H.; Hotte, N.; Ginter, R.; Keshteli, A.H.; Madsen, K. Short-term exposure to a high sugar diet reduces short chain fatty acid production and increases suspectibility to colitis. J. Can. Assoc. Gastroenterol. 2018, 1, 16–17. [Google Scholar] [CrossRef] [Green Version]
- Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced intake of carbohydrates in the diet by obese people results in a decrease in the concentration of bacteria that produce butylan and buty mayol in the feces. Appl. Surround. Microbiol. 2007, 73, 1073–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.-M.; Yu, R.; Zhang, L.-P.; Wen, S.-Y.; Wang, S.-J.; Zhang, X.-Y.; Xu, Q.; Kong, L.-D. Diet-induced intestinal dysbiosis, caused by fructose, promotes hippocampus neuritis in mice: The advantage of short-chain fatty acids. Microbiome 2019, 7, 98. [Google Scholar] [CrossRef]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C. High adherence to the Mediterranean diet favorably affects the intestinal microflora and associated metabolom. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Savaiano, D.A.; Hutkins, R.W. Yogurt, fermented fermented milk and health: A systematic review. Nutr. Rev 2020, 23, 56. [Google Scholar] [CrossRef]
- Benton, D.; Williams, C.; Brown, A. Effects of consumption of a milk drink containing a probiotic on mood and cognitive function. Eur. J. Clin. Nutr. 2007, 61, 355–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato-Kataoka, A.; Nishida, K.; Takada, M.; Suda, K.; Kawai, M.; Shimizu, K.; Kushiro, A.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. Fermented milk containing lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students undergoing academic stress. Benefits Microbes 2016, 7, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Tillisch, K.; Labus, J.; Kilpatrick, L.; Jiang, Z.; Stains, J.; Ebrat, B.; Guyonnet, D.; Legrain–Raspaud, S.; Trotin, B.; Naliboff, B.; et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013, 144, 1394–1401.e4. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.I.; Bastiaanssen, T.F.S.; Long-Smith, C.; Berding, K.; Morkl, S.; Cusack, A.-M.; Strain, C.; Busca, K.; Porteous-Allen, P.; Claesson, M.J.; et al. Recipe for healthy intestines: The intake of unpasted milk is associated with an increased number of Lactobacillus in the human gut microbiome. Nutrients 2020, 12, 1468. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.Y.; Lin, H.-T.V.; Tsai, G.J. Production of gamma-aminobutyric acid in black soy milk by Lactobacillus brevis FPA 3709, and antidepressant effect of the fermented product on the model of forced rat swimming. Process Biochem. 2013, 48, 559–568. [Google Scholar] [CrossRef]
- Reid, S.N.S.; Ryu, J.; Kim, Y.; Jeon, B.H. Effects of fermented Laminaria japonica on short-term working memory and physical performance in the elderly. Proof. Suppl. Based Altern. Med. 2018, 2018, 8109621. [Google Scholar] [CrossRef] [Green Version]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef] [Green Version]
- Gareau, M.G.; Jury, J.; MacQueen, G. Probiotic treatment of rat pups normalizes corticosterone release and ameliorates colonic dysfunction induced by mental separation. Gut 2007, 56, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of psychotropic-like properties of probiotic formulation (Lactobacillus helveticus R0052, and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gareau, M.G.; Wine, E.; Reardon, C.; Sherman, P.M. Probiotics Prevent Death Caused by Citrobacter rodentium Infection in Neonatal Mice. J. Infect. Dis. 2010, 201, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gareau, M.G.; Wine, E.; Rodrigues, D.M.; Ho Cho, J.; Whary, M.T.; Philpott, J.; Macqueen, G.; Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011, 60, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Arseneault-Bréard, J.; Rondeau, I.; Gilbert, K.; Girard, S.A.; Tompkins, T.A.; Godbout, R.; Rousseau, G. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br. J. Nutr. 2012, 107, 1793–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, S.A.; Bah, T.M.; Kaloustian, S.; Lada-Moldovan, L.; Rondeau, I.; Tompkins, A.; Godbout, R.; Rousseau, G. Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model. Br. J. Nutr. 2009, 102, 1420–1425. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, K.; Arseneault-Bréard, J.; Monaco, F.F.; Beaudoin, A.; Bah, T.M.; Tompkins, T.A.; Godbout, R.; Rousseau, G. Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion. Br. J. Nutr. 2013, 109, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, B.L.; Cowan, C.S.M.; Richardson, R. Treating Generational Stress: Effect of Paternal Stress on Development of Memory and Extinction in Offspring Is Reversed by Probiotic Treatment. Psychol Sci. 2016, 27, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Ait-Belgnaoui, A.; Colom, A.; Braniste, V.; Ramalho, L.; Marrot, A.; Cartier, C.; Houdeau, E.; Theodorou, V.; Tompkins, T. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil. 2014, 26, 510–520. [Google Scholar] [CrossRef]
- Ait-Belgnaoui, A.; Payard, I.; Rolland, C.; Harkat, C.; Braniste, V.; Théodorou, V.; Tompkins, T.A. Bifidobacterium longum and Lactobacillus helveticus Synergistically Suppress Stress-related Visceral Hypersensitivity through Hypothalamic-Pituitary-Adrenal Axis Modulation. J. Neurogastroenterol. Motil. 2018, 24, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-W.; Liu, W.-H.; Wu, C.-C.; Juan, Y.-C.; Wu, Y.-C.; Tsai, H.-P.; Wang, S.; Tsai, Y.-C. Psychotropic effects of Lactobacillus plantarum PS128 in stressed and naïvy adult mice early in life. Brain Res. 2016, 1631, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; O’Riordan, K.J.; Lee, Y.; Wang, G.; Zhao, J.; Zhang, H.; Cryan, J.F.; Chen, W. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses symptoms of depression caused by chronic stress and intestinal bacterial anomalies in mice. Neurobiol. Stress 2020, 12, 100216. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Wang, W.; Guo, R.; Liu, H. Faecalibacterium prausnitzii (ATCC 27766) has a preventive and therapeutic effect on chronic, unpredictable, stress-induced behaviors similar to depression and anxiety in rats. Psychoneuroendocrinology 2019, 104, 132–142. [Google Scholar] [CrossRef]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of bifidobacterium infantis probiotic in maternal model of depression separation. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef]
- Bravo, I.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of the Lactobacillus strain regulates emotional behavior and central expression of GABA receptors in mice through the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantak, P.A.; Beaver, D.N.; Nyby, J.G. Behaviors similar to obsessive compulsive behaviors in domestic mice are weakened by a probiotic (Lactobacillus rhamnosus GG). Behav. Pharm. 2014, 25, 71–79. [Google Scholar] [CrossRef]
- Tian, P.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Bifidobacterium with the role of regulating the synthesis of 5-hydroxytryptophan relieves the symptoms of depression and the associated microbiota dysbiosis. J. Nutr. Biochem. 2019, 66, 43–51. [Google Scholar] [CrossRef]
- Savignac, H.M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria have a strain-specific effect on stress-related behaviors and physiology in BALB/c. Neurogastroenterol. Mice Motil. 2014, 26, 1615–1627. [Google Scholar] [CrossRef]
- Allen, A.P.; Hutch, W.; Borre, Y.E.; Kennedy, P.J.; Temko, A.; Boylan, G.; Murphy, E.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Crowd. Psychiatr. 2016, 6, e939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takada, M.; Nishida, K.; Kataoka-Kato, A.; Gondo, Y.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. The probiotic strain lactobacillus casei Shirota alleviates stress-related symptoms by modulating gut-brain interactions in human and animal models. Neurogastroenterol. Motil. 2016, 28, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Diop, L.; Guillou, S.; Durand, H. Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: A double-blind, placebo-controlled, randomized trial. Nutr. Res. 2008, 28, 1–5. [Google Scholar] [CrossRef]
- Romijn, A.R.; Rucklidge, J.J.; Kuijer, R.G.; Frampton, C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust. J. Psychiatry 2017, 51, 810–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effects of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr. 2019, 38, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, L.; Sellaro, R.; van Hemert, S.; Bosch, I.; Colzato, L.S. A randomized, controlled study designed to test the effects of multispecies probiotics on cognitive reactivity on sad mood. Brain Behav. Immun. 2015, 48, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Adikari, A.M.G.C.P.; Adikari, A.M.G.C.; Appukutty, M.; Kuan, G. Effect of Daily Probiotic Supplementation on a Footballer’s Stress and Anxiety; Atlantis Press: Paris, France, 2019. [Google Scholar]
- Del Toro-Barbosa, M.; Hurtado-Romero, A.; Garcia-Amezquita, L.E.; Garcia-Cayuela, T. Psychobiotics: Mechanisms of action, evaluation methods and efficacy in food applications. Nutrients 2020, 12, 3896. [Google Scholar] [CrossRef]
- Miyaoka, T.; Kanayama, M.; Wake, R.; Hashioka, S.; Hayashida, M.; Nagahama, M.; Okazaki, S.; Yamashita, S.; Miura, S.; Mica, H.; et al. Clostridium butyricum MIYAIRI 588 as an adjunct therapy for the treatment of severe refractory depressive disorder: A prospective open-examination study. Clin. Neuropharmacol. 2018, 41, 151–155. [Google Scholar] [CrossRef]
- Nishida, K.; Sawada, D.; Kawai, T.; Kuwano, Y.; Fujiwara, S.; Rokutan, K. Para-psychobiotic Lactobacillus gasseri CP 2305 relieves stress-related symptoms and improves sleep quality. J. Appl. Microbiol. 2017, 123, 1561–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect Disord. 2018, 28, 13–19. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzeciak, P.; Herbet, M. Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients 2021, 13, 927. https://doi.org/10.3390/nu13030927
Trzeciak P, Herbet M. Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients. 2021; 13(3):927. https://doi.org/10.3390/nu13030927
Chicago/Turabian StyleTrzeciak, Paulina, and Mariola Herbet. 2021. "Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression" Nutrients 13, no. 3: 927. https://doi.org/10.3390/nu13030927
APA StyleTrzeciak, P., & Herbet, M. (2021). Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients, 13(3), 927. https://doi.org/10.3390/nu13030927