Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children: A Birth Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maternal Vitamin C and Iron Intake
2.2. Definiton of Type 1 Diabetes-Related Outcomes
2.3. Genetic Methods
2.4. Background Characteristics
2.5. Statistical Methods
3. Results
3.1. Background Characteristics
3.2. Intake and Dietary Sources of Vitamin C and Iron
3.3. Maternal Vitamin C and Iron Intake and Risk of Type 1 Diabetes-Realted Outcomes
3.4. Interaction Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virtanen, S.M. Dietary factors in the development of type 1 diabetes. Pediatr. Diabet. 2016, 17 (Suppl. S22), 49–55. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.B.; Moen, I.W.; Mandrup-Poulsen, T. Iron: The hard player in diabetes pathophysiology. Acta Physiol. 2014, 210, 717–732. [Google Scholar] [CrossRef]
- Al-Zuhair, H.; Mohamed, H.E. Vitamin C attenuation of the development of type I diabetes mellitus by interferon-alpha. Pharmacol. Res. 1998, 38, 59–64. [Google Scholar] [CrossRef]
- Kaneto, H.; Kajimoto, Y.; Miyagawa, J.; Matsuoka, T.; Fujitani, Y.; Umayahara, Y.; Hanafusa, T.; Matsuzawa, Y.; Yamasaki, Y.; Hori, M. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 1999, 48, 2398–2406. [Google Scholar] [CrossRef]
- Sogaard, K.L.; Ellervik, C.; Svensson, J.; Thorsen, S.U. The Role of Iron in Type 1 Diabetes Etiology: A Systematic Review of New Evidence on a Long-Standing Mystery. Rev. Diabet. Stud. 2017, 14, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Dahlquist, G.G.; Blom, L.G.; Persson, L.A.; Sandstrom, A.I.; Wall, S.G. Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ 1990, 300, 1302–1306. [Google Scholar] [CrossRef] [Green Version]
- Benson, V.S.; Vanleeuwen, J.A.; Taylor, J.; Somers, G.S.; McKinney, P.A.; Van Til, L. Type 1 diabetes mellitus and components in drinking water and diet: A population-based, case-control study in Prince Edward Island, Canada. J. Am. Coll. Nutr. 2010, 29, 612–624. [Google Scholar] [CrossRef]
- Glatthaar, C.; Whittall, D.E.; Welborn, T.A.; Gibson, M.J.; Brooks, B.H.; Ryan, M.M.; Byrne, G.C. Diabetes in Western Australian children: Descriptive epidemiology. Med. J. Aust. 1988, 148, 117–123. [Google Scholar] [CrossRef]
- Mattila, M.; Erlund, I.; Lee, H.; Niinistö, S.; Uusitalo, U.; Andrén Aronsson, C.; Hummel, S.; Parikh, H.; Rich, S.S.; Hagopian, W.; et al. Plasma ascorbic acid and the risk of islet autoimmunity and type 1 diabetes: The TEDDY study. Diabetologia 2020, 63, 278–286. [Google Scholar] [CrossRef]
- Uusitalo, L.; Kenward, M.G.; Virtanen, S.M.; Uusitalo, U.; Nevalainen, J.; Niinistö, S.; Kronberg-Kippila, C.; Ovaskainen, M.L.; Marjamaki, L.; Simell, O.; et al. Intake of antioxidant vitamins and trace elements during pregnancy and risk of advanced beta cell autoimmunity in the child. Am. J. Clin. Nutr. 2008, 88, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Kyvsgaard, J.N.; Overgaard, A.J.; Thorsen, S.U.; Hansen, T.H.; Pipper, C.B.; Mortensen, H.B.; Pociot, F.; Svensson, J. High Neonatal Blood Iron Content Is Associated with the Risk of Childhood Type 1 Diabetes Mellitus. Nutrients 2017, 9, 1221. [Google Scholar] [CrossRef] [Green Version]
- Stordal, K.; McArdle, H.J.; Hayes, H.; Tapia, G.; Viken, M.K.; Lund-Blix, N.A.; Haugen, M.; Joner, G.; Skrivarhaug, T.; Marild, K.; et al. Prenatal iron exposure and childhood type 1 diabetes. Sci. Rep. 2018, 8, 9067. [Google Scholar] [CrossRef] [Green Version]
- Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997, 46, 1733–1742. [Google Scholar] [CrossRef]
- Lenzen, S. Oxidative stress: The vulnerable beta-cell. Biochem. Soc. Trans. 2008, 36, 343–347. [Google Scholar] [CrossRef]
- Siegenberg, D.; Baynes, R.D.; Bothwell, T.H.; Macfarlane, B.J.; Lamparelli, R.D.; Car, N.G.; MacPhail, P.; Schmidt, U.; Tal, A.; Mayet, F. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am. J. Clin. Nutr. 1991, 53, 537–541. [Google Scholar] [CrossRef]
- Lachili, B.; Hininger, I.; Faure, H.; Arnaud, J.; Richard, M.J.; Favier, A.; Roussel, A.M. Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation. Biol. Trace Elem. Res. 2001, 83, 103–110. [Google Scholar] [CrossRef]
- Kupila, A.; Muona, P.; Simell, T.; Arvilommi, P.; Savolainen, H.; Hamalainen, A.M.; Korhonen, S.; Kimpimaki, T.; Sjoroos, M.; Ilonen, J.; et al. Juvenile Diabetes Research Foundation Centre for the Prevention of Type I Diabetes in Finland Feasibility of genetic and immunological prediction of type I diabetes in a population-based birth cohort. Diabetologia 2001, 44, 290–297. [Google Scholar] [CrossRef]
- Erkkola, M.; Karppinen, M.; Javanainen, J.; Rasanen, L.; Knip, M.; Virtanen, S.M. Validity and reproducibility of a food frequency questionnaire for pregnant Finnish women. Am. J. Epidemiol. 2001, 154, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Reinivuo, H.; Hirvonen, T.; Ovaskainen, M.L.; Korhonen, T.; Valsta, L.M. Dietary survey methodology of FINDIET 2007 with a risk assessment perspective. Public Health Nutr. 2010, 13, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Parkkola, A.; Harkonen, T.; Ryhanen, S.J.; Ilonen, J.; Knip, M. Finnish Pediatric Diabetes Register Extended family history of type 1 diabetes and phenotype and genotype of newly diagnosed children. Diabet. Care 2013, 36, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.; Lumia, M.; Erkkola, M.; Tapanainen, H.; Kronberg-Kippila, C.; Tuokkola, J.; Uusitalo, U.; Simell, O.; Veijola, R.; Knip, M.; et al. Diet composition of pregnant Finnish women: Changes over time and across seasons. Public Health Nutr. 2010, 13, 939–946. [Google Scholar] [CrossRef] [Green Version]
- Hakola, L.; Takkinen, H.M.; Niinisto, S.; Ahonen, S.; Erlund, I.; Rautanen, J.; Veijola, R.; Ilonen, J.; Toppari, J.; Knip, M.; et al. Maternal fatty acid intake during pregnancy and the development of childhood overweight: A birth cohort study. Pediatr. Obes. 2017, 12 (Suppl. S1), 26–37. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1231S. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Akhtar-Danesh, N.; McMillan, C.R.; Thabane, L. Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis. Nutr. J. 2007, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Casgrain, A.; Collings, R.; Harvey, L.J.; Hooper, L.; Fairweather-Tait, S.J. Effect of iron intake on iron status: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 768–780. [Google Scholar] [CrossRef] [Green Version]
- Lahti-Koski, M. Ravitsemuskertomus 1998; Kansanterveyslaitos, Ravitsemusosasto: Helsinki, Finland, 1999. [Google Scholar]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004; p. 2. Available online: http://www.who.int/nutrition/publications/micronutrients/9241546123/en/ (accessed on 13 March 2018).
- Thorsen, S.U.; Halldorsson, T.I.; Bjerregaard, A.A.; Olsen, S.F.; Svensson, J. Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study. Nutrients 2019, 11, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnish Institute for Health and Welfare. Eating Together—Food Recommendations for Families with Children, 2nd ed.; THL: Helsinki, Finland, 2019.
- Devrim, E.; Tarhan, I.; Erguder, I.B.; Durak, I. Oxidant/antioxidant status of placenta, blood, and cord blood samples from pregnant women supplemented with iron. J. Soc. Gynecol. Investig. 2006, 13, 502–505. [Google Scholar] [CrossRef]
- Gambling, L.; Lang, C.; McArdle, H.J. Fetal regulation of iron transport during pregnancy. Am. J. Clin. Nutr. 2011, 94, 1903S–1907S. [Google Scholar] [CrossRef] [Green Version]
- Sangkhae, V.; Nemeth, E. Placental iron transport: The mechanism and regulatory circuits. Free Radic. Biol. Med. 2019, 133, 254–261. [Google Scholar] [CrossRef]
- Jerram, S.T.; Dang, M.N.; Leslie, R.D. The Role of Epigenetics in Type 1 Diabetes. Curr. Diabet. Rep. 2017, 17, 89-x. [Google Scholar] [CrossRef] [PubMed]
- Cooksey, R.C.; Jouihan, H.A.; Ajioka, R.S.; Hazel, M.W.; Jones, D.L.; Kushner, J.P.; McClain, D.A. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004, 145, 5305–5312. [Google Scholar] [CrossRef]
- Huang, J.; Jones, D.; Luo, B.; Sanderson, M.; Soto, J.; Abel, E.D.; Cooksey, R.C.; McClain, D.A. Iron overload and diabetes risk: A shift from glucose to Fatty Acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes 2011, 60, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Maternal Intake during Pregnancy | |||
---|---|---|---|
Vitamin C, mg/MJ | Iron, mg/MJ | ||
Characteristic | n | Mean (SD) | Mean (SD) |
Maternal age, years | |||
≤24 | 926 | 18.7 (11.1) | 3.8 (3.4) |
25–29.9 | 1700 | 18.8 (10.3) | 3.7 (3.0) |
30–34.9 | 1412 | 19.3 (13.4) | 3.9 (3.2) |
≥35 | 841 | 19.1 (12.2) | 3.8 (2.9) |
p-value b | 0.46 | 0.72 | |
Maternal BMI in early pregnancy, kg/m2 | |||
<25 | 3025 | 19.3 (11.9) | 4.0 (3.3) |
25–29.9 | 1123 | 18.1 (10.5) | 3.6 (2.9) |
≥30 | 434 | 18.7 (11.1) | 3.4 (2.9) |
Missing | 297 | ||
p-value a | 0.01 | <0.001 | |
Maternal weight gain rate, kg/week c | |||
1st quarter < 0.33 | 1136 | 19.4 (13.6) | 3.9 (3.2) |
2nd quarter 0.33–0.41 | 1137 | 18.4 (9.8) | 3.9 (3.3) |
3rd quarter 0.42–0.52 | 1137 | 18.8 (10.9) | 3.8 (3.0) |
4th quarter > 0.52 | 1136 | 19.1 (11.3) | 3.8 (3.1) |
Missing | 333 | ||
p-value a | 0.14 | 0.48 | |
Maternal vocational education d | |||
None | 294 | 18.2 (13.5) | 3.6 (3.2) |
Vocational School or Course | 1291 | 18.4 (11.5) | 3.9 (3.5) |
Secondary Vocational Education | 2067 | 18.9 (11.7) | 3.8 (3.0) |
University Studies or Degree | 1097 | 20.1 (11.8) | 3.8 (3.1) |
Missing | 130 | ||
p value a | 0.001 | 0.40 | |
Maternal smoking during pregnancy | |||
Yes | 467 | 18.1 (12.7) | 3.5 (3.6) |
No | 4246 | 19.1 (11.7) | 3.9 (3.1) |
Missing | 166 | ||
p value a | 0.10 | 0.04 | |
Maternal diabetes d | |||
Yes | 164 | 19.0 (11.9) | 4.0 (3.1) |
No | 4611 | 19.0 (11.8) | 3.8 (3.1) |
Missing | 104 | ||
p value a | 0.89 | 0.49 |
Vitamin C and Iron Intake from Food Groups | Mean Vitamin C mg/day | % of Intake | Mean Iron mg/day | % Of Intake |
---|---|---|---|---|
Fruits and berries 1 | 41.0 | 18.7 | 0.69 | 1.6 |
Fruit juices | 84.8 | 38.6 | 0.28 | 0.6 |
Other sweetened fruit drinks | 2.1 | 1.0 | 0.32 | 0.7 |
Vegetables | 46.5 | 21.2 | 1.14 | 2.7 |
Leaf vegetables | 3.4 | 1.6 | 0.19 | 0.5 |
Fruit vegetables | 20.9 | 9.5 | 0.31 | 0.7 |
Root vegetables | 8.7 | 4.0 | 0.29 | 0.7 |
Other vegetables 2 | 13.4 | 6.1 | 0.35 | 0.8 |
Legumes, nuts, seeds and soy products | 0.8 | 0.4 | 0.32 | 0.8 |
Potatoes and potato-based products | 10.3 | 4.7 | 0.83 | 1.9 |
Dairy products | 9.7 | 4.4 | 0.54 | 1.3 |
Cereals | 0.01 | 0 | 6.52 | 15.3 |
Egg and egg dishes | 0 | 0 | 0.70 | 1.6 |
Fish and fish dishes | 0 | 0 | 0.23 | 0.5 |
Meat and meat dishes (beef, pork, lamb, poultry, game) | 0.5 | 0.2 | 3.42 | 8.1 |
Unprocessed meat | 0 | 0 | 1.64 | 3.9 |
Processed meat 3 | 0.5 | 0.2 | 1.78 | 4.2 |
Other foods 4 | 0.6 | 0.3 | 1.21 | 2.8 |
Dietary supplements 5 | 23.1 | 10.5 | 26.31 | 61.9 |
Total | 219.4 | 100 | 42.50 | 100 |
Islet Autoimmunity | Type 1 Diabetes | |||||||
---|---|---|---|---|---|---|---|---|
Model 1 n = 4887 (312) a | Model 2 n = 4706 (305) a | Model 1 n = 4943 (178) a | Model 2 n = 4757 (174) a | |||||
HR b (95% CI) | p-Value | HR b (95% CI) | p-Value | HR b (95% CI) | p-Value | HR b (95% CI) | p-Value | |
Vitamin C from diet | ||||||||
per 1 SD increase | 0.97 (0.87, 1.09) | 0.62 | 0.98 (0.87, 1.10) | 0.73 | 1.05 (0.91, 1.21) | 0.51 | 1.07 (0.93, 1.23) | 0.37 |
Q1 | 0.96 (0.73, 1.27) | 0.96 | 0.99 (0.75, 1.30) | 0.98 | 1.10 (0.77, 1.58) | 0.47 | 1.08 (0.75, 1.57) | 0.41 |
Q2 and Q3 | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Q4 | 0.98 (0.75, 1.29) | 1.02 (0.77, 1.34) | 1.25 (0.88, 1.77) | 1.27 (0.89, 1.81) | ||||
Total vitamin C intake c | ||||||||
per 1 SD increase | 0.90 (0.79, 1.03) | 0.12 | 0.91 (0.80, 1.03) | 0.14 | 0.99 (0.86, 1.15) | 0.94 | 1.01 (0.87, 1.17) | 0.92 |
Q1 | 0.96 (0.74, 1.26) | 0.32 | 0.98 (0.75, 1.28) | 0.36 | 0.92 (0.64, 1.32) | 0.74 | 0.88 (0.61, 1.28) | 0.73 |
Q2 and Q3 | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Q4 | 0.80 (0.61, 1.07) | 0.82 (0.61, 1.09) | 0.87 (0.60, 1.26) | 0.89 (0.61, 1.29) | ||||
Iron from diet | ||||||||
per 1 SD increase | 1.09 (0.99, 1.22) | 0.09 | 1.07 (0.96, 1.19) | 0.22 | 1.10 (0.96, 1.26) | 0.17 | 1.09 (0.95, 1.25) | 0.23 |
Q1 | 0.70 (0.52, 0.94) | 0.06 | 0.71 (0.53, 0.97) | 0.09 | 0.63 (0.42, 0.94) | 0.06 | 0.95 (0.72, 1.26) | 0.71 |
Q2 and Q3 | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Q4 | 0.94 (0.73, 1.23) | 0.92 (0.70, 1.20) | 1.00 (0.71, 1.40) | 0.89 (0.68, 1.18) | ||||
Total iron intake c | ||||||||
per 1 SD increase | 0.99 (0.88, 1.11) | 0.82 | 0.98 (0.87, 1.10) | 0.71 | 0.94 (0.81, 1.10) | 0.46 | 0.92 (0.78, 1.08) | 0.30 |
Q1 | 0.94 (0.71, 1.24) | 0.79 | 0.95 (0.72, 1.26) | 0.71 | 1.01 (0.71, 1.45) | 0.98 | 1.01 (0.70, 1.45) | 0.89 |
Q2 and Q3 | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | ||||
Q4 | 0.92 (0.70, 1.20) | 0.89 (0.68, 1.18) | 0.97 (0.68, 1.39) | 0.92 (0.64, 1.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattila, M.; Hakola, L.; Niinistö, S.; Tapanainen, H.; Takkinen, H.-M.; Ahonen, S.; Ilonen, J.; Toppari, J.; Veijola, R.; Knip, M.; et al. Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children: A Birth Cohort Study. Nutrients 2021, 13, 928. https://doi.org/10.3390/nu13030928
Mattila M, Hakola L, Niinistö S, Tapanainen H, Takkinen H-M, Ahonen S, Ilonen J, Toppari J, Veijola R, Knip M, et al. Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children: A Birth Cohort Study. Nutrients. 2021; 13(3):928. https://doi.org/10.3390/nu13030928
Chicago/Turabian StyleMattila, Markus, Leena Hakola, Sari Niinistö, Heli Tapanainen, Hanna-Mari Takkinen, Suvi Ahonen, Jorma Ilonen, Jorma Toppari, Riitta Veijola, Mikael Knip, and et al. 2021. "Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children: A Birth Cohort Study" Nutrients 13, no. 3: 928. https://doi.org/10.3390/nu13030928
APA StyleMattila, M., Hakola, L., Niinistö, S., Tapanainen, H., Takkinen, H.-M., Ahonen, S., Ilonen, J., Toppari, J., Veijola, R., Knip, M., & Virtanen, S. M. (2021). Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children: A Birth Cohort Study. Nutrients, 13(3), 928. https://doi.org/10.3390/nu13030928