Effects of Co-Ingestion of β-Hydroxy-β-Methylbutyrate and L-Arginine α-Ketoglutarate on Jump Performance in Young Track and Field Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Supplementation
2.4. Training
2.4.1. Early Morning Warm-Up
2.4.2. Main Training Units
2.4.3. Fatigue and Well-Being Assessment
2.4.4. Training Load Assessment
2.4.5. Countermovement Jump
2.5. Biochemical Analyses
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. The Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Kaczka, P.; Michalczyk, M.M.; Jastrząb, R.; Gawelczyk, M.; Kubicka, K. Mechanism of action and the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on different types of physical performance-A systematic review. J. Hum. Kinet. 2019, 68, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.J.; Wilson, J.M. Manninen AH. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review. Nutr. Metab. 2008, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Nissen, S.; Sharp, R.; Ray, M.; Rathmacher, J.A.; Rice, D.; Fuller, J.C., Jr.; Connelly, A.S.; Abumrad, N.J.J.O.A. Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J. Appl. Physiol. 1996, 81, 2095–2104. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Suzuki, K. Effects of β-hydroxy-β-methylbutyrate-free acid supplementation on strength, power and hormonal adaptations following resistance training. Nutrients 2017, 9, 1316. [Google Scholar] [CrossRef] [Green Version]
- Panton, L.B.; Rathmacher, J.A.; Baier, S.; Nissen, S. Nutritional supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) during resistance training. Nutrition 2000, 16, 734–739. [Google Scholar] [CrossRef]
- Wilson, J.M.; Lowery, R.P.; Joy, J.M.; Andersen, J.C.; Wilson, S.M.; Stout, J.R.; Duncan, N.; Fuller, J.C.; Baier, S.M.; Naimo, M.A.; et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: A randomized, double-blind, placebo-controlled study. Eur. J. Appl. Physiol. 2014, 114, 1217–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreider, R.B.; Ferreira, M.P.; Greenwood, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Amalda, A.L. Effects of calcium β-HMB supplementation during training on markers of catabolism, body composition, strength and sprint performance. J. Exerc. Physiol. 2000, 3, 48–59. Available online: http://digitalcommons.wayne.edu/nfsfrp/7 (accessed on 4 June 2019).
- Durkalec-Michalski, K.; Jeszka, J.; Podgórski, T. The effect of a 12-week beta-hydroxy-beta-methylbutyrate (HMB) supplementation on highly-trained combat sports athletes: A randomised, double-blind, placebo-controlled crossover study. Nutrients 2017, 9, 753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, B.I.; La Bounty, P.M.; Roberts, M. The ergogenic potential of arginine. J. Int. Soc. Sports Nutr. 2004, 1, 35–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavuz, H.U.; Turnagol, H.; Demirel, A.H. Pre-exercise arginine supplementation increases time to exhaustion in elite male wrestlers. Biol. Sport 2014, 31, 187–191. [Google Scholar] [CrossRef]
- Bailey, S.J.; Winyard, P.G.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Jones, A.M. Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. J. Appl. Physiol. 2010, 109, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Mor, A.; Atan, T.; Agaoglu, S.A.; Ayyildiz, M. Effect of arginine supplementation on footballers’ anaerobic performance and recovery. Prog. Nutr. 2018, 20, 104–112. [Google Scholar] [CrossRef]
- McConell, G.K.; Huynh, N.N.; Lee-Young, R.S.; Canny, B.J.; Wadley, G.D. L-Arginine infusion increases glucose clearance during prolonged exercise in humans. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E60–E66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.J.; Mukerji, P.; Tisdale, M.J. Attenuation of proteasome-induced proteolysis in skeletal muscle by β-hydroxy-β-methylbutyrate in cancer-induced muscle loss. Cancer Res. 2005, 65, 277–283. [Google Scholar] [PubMed]
- Kornasio, R.; Riederer, I.; Butler-Browne, G.; Mouly, V.; Uni, Z.; Halevy, O. β-hydroxy-β-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. BBA-Mol. Cell Res. 2009, 1793, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.; Roberts, M.; Kerksick, C.; Wilborn, C.; Marcello, B.; Taylor, L.; Nassar, E.; Leutholtz, B.; Bowden, R.; Rasmussen, C.; et al. Pharmacokinetics, safety, and effects on exercise performance of L-arginine α-ketoglutarate in trained adult men. Nutrition 2006, 22, 872–881. [Google Scholar] [CrossRef]
- Legendre, F.; MacLean, A.; Appanna, V.P.; Appanna, V.D. Biochemical pathways to α-ketoglutarate, a multi-faceted metabolite. World J. Microbiol. Biotechnol. 2020, 36, 123. [Google Scholar] [CrossRef]
- Pons, A.; Bescós, R.; Sureda, A.; Tur, J.A. Metabolic Precursors of l-Arginine Supplementation in Sports: A Focus on l-Citrulline and l-Ornithine. In L-Arginine in Clinical Nutrition; Patel, V., Preedy, V., Rajendram, R., Eds.; Nutrition and Health; Humana Press: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Hooper, S.L.; Mackinnon, L.T. Monitoring overtraining in athletes. Sports Med. 1995, 20, 321–327. [Google Scholar] [CrossRef]
- Buchheit, M.; Racinais, S.; Bilsborough, J.C.; Bourdon, P.C.; Voss, S.C.; Hocking, J.; Cordy, J.; Mendez-Villanueva, A.; Coutts, A.J. Monitoring fitness, fatigue and running performance during a pre-season training camp in elite football players. J. Sci. Med. Sport 2013, 16, 550–555. [Google Scholar] [CrossRef]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE method for training load monitoring: Validity, ecological usefulness, and influencing factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of RPE-based training load in soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef]
- Abad-Colil, F.; Ramirez-Campillo, R.; Alvarez, C.; Castro, M.; Silva, S.; Izquierdo, M. Effects of beta-hydroxy-beta-methylbutyrate supplementation on physical performance of young players during an intensified soccer-training period: A short report. Hum. Mov. 2017, 18, 91–96. [Google Scholar] [CrossRef]
- Nissen, S.L.; Abumrad, N.N. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J. Nutr. Biochem. 1997, 8, 300–311. [Google Scholar] [CrossRef]
- Wolin, M.S.; Davidson, C.A.; Kaminski, P.M.; Fayngersh, R.P.; Mohazzab-H, K.M. Oxidant-nitric oxide signalling mechanisms in vascular tissue. Biochemistry 1998, 63, 810–816. [Google Scholar] [PubMed]
- Durante, W.; Johnson, F.K.; Johnson, R.A. Arginase: A critical regulator of nitric oxide synthesis and vascular function. Clin. Exp. Pharmacol. Physiol. 2007, 34, 906–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, A.; Piquard, F.; Geny, B.; Doutreleau, S.; Lampert, E.; Mettauer, B.; Lonsdorfer, J. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int. J. Sports Med. 2002, 23, 403–407. [Google Scholar] [CrossRef]
- Ellis, A.C.; Hunter, G.R.; Goss, A.M.; Gower, B.A. Oral supplementation with beta-hydroxy-beta-methylbutyrate, arginine, and glutamine improves lean body mass in healthy older adults. J. Diet. Suppl. 2019, 16, 281–293. [Google Scholar] [CrossRef]
- Kuipers, H. Exercise-induced muscle damage. Int. J. Sports Med. 1994, 15, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Alvares, T.S.; Conte, C.A.; Paschoalin, V.M.F.; Silva, J.T.; Meirelles, C.D.M.; Bhambhani, Y.N.; Gomes, P.S.C. Acute l-arginine supplementation increases muscle blood volume but not strength performance. Appl. Physiol. Nutr. Metab. 2012, 37, 115–126. [Google Scholar] [CrossRef]
- MacLeod, C.L. Regulation of cationic amino acid transporter (CAT) gene expression. Biochem. Soc. Trans. 1996, 24, 846–852. [Google Scholar] [CrossRef]
- Fuller, J.C., Jr.; Sharp, R.L.; Angus, H.F.; Baier, S.M.; Rathmacher, J.A. Free acid gel form of β-hydroxy-β-methylbutyrate (HMB) improves HMB clearance from plasma in human subjects compared with the calcium HMB salt. Br. J. Nutr. 2011, 105, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Zanchi, N.E.; Gerlinger-Romero, F.; Guimaraes-Ferreira, L.; de Siqueira Filho, M.A.; Felitti, V.; Lira, F.S.; Seelaender, M.; Lancha, A.H. HMB supplementation: Clinical and athletic performance-related effects and mechanisms of action. Amino Acids 2011, 40, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.J.; Hossain, T.; Hill, D.S.; Phillips, D.S.; Crossland, H.; Williams, J.; Loughna, P.; Churchward-Venne, T.A.; Breen, L.; Phillips, S.M.; et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013, 591, 2911–2923. [Google Scholar] [CrossRef]
- Jówko, E.; Ostaszewski, P.; Jank, M.; Sacharuk, J.; Zieniewicz, A.; Wilczak, J.; Nissen, S. Creatine and beta-hydroxybeta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight training program. Nutrition 2001, 17, 558–566. [Google Scholar] [CrossRef]
- Baxter, J.H.; Carlos, J.L.; Thurmond, J.; Rehani, R.N.; Bultman, J.; Frost, D. Dietary toxicity of calcium beta-hydroxy-beta-methyl butyrate (Ca-HMB). Food Chem. Toxicol. 2005, 43, 1731–1741. [Google Scholar] [CrossRef] [PubMed]
- Knitter, A.E.; Panton, L.; Rathmacher, J.A.; Petersen, A.; Sharp, R. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J. Appl. Physiol. 2000, 89, 1340–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukovich, M.D.; Slater, G.; Macchi, M.B.; Turner, M.J.; Fallon, K.; Boston, T.; Rathmacher, J. β-hydroxy-β-methylbutyrate (HMB) kinetics and the influence of glucose ingestion in humans. J. Nutr. Biochem. 2001, 12, 631–639. [Google Scholar] [CrossRef]
- McLean, B.D.; Coutts, A.J.; Kelly, V.; McGuigan, M.R.; Cormack, S.J. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int. J. Sports Physiol. Perform. 2010, 5, 367–383. [Google Scholar] [CrossRef] [Green Version]
Familiarization/Baseline Values | |||||||
---|---|---|---|---|---|---|---|
day 0 | day 1 | day 2 | day 3 | day 4 | day 5 | day 6 | |
Blood samples | + | + | + | ||||
CMJ | + | + | + | + | + | + | + |
well-being questionnaire | + | + | + | + | + | + | + |
sessionRPE | + | + | + | + | + | + | |
day 7 | day 8 | day 9 | day 10 | day 11 | day 12 | ||
Blood samples | + | + | + | ||||
CMJ | + | + | + | + | + | + | |
well-being questionnaire | + | + | + | + | + | + | |
sessionRPE | + | + | + | + | + | + |
Time | Activity | Supplements Group (SUP) | Placebo Group (PL) |
---|---|---|---|
6:00–6:15 | Blood sample collections | + | + |
SUP/PL | 2 caps AAKG + 2 caps Ca-HMB | 4 caps placebo | |
Well-being questionnaire | + | + | |
6:15–6:45 | Morning warm-up | + | + |
6:45–7:00 | Counter movement jump test | + | + |
7:00–8:00 | Breakfast | ||
9:00 | SUP/PL | 3 caps AAKG + 2 caps Ca-HMB | 5 caps placebo |
10:00–12:00 | Training 1 | + | + |
sessionRPE 1 | + | + | |
13:00–14:00 | Lunch | ||
15:00 | SUP/PL | 3 caps AAKG + 2 caps Ca-HMB | 5 caps placebo |
16:00–18:00 | Training 2 | + | + |
sessionRPE 2 | + | + | |
19:00–20:00 | Dinner |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczka, P.; Kubicka, K.; Batra, A.; Maciejczyk, M.; Kopera, E.; Bira, J.; Zając, T. Effects of Co-Ingestion of β-Hydroxy-β-Methylbutyrate and L-Arginine α-Ketoglutarate on Jump Performance in Young Track and Field Athletes. Nutrients 2021, 13, 1064. https://doi.org/10.3390/nu13041064
Kaczka P, Kubicka K, Batra A, Maciejczyk M, Kopera E, Bira J, Zając T. Effects of Co-Ingestion of β-Hydroxy-β-Methylbutyrate and L-Arginine α-Ketoglutarate on Jump Performance in Young Track and Field Athletes. Nutrients. 2021; 13(4):1064. https://doi.org/10.3390/nu13041064
Chicago/Turabian StyleKaczka, Piotr, Katarzyna Kubicka, Amit Batra, Marcin Maciejczyk, Edyta Kopera, Justyna Bira, and Tomasz Zając. 2021. "Effects of Co-Ingestion of β-Hydroxy-β-Methylbutyrate and L-Arginine α-Ketoglutarate on Jump Performance in Young Track and Field Athletes" Nutrients 13, no. 4: 1064. https://doi.org/10.3390/nu13041064