Multiple Micronutrients, Including Zinc, Selenium and Iron, Are Positively Associated with Anemia in New Zealand Aged Care Residents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment and Study Design
2.2. Sociodemographic and Health Data
2.3. Anthropometrics and Malnutrition
2.4. Blood Collection and Processing
2.5. Laboratory Analyses
2.6. Statistical Methods
3. Results
3.1. Hemoglobin
3.2. Anemia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morley, J.E. Anemia in the nursing homes: A complex issue. J. Am. Med. Dir. Assoc. 2012, 13, 191–194. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Wawer, A.A.; Gillings, R.; Jennings, A.; Myint, P.K. Iron status in the elderly. Mech. Ageing Dev. 2014, 136–137, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Le, C.H.H. The prevalence of anemia and moderate-severe anemia in the US population (NHANES 2003-2012). PLoS ONE 2016, 11, e0166635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- University of Otago; Ministry of Health. A Focus on Nutrition: Key findings of the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011. [Google Scholar]
- Pillay, D.; Wham, C.; Moyes, S.; Muru-Lanning, M.; Teh, R.; Kerse, N. Intakes, Adequacy, and Biomarker Status of Iron, Folate, and Vitamin B(12) in Māori and Non-Māori Octogenarians: Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Nutrients 2018, 10, 1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Contreras, M.J.; Zamora-Portero, S.; Lopez, M.A.; Marin, J.F.; Zamora, S.; Perez-Llamas, F. Dietary intake and iron status of institutionalized elderly people: Relationship with different factors. J. Nutr. Health Aging 2010, 14, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Onem, Y.; Terekeci, H.; Kucukardali, Y.; Sahan, B.; Solmazgül, E.; Şenol, M.G.; Nalbant, S.; Sayan, O.; Top, C.; Oktenli, C. Albumin, hemoglobin, body mass index, cognitive and functional performance in elderly persons living in nursing homes. Arch. Gerontol. Geriatr. 2010, 50, 56–59. [Google Scholar] [CrossRef]
- Cruz da Silva, E.; Roriz, A.K.C.; Eickemberg, M.; Mello, A.L.; Côrtes, E.B.Q.; Feitosa, C.A.; Medeiros, J.M.B.; Ramos, L.B. Factors associated with anemia in the institutionalized elderly. PLoS ONE 2016, 11, e0162240. [Google Scholar] [CrossRef]
- Westerlind, B.; Östgren, C.J.; Mölstad, S.; Midlöv, P. Prevalence and predictive importance of anemia in Swedish nursing home residents—A longitudinal study. BMC Geriatr. 2016, 16, 206. [Google Scholar] [CrossRef] [Green Version]
- Kenkmann, A.; Price, G.M.; Bolton, J.; Hooper, L. Health, wellbeing and nutritional status of older people living in UK care homes: An exploratory evaluation of changes in food and drink provision. BMC Geriatr. 2010, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Landi, F.; Russo, A.; Danese, P.; Liperoti, R.; Barillaro, C.; Bernabei, R.; Onder, G. Anemia status, hemoglobin concentration, and mortality in nursing home older residents. J. Am. Med. Dir. Assoc. 2007, 8, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, Y.D.; Faria, L.F.C.; Gorzoni, M.L.; Goncalves, T.; Filho, J.; Lima, T.H.A. Anemia in elderly residents of a long-term care institution. Hematol. Transfus. Cell Ther. 2018, 40, 156–159. [Google Scholar] [CrossRef]
- Busti, F.; Campostrini, N.; Martinelli, N.; Girelli, D. Iron deficiency in the elderly population, revisited in the hepcidin era. Front. Pharmacol. 2014, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Sabol, V.K.; Resnick, B.; Galik, E.; Gruber-Baldini, A.; Morton, P.G.; Hicks, G.E. Anemia and its impact on function in nursing home residents: What do we know? J. Am. Acad. Nurse Pract. 2010, 22, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Guralnik, J.M.; Bandinelli, S.; Semba, R.D.; Lauretani, F.; Corsi, A.; Ruggiero, C.; Ershler, W.B.; Longo, D.L. Unexplained anaemia in older persons is characterised by low erythropoietin and low levels of pro-inflammatory markers. Br. J. Haematol. 2007, 136, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Sarzynski, E.; Puttarajappa, C.; Xie, Y.; Grover, M.; Laird-Fick, H. Association between proton pump inhibitor use and anemia: A retrospective cohort study. Dig. Dis. Sci. 2011, 56, 2349–2353. [Google Scholar] [CrossRef] [PubMed]
- Attwood, S.E.; Ell, C.; Galmiche, J.P.; Fiocca, R.; Hatlebakk, J.G.; Hasselgren, B.; Långström, G.; Jahreskog, M.; Eklund, S.; Lind, T.; et al. Long-term safety of proton pump inhibitor therapy assessed under controlled, randomised clinical trial conditions: Data from the SOPRAN and LOTUS studies. Aliment. Pharmacol. Ther. 2015, 41, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Stauder, R.; Thein, S.L. Anemia in the elderly: Clinical implications and new therapeutic concepts. Haematologica 2014, 99, 1127–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, C.J.; Thane, C.W.; Prentice, A.; Trevor Delves, H. Selenium status and its correlates in a British National Diet and Nutrition Survey: People aged 65 years and over. J. Trace Elem. Med. Biol. 2002, 16, 1–8. [Google Scholar] [CrossRef]
- Semba, R.D.; Ferrucci, L.; Cappola, A.R.; Ricks, M.O.; Ray, A.L.; Xue, Q.-L.; Guralnik, J.M.; Fried, L.P. Low serum selenium is associated with anemia among older women living in the community. Biol. Trace Elem. Res. 2006, 112, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Hirani, V.; Cumming, R.G.; Blyth, F.; Naganathan, V.; Le Couteur, D.G.; Waite, L.M.; Handelsman, D.J.; Seibel, M.J. Cross-sectional and longitudinal associations between the active vitamin D metabolite (1,25 dihydroxyvitamin D) and haemoglobin levels in older Australian men: The Concord Health and Ageing in Men Project. AGE 2015, 37, 8. [Google Scholar] [CrossRef] [Green Version]
- Semba, R.D.; Ricks, M.O.; Ferrucci, L.; Xue, Q.L.; Guralnik, J.M.; Fried, L.P. Low serum selenium is associated with anemia among older adults in the United States. Eur. J. Clin. Nutr. 2007, 63, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, L.A.; Parnell, W.R.; Thomson, C.D.; Green, T.J.; Gibson, R.S. Serum zinc is a major predictor of anemia and mediates the effect of selenium on hemoglobin in school-aged children in a nationally representative survey in New Zealand. J. Nutr. 2016. [Google Scholar] [CrossRef] [Green Version]
- Sim, J.J.; Lac, P.T.; Liu, I.L.A.; Meguerditchian, S.O.; Kumar, V.A.; Kujubu, D.A.; Rasgon, S.A. Vitamin D deficiency and anemia: A cross-sectional study. Ann. Hematol. 2010, 89, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Perlstein, T.S.; Pande, R.; Berliner, N.; Vanasse, G.J. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: Association with anemia of inflammation. Blood 2011, 117, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Tangpricha, V. Vitamin D and anemia: Insights into an emerging association. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.M.; Alvarez, J.A.; Kearns, M.D.; Hao, L.; Sloan, J.H.; Konrad, R.J.; Ziegler, T.R.; Zughaier, S.M.; Tangpricha, V. High-dose vitamin D3 reduces circulating hepcidin concentrations: A pilot, randomized, double-blind, placebo-controlled trial in healthy adults. Clin. Nutr. 2017, 36, 980–985. [Google Scholar] [CrossRef]
- Syed, S.; Michalski, E.S.; Tangpricha, V.; Chesdachai, S.; Kumar, A.; Prince, J.; Ziegler, T.R.; Suchdev, P.S.; Kugathasan, S. Vitamin D Status Is Associated with Hepcidin and Hemoglobin Concentrations in Children with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1650–1658. [Google Scholar] [CrossRef] [Green Version]
- Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W.; et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 2014, 25, 564–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semba, R.D.; Bartali, B.; Zhou, J.; Blaum, C.; Ko, C.-W.; Fried, L.P. Low serum micronutrient concentrations predict frailty among older women living in the community. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 594–599. [Google Scholar] [CrossRef]
- Gibson, R.S.; Abebe, Y.; Stabler, S.; Allen, R.H.; Westcott, J.E.; Stoecker, B.J.; Krebs, N.F.; Hambidge, K.M. Zinc, gravida, infection, and iron, but not vitamin B-12 or folate status, predict hemoglobin during pregnancy in Southern Ethiopia. J. Nutr. 2008, 138, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Siyame, E.W.P.; Hurst, R.; Wawer, A.A.; Young, S.D.; Broadley, M.R.; Chilimba, A.D.C.; Ander, L.E.; Watts, M.J.; Chilima, B.; Gondwe, J.; et al. A high prevalence of zinc- but not iron-deficiency among women in rural Malawi: A cross-sectional study. Int. J. Vitam. Nutr. Res. 2013, 83, 176–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagababu, E.; Chrest, F.J.; Rifkind, J.M. Hydrogen-peroxide-induced heme degradation in red blood cells: The protective roles of catalase and glutathione peroxidase. Biochim. Biophys. Acta Gen. Subj. 2003, 1620, 211–217. [Google Scholar] [CrossRef]
- O’Dell, B.L. Role of zinc in plasma membrane function. J. Nutr. 2000, 130, 1432S–1436S. [Google Scholar] [CrossRef]
- Labbaye, C.; Valtieri, M.; Barberi, T.; Meccia, E.; Masella, B.; Pelosi, E.; Condorelli, G.L.; Testa, U.; Peschle, C. Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis. J. Clin. Investig. 1995, 95, 2346–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, M.; Yamaguchi, T.; Nakamura, Y.; Kaneko, S.; Onodera, M.; Sawada, K.-i.; Jegalian, A.; Wu, H.; Nakauchi, H.; Iwama, A. Erythroid expansion mediated by the Gfi-1B zinc finger protein: Role in normal hematopoiesis. Blood 2002, 100, 2769. [Google Scholar] [CrossRef] [Green Version]
- MacDonell, S.O.; Miller, J.C.; Harper, M.J.; Reid, M.R.; Haszard, J.J.; Gibson, R.S.; Houghton, L.A. A comparison of methods for adjusting biomarkers of iron, zinc, and selenium status for the effect of inflammation in an older population: A case for interleukin 6. Am. J. Clin. Nutr. 2018, 107, 932–940. [Google Scholar] [CrossRef]
- Lam, J.R.; Schneider, J.L.; Quesenberry, C.P.; Corley, D.A. Proton pump inhibitor and histamine-2 receptor antagonist use and iron deficiency. Gastroenterology 2017, 152, 821–829.e1. [Google Scholar] [CrossRef] [Green Version]
- Nestle Nutrition Institute. A Guide to Completing the Mini Nutritional Assessment–Short Form; 2013; Available online: https://www.mna-elderly.com/tools_for_clinicians.html (accessed on 7 September 2013).
- World Health Organisation. BMI Classification. Available online: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html& (accessed on 9 December 2016).
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Zinc Review. J. Nutr. 2016, 146, 858S–885S. [Google Scholar] [CrossRef] [Green Version]
- Suchdev, P.S.; Namaste, S.M.; Aaron, G.J.; Raiten, D.J.; Brown, K.H.; Flores-Ayala, R. Overview of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) Project. Adv. Nutr. 2016, 7, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, C.D. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations.; World Health Organisation: Geneva, Switzerland, 2011. [Google Scholar]
- Pfeiffer, C.M.; Cook, J.D.; Mei, Z.; Cogswell, M.E.; Looker, A.C.; Lacher, D.A. Evaluation of an automated soluble transferrin receptor (sTfR) assay on the Roche Hitachi analyzer and its comparison to two ELISA assays. Clin. Chim. Acta 2007, 382, 112–116. [Google Scholar] [CrossRef]
- Cook, J.D.; Flowers, C.H.; Skikne, B.S. The quantitative assessment of body iron. Blood 2003, 101, 3359–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skikne, B.S.; Flowers, C.H.; Cook, J.D. Serum transferrin receptor: A quantitative measure of tissue iron deficiency. Blood 1990, 75, 1870–1876. [Google Scholar] [CrossRef] [Green Version]
- Looker, A.C.; Dallman, P.R.; Carroll, M.D.; Gunter, E.W.; Johnson, C.L. Prevalence of iron deficiency in the united states. JAMA 1997, 277, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Maunsell, Z.; Wright, D.J.; Rainbow, S.J. Routine isotope-dilution liquid chromatography–tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin. Chem. 2005, 51, 1683–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonell, S.O.; Miller, J.C.; Harper, M.J.; Waters, D.L.; Houghton, L.A. Vitamin D status and its predictors in New Zealand aged-care residents eligible for a government-funded universal vitamin D supplementation programme. Public Health Nutr. 2016, 19, 3349–3360. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Ministry of Health. Vitamin D Status of New Zealand Adults: Findings from the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2012. [Google Scholar]
- Allen, L.H.; Miller, J.W.; de Groot, L.; Rosenberg, I.H.; Smith, A.D.; Refsum, H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND): Vitamin B-12 review. J. Nutr. 2018, 148, 1995S–2027S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Health Australia. eGFR Calculator. Available online: http://www.kidney.org.au/healthprofessionals/gfrcalculatorckdepi/tabid/803/default.aspx (accessed on 30 June 2015).
- Gibson, R.S. Assessment of Iron Status. In Principles of Nutrition Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005; pp. 443–476. [Google Scholar]
- Goot, K.; Hazeldine, S.; Bentley, P.; Olynyk, J.; Crawford, D. Elevated serum ferritin What should GPs know? Aust. Fam. Physician 2012, 41, 945–949. [Google Scholar]
- Guralnik, J.M.; Eisenstaedt, R.S.; Ferrucci, L.; Klein, H.G.; Woodman, R.C. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263. [Google Scholar] [CrossRef] [Green Version]
- Leifert, J.A. Anaemia and cigarette smoking. Int. J. Lab. Hematol. 2008, 30, 177–184. [Google Scholar] [CrossRef]
- Nordenberg, D.; Yip, R.; Binkin, N.J. The effect of cigarette smoking on hemoglobin levels and anemia screening. J. Am. Med. Assoc. 1990, 264, 1556–1559. [Google Scholar] [CrossRef]
- Sebastiani, P.; Thyagarajan, B.; Sun, F.; Honig, L.S.; Schupf, N.; Cosentino, S.; Feitosa, M.F.; Wojczynski, M.; Newman, A.B.; Montano, M.; et al. Age and sex distributions of age-related biomarker values in healthy older adults from the long life family study. J. Am. Geriatr. Soc. 2016, 64, e189–e194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauder, R.; Valent, P.; Theurl, I. Anemia at older age: Etiologies, clinical implications, and management. Blood 2018, 131, 505–514. [Google Scholar] [CrossRef]
- Gibson, R.S.; Heath, A.-L. Population groups at risk of zinc deficiency in Australia and New Zealand. Nutr. Diet. 2011, 68, 97–108. [Google Scholar] [CrossRef]
- Keller, H.H.; Lengyel, C.; Carrier, N.; Slaughter, S.E.; Morrison, J.; Duncan, A.M.; Steele, C.M.; Duizer, L.; Brown, K.S.; Chaudhury, H.; et al. Prevalence of inadequate micronutrient intakes of Canadian long-term care residents. Br. J. Nutr. 2018, 119, 1047–1056. [Google Scholar] [CrossRef] [Green Version]
- Turnlund, J.R.; Durkin, N.; Costa, F.; Margen, S. Stable isotope studies of zinc absorption and retention in young and elderly men. J. Nutr. 1986, 116, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Ogun, A.S.; Joy, N.V.; Valentine, M. Biochemistry, Heme Synthesis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537329/ (accessed on 10 October 2020).
- Woodhouse, L.R.; Lederer, L.J.; Lowe, N.M.; King, J.C. The effects of zinc status on the osmotic fragility of human erythrocytes. In race elements in man and animals-9. Proceedings of the Ninth International Symposium on Trace Elements on Man and Animals; NRC Research Press: Ottawa, Canada, 1997; pp. 636–638. [Google Scholar]
- Arabi, S.M.; Ranjbar, G.; Bahrami, L.S.; Vafa, M.; Norouzy, A. The effect of vitamin D supplementation on hemoglobin concentration: A systematic review and meta-analysis. Nutr. J. 2020, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Dallalio, G.; Law, E.; Means, R.T. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood 2006, 107, 2702. [Google Scholar] [CrossRef] [Green Version]
- Rane, P.P.; Guha, S.; Chatterjee, S.; Aparasu, R.R. Prevalence and predictors of non-evidence based proton pump inhibitor use among elderly nursing home residents in the US. Res. Soc. Adm. Pharm. 2016. [Google Scholar] [CrossRef] [PubMed]
- Masclee, G.M.C.; Sturkenboom, M.C.J.M.; Kuipers, E.J. A benefit–risk assessment of the use of proton pump inhibitors in the elderly. Drugs Aging 2014, 31, 263–282. [Google Scholar] [CrossRef]
- Freedberg, D.E.; Kim, L.S.; Yang, Y.-X. The risks and benefits of long-term use of proton pump inhibitors: Expert review and best practice advice from the American Gastroenterological Association. Gastroenterology 2017, 152, 706–715. [Google Scholar] [CrossRef]
- Gibson, R.S. Assessment of iodine and selenium status. In Principles of Nutrition Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005; pp. 749–796. [Google Scholar]
Variable | n | Geometric Mean (95% CIs) 2 |
---|---|---|
Age, years (±SD) | 285 | 85.0 ± 7.5 |
Sex (male), n (%) | 92 (32.3) | |
Obese 3, n (%) | 279 | 55 (19.7) |
Smoking status, n (%) | 276 | |
Non-smoker | 266 (96.4) | |
Current smoker | 10 (3.6) | |
Malnutrition 4, n (%) | 279 | |
Normal nutrition status | 151 (54.12) | |
At risk of malnutrition | 109 (39.1) | |
Malnourished | 19 (6.8) | |
Gastric acid supressing medication 5, n (%) | 284 | 135 (47.5) |
Serum ferritin 6, μg/L | 282 | 94.1 (84.4, 104.8) |
Depleted iron stores (serum ferritin <15 μg/L), n (%) | 6 (2.0) | |
Serum sTfR 6, mg/L | 283 | 3.2 (3.0, 3.3) |
sTfR > 5.3 mg/L, n (%) | 22 (7.7) | |
Total body iron 7, mg/kg | 277 | 7.7 (7.1, 8.4) |
Total body iron < 0 mg/kg, n (%) | 4 (1.3) | |
Hemoglobin, g/L | 282 | 125.4 (123.6, 127.2) |
Anemia 8, n (%) | 89 (31.6) | |
Iron deficiency anemia 9, n (%) | 4 (1.3) | |
Hepcidin, ng/mL | 284 | 7.9 (7.4, 8.3) |
Plasma zinc 6, μmol/L | 281 | 10.0 (9.8, 10.1) |
Low plasma zinc 10, n (%) | 202 (71.9) | |
Plasma selenium 6, μmol/L | 282 | 0.88 (0.85, 0.91) |
Low plasma selenium (<0.82 μmol/L), n (%) | 108 (38.3) | |
Serum 25(OH)D, nmol/L | 285 | 75.4 (69.2, 82.2) |
Low serum 25(OH)D (<50 nmol/L), n (%) | 49 (17.2) | |
Serum vitamin B-12 pg/mL | 285 | 424.8 (399.2, 452.1) |
Low serum vitamin B-12 (<150 pg/mL), n (%) | 1 (0.4) | |
Serum CRP, mg/L | 281 | 3.7 (3.3, 4.2) |
Elevated serum CRP (>5 mg/L), n (%) | 97 (34.5) | |
Serum AGP, g/L | 283 | 0.84 (0.81, 0.87) |
Elevated serum AGP (> 1 g/L), n (%) | 77 (27.2) | |
Serum Interleukin-6, pg/mL | 285 | 5.8 (5.2, 6.4) |
Elevated serum IL-6 concentration 11, n (%) | 278 (97.6) | |
eGFR (mL/min/1.73 m2) | 283 | 57.8 (55.4, 60.3) |
Variable | n | Univariate Regression | Final Adjusted Model 1 | ||
---|---|---|---|---|---|
β-Coefficient (95% CI) | p | β-Coefficient (95% CI) | p | ||
Age, years | 282 | −0.25 (−0.50, −0.01) | 0.048 | 0.03 (−0.22, 0.29) | 0.776 |
Female | 282 | −2.93 (−6.82, 0.95) | 0.128 | −2.55 (−6.42, 1.32) | 0.181 |
Gastric acid supressing medications (yes) | 281 | −7.83 (−11.77, −3.90) | 0.001 | −3.75 (−6.81, −0.70) | 0.019 |
Current Smoker | 273 | −1.95 (−12.47, 8.57) | 0.698 | 0.00 (−8.06, 8.06) | >0.999 |
Obesity 2 | 276 | −3.25 (−7.71, 1.21) | 0.141 | −2.60 (−6.33, 1.13) | 0.158 |
Malnutrition 3 | 276 | 0.077 | 0.176 | ||
At risk of malnutrition compared to normal nutrition status | −2.11 (−4.37, 0.16) | 0.10 (−3.33, 3.53) | |||
Malnourished compared to normal nutrition status | −5.07 (−13.03, 2.90) | −4.15 (−9.27, 0.96) | |||
Serum ferritin 4,5 | 279 | 3.74 (2.20, 5.27) | <0.001 | ||
Serum sTfR 4,5 | 281 | −2.56 (−4.93, −0.19) | 0.036 | ||
Total Body Iron 4,5 | 278 | 4.02 (2.47, 5.58) | <0.001 | 2.44 (0.13, 4.75) | 0.040 |
Plasma zinc 4,5 | 278 | 5.37 (2.19, 8.56) | 0.003 | 4.89 (2.17, 7.60) | 0.002 |
Plasma selenium 4,5 | 279 | 3.77 (1.40, 6.14) | 0.004 | 0.67 (−1.41, 2.74) | 0.504 |
Serum CRP 5 | 279 | −1.74 (−4.21, 0.74) | 0.155 | 0.67 (−2.07, 3.41) | 0.609 |
Serum IL-6 5 | 282 | −2.96 (−4.16, −1.75) | <0.001 | −3.00 (−4.76, −1.25) | 0.002 |
Serum hepcidin 5 | 281 | −3.34 (−5.83, −0.84) | 0.012 | −2.01 (−4.00, −0.02) | 0.048 |
Serum vitamin D 5 | 282 | −0.03 (−2.06, 2.00) | 0.975 | 0.62 (−1.83, 3.07) | 0.596 |
Serum vitamin B-12 5 | 282 | −0.10 (−2.76, 2.55) | 0.934 | −0.21 (−2.19, 1.77) | 0.825 |
eGFR 5 | 281 | 2.06 (−0.30, 4.41) | 0.082 | −0.09 (−2.67, 2.48) | 0.939 |
Variable | Univariate Regression | Final Adjusted Model | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Age, years | 1.02 (0.97, 1.07) | 0.427 | 0.98 (0.91, 1.05) | 0.515 |
Sex (female) | 0.73 (0.40, 1.31) | 0.293 | 0.68 (0.31, 1.52) | 0.349 |
Current smoker | 1.55 (0.33, 7.18) | 0.576 | 2.68 (0.28, 25.72) | 0.392 |
Malnutrition 3 | 0.009 | 0.137 | ||
At risk of malnutrition (compared to normal nutrition status) | 1.82 (1.24, 2.67) | 1.79 (0.91, 3.53) | 0.092 | |
Malnourished (compared to normal nutrition status) | 1.29 (0.43, 3.85) | 1.21 (0.38, 3.80) | 0.747 | |
Obesity (BMI ≥ 30 kg/m2) | 1.69 (1.13, 2.53) | 0.011 | 1.33 (0.69, 2.59) | 0.394 |
Gastric acid supressing medications (yes) | 3.07 (1.90, 4.95) | <0.001 | 1.81 (1.15, 2.86) | 0.010 |
Serum ferritin 4,5 | 0.61 (0.50, 0.73) | <0.001 | ||
Serum sTfR 4,5 | 1.28 (0.94, 1.74) | 0.113 | ||
Total Body Iron 4,5 | 0.60 (0.48, 0.74) | <0.001 | 0.64 (0.45, 0.92) | 0.017 |
Plasma zinc 4,5 | 0.46 (0.29, 0.72) | 0.001 | 0.47 (0.30, 0.74) | 0.001 |
Plasma selenium 4,5 | 0.57 (0.39, 0.84) | 0.005 | 0.92 (0.59, 1.45) | 0.731 |
Serum CRP 5 | 1.37 (0.997, 1.89) | 0.052 | 0.97 (0.63, 1.50) | 0.892 |
Serum IL-6 5 | 1.65 (1.40, 1.95) | <0.001 | 1.61 (1.17, 2.20) | 0.003 |
Serum vitamin D 5 | 0.86 (0.67, 1.12) | 0.261 | 0.81 (0.55, 1.18) | 0.273 |
Serum vitamin B-12 5 | 0.94 (0.67, 1.31) | 0.703 | 0.89 (0.64, 1.23) | 0.473 |
Serum hepcidin 5 | 1.96 (1.44, 2.67) | <0.001 | 1.67 (1.07, 2.60) | 0.023 |
eGFR 5 | 0.80 (0.62, 1.02) | 0.076 | 1.01 (0.73, 1.40) | 0.958 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacDonell, S.O.; Miller, J.C.; Harper, M.J.; Reid, M.R.; Haszard, J.J.; Gibson, R.S.; Houghton, L.A. Multiple Micronutrients, Including Zinc, Selenium and Iron, Are Positively Associated with Anemia in New Zealand Aged Care Residents. Nutrients 2021, 13, 1072. https://doi.org/10.3390/nu13041072
MacDonell SO, Miller JC, Harper MJ, Reid MR, Haszard JJ, Gibson RS, Houghton LA. Multiple Micronutrients, Including Zinc, Selenium and Iron, Are Positively Associated with Anemia in New Zealand Aged Care Residents. Nutrients. 2021; 13(4):1072. https://doi.org/10.3390/nu13041072
Chicago/Turabian StyleMacDonell, Sue O., Jody C. Miller, Michelle J. Harper, Malcolm R. Reid, Jillian J. Haszard, Rosalind S. Gibson, and Lisa A. Houghton. 2021. "Multiple Micronutrients, Including Zinc, Selenium and Iron, Are Positively Associated with Anemia in New Zealand Aged Care Residents" Nutrients 13, no. 4: 1072. https://doi.org/10.3390/nu13041072