Increasing Vegetable Diversity Consumption Impacts the Sympathetic Nervous System Activity in School-Aged Children
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Participants Assessment
2.2.1. Pupillometry
2.2.2. Vegetable and Fruit Diversity
2.2.3. Anthropometry
2.2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Archero, F.; Ricotti, R.; Solito, A.; Carrera, D.; Civello, F.; Di Bella, R.; Bellone, S.; Prodam, F. Adherence to the Mediterranean Diet among School Children and Adolescents Living in Northern Italy and Unhealthy Food Behaviors Associated to Overweight. Nutrients 2018, 10, 1322. [Google Scholar] [CrossRef] [Green Version]
- Branca, F.; Lartey, A.; Oenema, S.; Aguayo, V.; Stordalen, G.A.; Richardson, R.; Arvelo, M.; Afshin, A. Transforming the food system to fight non-communicable diseases. BMJ 2019, 364, l296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellendick, K.; Shanahan, L.; Wideman, L.; Calkins, S.; Keane, S.; Lovelady, C. Diets Rich in Fruits and Vegetables Are Associated with Lower Cardiovascular Disease Risk in Adolescents. Nutrients 2018, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, L.; Savage, J.S.; Ventura, A. Influences on the Development of Children’s Eating Behaviours: From Infancy to Adolescence. Can. J. Diet Pract. Res. 2007, 68, s1–s56. [Google Scholar]
- Burggraf, C.; Teuber, R.; Brosig, S.; Meier, T. Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 2018, 76, 747–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, D.R.; Gross, M.D.; Tapsell, L.C. Food synergy: An operational concept for understanding nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar] [CrossRef]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, Additive, and Antagonistic Effects of Food Mixtures on Total Antioxidant Capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef]
- Jones, L.; Moschonis, G.; Oliveira, A.; De Lauzon-Guillain, B.; Manios, Y.; Xepapadaki, P.; Lopes, C.; Moreira, P.; Charles, M.A.; Emmett, P. The influence of early feeding practices on healthy diet variety score among pre-school children in four European birth cohorts. Public Health Nutr. 2015, 18, 1774–1784. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Ramsay, S.A.; Shriver, L.H.; Taylor, C.A. Variety of fruit and vegetables is related to preschoolers’ overall diet quality. Prev. Med. Rep. 2017, 5, 112–117. [Google Scholar] [CrossRef]
- De Castro Mendes, F.; Paciência, I.; Cavaleiro Rufo, J.; Farraia, M.; Silva, D.; Padrão, P.; Delgado, L.; Garcia-Larsen, V.; Moreira, A.; Moreira, P. Higher diversity of vegetable consumption is associated with less airway inflammation and prevalence of asthma in school-aged children. Pediatr. Allergy Immunol. 2021. [Google Scholar] [CrossRef]
- Almeida-De-Souza, J.; Santos, R.; Lopes, L.; Abreu, S.; Moreira, C.; Padrão, P.; Mota, J.; Moreira, P. Associations between fruit and vegetable variety and low-grade inflammation in Portuguese adolescents from LabMed Physical Activity Study. Eur. J. Nutr. 2018, 57, 2055–2068. [Google Scholar] [CrossRef]
- Jänig, W. Integration of autonomic regulation in upper brain stem and limbic-hypothalamic centers: A summary. In Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis; [Online]; Cambridge University Press: Cambridge, UK, 2006; pp. 459–518. [Google Scholar]
- Guarino, D.; Nannipieri, M.; Iervasi, G.; Taddei, S.; Bruno, R.M. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. Front. Physiol. 2017, 8, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryder, J.R.; O’Connell, M.; Bosch, T.A.; Chow, L.; Rudser, K.D.; Dengel, D.R.; Fox, C.K.; Steinberger, J.; Kelly, A.S. Impaired cardiac autonomic nervous system function is associated with pediatric hypertension independent of adiposity. Pediatr. Res. 2016, 79, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luyer, M.D.; Habes, Q.; Van Hak, R.; Buurman, W. Nutritional stimulation of the autonomic nervous system. World J. Gastroenterol. 2011, 17, 3859–3863. [Google Scholar] [CrossRef]
- Costa, J.; Moreira, A.; Moreira, P.; Delgado, L.; Silva, D. Effects of weight changes in the autonomic nervous system: A systematic review and meta-analysis. Clin. Nutr. 2019, 38, 110–126. [Google Scholar] [CrossRef]
- Bruno, R.M.; Ghiadoni, L. Polyphenols, Antioxidants and the Sympathetic Nervous System. Curr. Pharm. Des. 2018, 24, 130–139. [Google Scholar] [CrossRef]
- Dai, J.; Lampert, R.; Wilson, P.W.; Goldberg, J.; Ziegler, T.R.; Vaccarino, V. Mediterranean Dietary Pattern Is Associated with Improved Cardiac Autonomic Function Among Middle-Aged Men: A Twin Study. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Tucker, K.L.; O’Neill, M.S.; Sparrow, D.; Vokonas, P.S.; Hu, H.; Schwartz, J. Fruit, vegetable, and fish consumption and heart rate variability: The Veterans Administration Normative Aging Study. Am. J. Clin. Nutr. 2009, 89, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Prasertsri, P.; Booranasuksakul, U.; Naravoratham, K.; Trongtosak, P. Acute Effects of Passion Fruit Juice Supplementation on Cardiac Autonomic Function and Blood Glucose in Healthy Subjects. Prev. Nutr. Food Sci. 2019, 24, 245–253. [Google Scholar] [CrossRef]
- Fu, C.-H.; Yang, C.C.; Lin, C.-L.; Kuo, T.B. Effects of Long-Term Vegetarian Diets on Cardiovascular Autonomic Functions in Healthy Postmenopausal Women. Am. J. Cardiol. 2006, 97, 380–383. [Google Scholar] [CrossRef]
- Mulkey, S.B.; du Plessis, A.J. Autonomic nervous system development and its impact on neuropsychiatric outcome. Pediatr. Res. 2019, 85, 120–126. [Google Scholar] [CrossRef]
- Paciência, I.; Rufo, J.C.; Silva, D.; Martins, C.; Mendes, F.; Rama, T.; Rodolfo, A.; Madureira, J.; Delgado, L.; de Oliveira Fernandes, E.; et al. School environment associates with lung function and autonomic nervous system activity in children: A cross-sectional study. Sci. Rep. 2019, 9, 15156. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Moreira, R.; Sokhatska, O.; Beltrão, M.; Montanha, T.; Garcia-Larsen, V.; Villegas, R.; Severo, M.; Pizarro, A.; Pinto, M.; et al. Meal-exercise challenge and physical activity reduction impact on immunity and inflammation (MERIIT trial). Contemp. Clin. Trials Commun. 2018, 10, 177–189. [Google Scholar] [CrossRef]
- Larson, M.D.; Behrends, M. Portable infrared pupillometry: A review. Anesth. Analg. 2015, 120, 1242–1253. [Google Scholar] [CrossRef]
- Bremner, F.; Smith, S. Pupil findings in a consecutive series of 150 patients with generalised autonomic neuropathy. J. Neurol Neurosurg. Psychiatry 2006, 77, 1163–1168. [Google Scholar] [CrossRef]
- Ferrari, G.L.; Marques, J.L.; Gandhi, R.A.; Heller, S.R.; Schneider, F.K.; Tesfaye, S.; Gamba, H.R. Using dynamic pupillometry as a simple screening tool to detect autonomic neuropathy in patients with diabetes: A pilot study. Biomed. Eng. Online 2010, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Giza, E.; Fotiou, D.; Bostantjopoulou, S.; Katsarou, Z.; Karlovasitou, A. Pupil light reflex in Parkinson’s disease: Evaluation with pupillometry. Int. J. Neurosci. 2011, 121, 37–43. [Google Scholar] [CrossRef]
- FAO; FHI360. Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Mei, Z.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. CDC Growth Charts: United States Advance Data from Vital and Health Statistics; National Center for Health Statistics: Hyattsville, MD, USA, 2000; pp. 1–27.
- Krzeczkowski, J.E.; Boylan, K.; Arbuckle, T.E.; Muckle, G.; Poliakova, N.; Séguin, J.R.; Favotto, L.A.; Savoy, C.; Amani, B.; Mortaji, N.; et al. Maternal Pregnancy Diet Quality Is Directly Associated with Autonomic Nervous System Function in 6-Month-Old Offspring. J. Nutr. 2019, 150, 267–275. [Google Scholar] [CrossRef]
- De Wijk, R.A.; Kooijman, V.; Verhoeven, R.H.G.; Holthuysen, N.T.E.; de Graaf, C. Autonomic nervous system responses on and facial expressions to the sight, smell, and taste of liked and disliked foods. Food Qual. Prefer. 2012, 26, 196–203. [Google Scholar] [CrossRef]
- Anderson, E.C.; Wormwood, J.; Barrett, L.F.; Quigley, K.S. Vegetarians’ and omnivores’ affective and physiological responses to images of food. Food Qual. Prefer. 2019, 71, 96–105. [Google Scholar] [CrossRef]
- Rousmans, S.; Robin, O.; Dittmar, A.; Vernet-Maury, E. Autonomic nervous system responses associated with primary tastes. Chem. Senses 2000, 25, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalcin, H.; Çapar, T.D. Bioactive Compounds of Fruits and Vegetables. In High Pressure Processing of Food; Springer: Boston, MA, USA, 2017; Volume 22, pp. 723–745. [Google Scholar]
- Foster, E.; Bradley, J. Methodological considerations and future insights for 24-hour dietary recall assessment in children. Nutr. Res. 2018, 51, 1–11. [Google Scholar] [CrossRef]
- Haraldsdóttir, J.; Thórsdóttir, I.; de Almeida, M.D.; Maes, L.; Pérez Rodrigo, C.; Elmadfa, I.; Andersen, L.F. Validity and reproducibility of a precoded questionnaire to assess fruit and vegetable intake in European 11- to 12-year-old schoolchildren. Ann. Nutr. Metab. 2005, 49, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Kercher, C.; Azinfar, L.; Dinalankara, D.M.R.; Takahashi, T.N.; Miles, J.H.; Yao, G. A longitudinal study of pupillary light reflex in 6- to 24-month children. Sci. Rep. 2020, 10, 1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muppidi, S.; Adams-Huet, B.; Tajzoy, E.; Scribner, M.; Blazek, P.; Spaeth, E.B.; Frohman, E.; Davis, S.; Vernino, S. Dynamic pupillometry as an autonomic testing tool. Clin. Auton. Res. 2013, 23, 297–303. [Google Scholar] [CrossRef]
- Boev, A.N.; Fountas, K.N.; Karampelas, I.; Boev, C.; Machinis, T.G.; Feltes, C.; Okosun, I.; Dimopoulos, V.; Troup, C. Quantitative pupillometry: Normative data in healthy pediatric volunteers. J. Neurosurg. Pediatr. 2005, 103, 496–500. [Google Scholar] [CrossRef] [Green Version]
- Couto, M.; Silva, D.; Santos, P.; Queirós, S.; Delgado, L.; Moreira, A. WITHDRAWN: Exploratory study comparing dysautonomia between asthmatic and non-asthmatic elite swimmers. Rev. Port. Pneumol. 2014, 21, 22–29. [Google Scholar] [CrossRef]
- Filipe, J.A.C.; Falcão-Reis, F.; Castro-Correia, J.; Barros, H. Assessment of autonomic function in high level athletes by pupillometry. Auton. Neurosci. 2003, 104, 66–72. [Google Scholar] [CrossRef]
- Wang, C.-A.; Baird, T.; Huang, J.; Coutinho, J.D.; Brien, D.C.; Munoz, D.P. Arousal Effects on Pupil Size, Heart Rate, and Skin Conductance in an Emotional Face Task. Front Neurol. 2018, 9, 1029. [Google Scholar] [CrossRef] [PubMed]
- Winston, M.; Zhou, A.; Rand, C.M.; Dunne, E.C.; Warner, J.J.; Volpe, L.J.; Pigneri, B.A.; Simon, D.; Bielawiec, T.; Gordon, S.C.; et al. Pupillometry measures of autonomic nervous system regulation with advancing age in a healthy pediatric cohort. Clin. Auton. Res. 2019, 30, 43–51. [Google Scholar] [CrossRef]
- Hall, C.A.; Chilcott, R.P. Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics. Diagnostics 2018, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozsutcu, M.; Ozkaya, E.; Demir, A.; Erenberk, U.; Sogut, A.; Dündaröz, R. Pupillometric Assessment of Autonomic Nervous System in Children with Allergic Rhinitis. Med. Princ. Pr. 2013, 22, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Gajardo, A.I.J.; Madariaga, S.; Maldonado, P.E. Autonomic nervous system assessment by pupillary response as a potential biomarker for cardiovascular risk: A pilot study. J. Clin. Neurosci. 2019, 59, 41–46. [Google Scholar] [CrossRef] [PubMed]
Girls, n = 256 | Boys, n = 257 | Total, n = 513 | p-Value | |
---|---|---|---|---|
Age (years), ±SD | 8.80 ± 0.80 | 8.81 ± 0.81 | 8.80 ± 0.80 | 0.979 |
BMI categories 1, n (%) | ||||
Underweight | 14 (5.50) | 10 (3.90) | 24 (4.70) | 0.700 |
Normal weight | 179 (69.90) | 181 (70.60) | 360 (70.20) | |
Overweight | 37 (14.50) | 34 (13.20) | 71 (13.80) | |
Obese | 26 (10.20) | 34 (13.20) | 58 (11.30) | |
Daily vegetable intake (g) | 404.5 (290.0; 595.0) | 420.0 (279.0; 685.9) | 403.0 (290.0; 625.0) | 0.385 |
Daily fruit intake (g) | 232 (158.0; 328.0) | 250.0 (138.0; 348.0) | 234.5 (150.0; 342.0) | 0.839 |
Vegetable diversity score | 2.5 (2.0; 3.0) | 2.5 (2.0; 3.0) | 2.5 (2.0; 3.0) | 0.511 |
Fruit diversity score | 1.0 (1.0; 2.0) | 1.0 (1.0; 2.0) | 1.0 (1.0; 2.0) | 0.763 |
Pupillometry | ||||
Baseline pupil diameter (mm) | 5.40 (4.70; 4.90) | 5.40 (4.90; 5.90) | 5.40 (4.80; 5.90) | 0.648 |
Final pupil diameter (mm) | 3.45 (3.0; 3.90) | 3.40 (3.0; 3.80) | 3.40 (3.0; 3.90) | 0.729 |
ACV (mm/s) | 4.04 (3.57; 4.45) | 4.05 (3.63; 4.45) | 35.0 (33.0; 38.0) | 0.354 |
ADV (mm/s) | 1.14 (0.98; 1.32) | 1.17 (0.99; 1.33) | 1.15 (0.99; 1.32) | 0.545 |
Constriction amplitude (%) | 35.0 (32.0; 38.0) | 36.0 (33.0; 39.0) | 35.0 (33.0; 38.0) | 0.055 |
MCV (mm/s) | 5.32 (4.68; 5.85) | 5.41 (4.85; 5.94) | 5.37 (4.76; 5.88) | 0.112 |
T75 (s) | 1.67 (1.17; 2.07) | 1.67 (1.23; 2.13) | 1.67 (1.20; 2.13) | 0.652 |
Vegetable Diversity | Fruit Diversity | |||
---|---|---|---|---|
R2 | R2 | |||
Baseline pupil diameter | ||||
Crude Model | 0.12 (−0.01; 0.25) | 0.006 | 0.02 (−0.06; 0.09) | 0.0004 |
Adjusted Model | 0.007 (−0.07; 0.08) | 0.004 | 0.03 (−0.09; 0.15) | 0.014 |
Final pupil diameter | ||||
Crude Model | 0.19 (0.01; 0.37) | 0.009 | 0.02 (−0.04; 0.07) | 0.001 |
Adjusted Model | 0.02 (−0.04; 0.07) | 0.009 | 0.03 (−0.06; 0.11) | 0.015 |
ACV | ||||
Crude Model | −0.02 (−0.19; 0.15) | 0.001 | 0.03 (−0.03; 0.09) | 0.002 |
Adjusted Model | −0.04 (−0.10; 0.02) | 0.007 | 0.03 (−0.07; 0.12) | 0.004 |
ADV | ||||
Crude Model | 0.45 (0.09; 0.81) | 0.01 | −0.01 (−0.04; 0.02) | 0.001 |
Adjusted Model | 0.03 (0.002; 0.07) | 0.047 | 0.01 (−0.04; 0.05) | 0.046 |
Constriction amplitude | ||||
Crude Model | −0.01 (−0.04; 0.01) | 0.003 | −0.10 (−0.55; 0.34) | 0.0004 |
Adjusted Model | −0.18 (−0.62; 0.27) | 0.018 | −0.09 (−0.72; 0.55) | 0.011 |
MCV | ||||
Crude Model | −0.02 (−0.15; 0.10) | 0.0003 | 0.04 (−0.04; 0.12) | 0.002 |
Adjusted Model | −0.02 (−0.10; 0.06) | 0.009 | 0.05 (−0.08; 0.17 | 0.009 |
T75 | ||||
Crude Model | 0.04 (−0.13; 0.21) | 0.001 | 0.01 (−0.06; 0.08) | 0.0002 |
Adjusted Model | −0.001 (−0.07; 0.07) | 0.005 | 0.04 (−0.07; 0.15) | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro Mendes, F.; Paciência, I.; Rufo, J.C.; Farraia, M.; Silva, D.; Padrão, P.; Delgado, L.; Garcia-Larsen, V.; Moreira, A.; Moreira, P. Increasing Vegetable Diversity Consumption Impacts the Sympathetic Nervous System Activity in School-Aged Children. Nutrients 2021, 13, 1456. https://doi.org/10.3390/nu13051456
de Castro Mendes F, Paciência I, Rufo JC, Farraia M, Silva D, Padrão P, Delgado L, Garcia-Larsen V, Moreira A, Moreira P. Increasing Vegetable Diversity Consumption Impacts the Sympathetic Nervous System Activity in School-Aged Children. Nutrients. 2021; 13(5):1456. https://doi.org/10.3390/nu13051456
Chicago/Turabian Stylede Castro Mendes, Francisca, Inês Paciência, João Cavaleiro Rufo, Mariana Farraia, Diana Silva, Patrícia Padrão, Luís Delgado, Vanessa Garcia-Larsen, André Moreira, and Pedro Moreira. 2021. "Increasing Vegetable Diversity Consumption Impacts the Sympathetic Nervous System Activity in School-Aged Children" Nutrients 13, no. 5: 1456. https://doi.org/10.3390/nu13051456
APA Stylede Castro Mendes, F., Paciência, I., Rufo, J. C., Farraia, M., Silva, D., Padrão, P., Delgado, L., Garcia-Larsen, V., Moreira, A., & Moreira, P. (2021). Increasing Vegetable Diversity Consumption Impacts the Sympathetic Nervous System Activity in School-Aged Children. Nutrients, 13(5), 1456. https://doi.org/10.3390/nu13051456